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Abstract 
 
This paper explores the virtues of Markov-Switching models to characterize the behavior of copper 
price. In particular, we study the performance of several univariate specifications of this type of 
models, both in and out of sample, comparing them also with constant parameter models such as 
ARMA and GARCH. The main finding is that allowing for a regime-switching variance in the error 
term is most relevant in explaining the behavior of this price. 
 
Resumen 
 
Este artículo explora las virtudes de modelos de cambios de régimen (Markov Switching) para 
caracterizar el comportamiento del precio del cobre. En particular, se analiza el desempeño de 
especificaciones univariadas de este tipo de modelos, tanto dentro como fuera de muestra, 
comparándolos también con modelos de parámetros constantes, como ARMA y GARCH. El 
resultado principal es que, a la hora de modelar el precio del cobre, es importante considerar el 
cambio de régimen en la varianza. 
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1 Introduction

Commodity prices generally exhibit large and persistent swings, displaying periods of relatively

stable prices and times of high volatility. The price of copper not an exception to this general

characterization, as shown in figure 1 where the log of the monthly spot price of copper is

displayed. Given this behavior, the goal of this paper is to analyze if the evolution of this price

can be characterized by a Markov Switching (MS) model, i.e. a model in which parameters

change according to an unobserved Markov process. Moreover, the evolution of this price in the

last 5 years, particularly the large swings experienced during the recent global financial crisis,

further motives the evaluation of this kind of model as a contender to explain the behavior of

this variable.

The analysis is divided in two parts. On one hand, we analyze the virtues of an autoregressive

MS model in sample, using several specifications for this model and comparing them with both

ARMA and GARCH models. In particular, we compare specifications according to information

criteria, evaluate the estimated parameters of the model and describe the inference about the

unobserved Markov states. On the other hand, we evaluate the forecasting ability of these

alternatives, both in terms of point and density forecast. A distinctive feature of the analysis,

motivated by the non-linearities and non-normality intrinsic in MS models, is the use of Markov

Chain Monte Carlo methods to both characterize the distribution of the parameters and to

evaluate the forecast density.

The main result of the paper is that, in modeling copper price, to consider a regime-switching

variance is most relevant. Every MS specification evaluated that includes a time-changing

variance outperforms others MS alternatives that do not allow for this feature. Moreover, MS

model are superior to ARMA and GARCH models in sample. Out of sample, MS appears

to improve, in terms of root-mean-squared forecast error, over ARMA models but is similar

to GARCH specifications. In terms of coverage, the forecast confidence bands of the MS

are slightly better than those of both alternatives, but not statistically different. Finally, the

forecast variance decomposition reveals the importance of accounting for the uncertainty coming

from the unobserved state in characterizing the uncertainty about the forecast.

This paper is related with some recent studies that propose to use MS models for copper

price. Heaney (2006) uses an MS model to characterize the ratio of future to spot price of copper,

presenting both univariate and structural models, analyzing only the in-sample performance of

these models. Hong Chan and Young (2009) use a GARCH-Jump models with MS variance

to explain the daily return of future prices, both in sample and out of sample, but focusing

only on point forecast and not on its density. Choi and Hammoudeh (2010) specify a model

considering only a MS variance, evaluating its in-sample performance. Relative to these studies,

our analysis provides a more thorough model comparison exercise and, as emphasized before,

use simulation-based method for the estimation and the characterization of the density forecast.

Finally, our paper is also related with a growing literature in macroeconomics that emphasizes

the importance of allowing for time-varying variance in explaining the behavior of several macro

aggregates (see, for instance, the recent survey by Fernández-Villaverde and Rubio-Ramı́rez,
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2010).

The rest of the paper is organized as follows. Section 2 discusses some basics of MS models

and describes our approach for the empirical implementation of these models, while a more

detailed discussion of the methodology is presented in the Appendix. Section 3 presents the

in-sample analysis, both in terms of the specification of the MS model and the comparison with

other constant-parameter models . The forecasting ability of these kind of models is analyzed

in Section 4. Section 5 concludes.

2 Methodology

We begin with a brief description of kind of MS models that we are going to consider. For

simplicity, we just describe here the case of a first-order autoregressive model with two states,

while in the appendix we show a more general fomrulation and also describe some details

associated with the estimation.1 Given an observed variable of interest, yt, this model can be

written as

yt = cSt + φStyt−1 + σStεt,

where εt is an i.i.d. process with standard normal distribution. The discrete variable St = 1, 2

denotes the unobserved state of the economy, which is determined by a Markov process. The

characteristic element of the transition probability matrix of this process is given by

pij ≡ Pr(st = j|st−1, st−2, ...., yt−1, yt−2, ...) = Pr(st = j|st−1 = i),

satisfying
∑

i pij = 1. Notice that these assumptions imply that the transition probability is

independent from the values observable variable, and also that the previous value taken by the

state is a sufficient statistic to characterize the transition probability. Finally, the notation for

the parameters (cSt, φSt, σSt) denotes the values of, respectively, the constant, the lag coefficient

and the standard error of the shock in each possible state St.

In addition to the parameters, another statistic of interest is the probability of being in a

given state at date t, implied by the available observations up to date t and for given values for

the parameters. Therefore, we will be interested in characterizing the probability

ξjt|t ≡ Pr(st = j|Ωt; θ)

where Ωt denotes the set of observations up to time t and θ collects all the parameters of the

model (cSt, φSt, σSt, pij). Given that the states are unobserved, we can use filtering techniques

to infer these probabilities.

The parameters to be estimated are, therefore, (cSt, φSt, σSt) and the transition probabilities

pij (e.g. in this simple model, eight parameters have to be estimated). While the likelihood

function can be easily evaluated numerically, as shown in the appendix, it will be a highly non-

1For a more detailed treatment see, for instance, Hamilton (1994).
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linear function of the parameters in the model, limiting the ability of gradient-based numerical

methods to find the global maximum of the objective function. For this reason, we choose to

work with a Markov Chain Monte Carlo (MCMC) approach, using the Metropolis-Hastings

algorithm to characterize the likelihood function. Therefore, we can give either a frequentist

interpretation to our estimated parameters, according to the Laplace-type estimators proposed

by Chernozhukov and Hong (2003), or a Bayesian interpretation under the assumption of flat

priors.

The MCMC approach is also useful to perform inference about the parameters. Although

asymptotic tests are available for these models (see, for instance, Garcia, 1998), given the non-

linearity and non-normality of the model, it is likely for asymptotic inference to be inappropriate

in short samples. The MCMC procedure, instead, will allow us to compute confidence sets that

are more appealing in short samples while still being asymptotically valid. Moreover, the model

comparison tests that are available also rely on asymptotic distributions (see, for instance, the

survey in Hamilton, 2008), and for the same reasons we consider them unreliable for short

samples. We will use instead three different information criteria for model comparison and

selection: Bayesian (BIC), Akaike (AIC) and Hannan-Quinn (HQC).2

3 In-Sample Analysis

We divide the in-sample analysis in two parts. First, we start by selecting and characterizing the

preferred specification among different MS models, including also a model comparison exercise

with ARMA and GARCH models. We then explore the robustness of the results to different

subsamples and repeat the in-sample analysis using the growth rate of the copper price instead

of the level.

3.1 Specification of the MS Model

The data used corresponds to the log of the monthly spot price of copper (in dollars) at the

London Market (the source is IMF-IFS), from January 1975 to January 2010. Our Benchmark

for the comparison will be a linear AR(2) model. This specification was chosen based on both

Box-Jenkins specification analysis and on information criteria, comparing ARMA models with

up to 12 lags in both AR and MA components. We also performed a battery of unit root

tests, using information criteria for lag selection that are robust to the local-to-unity problem.

Although these tests cannot reject the null of a unit root, we choose not to work with a random

walk specification as a benchmark for at least two reasons. First, if the appropriate model is

one with regime-switching parameters (as our later analysis suggests), the typical Augmented

Dickey-Fuller test for unit roots will be biased. In addition, given that throughout the paper

2Smith et al. (2006) also explore the use of information criteria in MS models. From a Bayesian perspective,
the approach of using information criteria as a test for model selection can be justified based on the results
of, for instance, Hong and Preston (2008), who show that comparing models based on BIC is asymptotically
equivalent to perform hypothesis tests based on posterior-odds ratios.

3



our approach for model selection is based on information criteria, none of the random walk

specifications that we tried were able improve over the AR(2) according to the three criteria

that we consider.

In terms of the MS model, we will carry our analysis with an autoregressive model of order

two. On one hand, this choice ensures a cleaner comparison with the linear specification. On

the other hand, although not reported, we have also estimated all the variants of the MS models

also for up to four lags, but the analysis based on all the information criteria suggested two lags

as the appropriate choice for the MS models as well. We will start by evaluating seven different

cases, each of them differing in the type of coefficients that change according to a two-regime

Markov process. In particular,

− Case 1: All parameters change.

− Case 2: Only the constant changes.

− Case 3: Only the lags change.

− Case 4: Only the variance changes.

− Case 5: Only the constant and the lags change.

− Case 6: Only the constant and the variance change.

− Case 7: Only the lags and the variance change.

Table 1 displays the values for the three information criteria obtained for each of these seven

cases, as well as other alternatives described below. Among these seven, all the criteria point

to the specification where only the variance changes as the preferred one (case 4). However, the

difference with the alternatives where the variance is also changing (cases 1, 6 and 7) is much

smaller than with the cases in which the variance remains fixed across regimes. This is the first

piece of evidence emphasizing the role of a changing variance to model copper price.3

In all the cases we have considered so far, when more than one parameter is changing, it was

assumed that all the parameters change according to the same Markov process. Alternatively,

we can consider that different parameters change according to different processes. Given the

emphasis in the variance, we estimate two additional cases. In Case 8, the variance changes

according to a Markov process that can take two values, while both the constant and the lags

coefficients move according to a different (and independent from that of the variance) two-states

Markov process. Additionally, Case 9 is similar to this last one, with the difference that we

3We have also considered, although not reported, these same seven cases in a specification in which parameters
can change according to a three-state Markov process. Two conclusions can be drawn from that exercise. First,
among these alternatives with three states, the relative ranking in terms of information criteria of the seven
cases is the same as in the case with two states. Second, the best specification with three states (also case 4) is
not better in this dimension than any of the models with two states that allow for the change in the variance.
Given these results, we discarded this alternative three-state alternative.
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fixed the lags parameters to be constant across states.4 The information criteria for these cases

are also presented in Table 1. The difference between these two alternatives and cases 4 and 6

is much smaller (in terms of the AIC these two are even slightly better).

The final exercise in terms of information criteria is to compare the MS models with other

alternatives that do not consider regime switching. A first natural comparison is against the

AR(2) model. Additionally, given the importance of the variance, we also consider a GARCH

model. In particular, after comparing information criteria for different specifications of this

type of model, we choose an AR(2)-GARCH(1,1) as the preferred model. The information

criteria for these two alternatives are reported in the final lines of Table 1. As we can see, while

the GARCH improves over the AR specification both models are clearly outperformed by the

MS alternatives that include a changing variance. We interpret this as evidence in favor of the

MS specifications.

We next turn to the analysis of the estimated parameters. Tables 2 and 3 report the

estimated coefficients for cases 1, 4, 6, 8 and 9, as well as those for the AR(2) specification for

comparison. We focus on these cases based on the results obtained using information criteria.

Starting with case 1, where all parameters change according to the same Markov process,

we can see that the second state is identified as the one associated with the higher variance.

Additionally, while all the coefficients have small standard errors and the point estimates seem to

differ across regimes, we can also see that the confidence set for the difference of the coefficients

includes zero for all the parameters except for the variance. In terms of transition probabilities,

both regimes appear to be quite persistent, particularly the one associated with the low variance

(regime 1): the point estimate for p1,1 is 0.953 and for p2,2 = 1−p2,1 is 0.78. However, it should

be noticed that, while the confidence set for p1,1 is quite tight, p2,1 is estimated with smaller

precision.5

The results for cases 4 and 6 display a similar results. The estimated coefficients for the

variance in both regimes are almost indistinguishable from those in case 1, and the confidence

sets seem to indicate that the variance is indeed different across states. On the contrary, in

case 6 it seems that the estimated values for the constant are not significantly different across

regimes. In terms of the transition probabilities, the estimated values for these two cases are

quite similar to those obtained in case 1, and we can also see how the confidence set for p2,1 is

thinner than in case 1; reflecting the increase in power that we obtained by constraining some

parameters to remain constant across states.

4These two cases can be considered in the general framework as a four-state Markov process. To see this,
let S1t = 1, 2 denote the two-state process governing the change in the variance, while S2t = 1, 2 denotes
the two-state process governing the change in other parameters. Then St = {S1t, S2t} can take four values:
{1, 1}, {1, 2}, {2, 1}, {2, 2}.

5This is a quite common pattern observed in MS applications, and it is due to the fact that, because of
the small sample, one generally tends to observe fewer periods with changing states than periods when a given
state last on time. Therefore, a general drawback of MS models is the somehow limited power of inference for
the probability of moving from one state to the other. Moreover, this feature further emphasizes the use of
methods (like MCMC) that allow to characterize short sample distributions, instead of using asymptotically-
based inference.
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In terms of models that are driven by two independent Markov processes (cases 8 and 9),

it is also the case that the estimated variances in both cases are similar to those in the other

cases. Additionally, while the point estimates of the other parameters tend to differ across

states, the confidence set for the difference across regimes includes the zero in both cases. The

transition probabilities of the Markov process that govern the evolution of parameters other

than the variance are less precisely estimated than those probabilities for the variance state,

particularly for case 9 where the confidence set for these probabilities include almost all the

parameter space.

As we mentioned before, one of the interesting features of the MS model is that we can use

filtering techniques to characterize the probability of being in a given state at given period,

conditional on the whole sample (i.e. ξjt|T ). The different plots in Figure 2 show the smoothed

probability of being in the low-variance state, for all the cases considered. The upper-left graph

displays this probability for case 4, along with the price of copper. As we can see, for most

of the sample the price remained in the low-variance state, with some exceptions: for three

months early in 1980, for two months in mid 1982, for almost a year staring on November 1987,

for a month in June 1996, and after 2006 (although with some interruptions). We will further

analyze this last period latter. Additionally, the upper-right graph reproduces the smoothed

probability of being in the low-variance state, now including also a 95% confidence band for

this estimated probability. As can be see, this probability is estimated quite precisely, with

some exceptions at the end of the of the sample.6

Given the similarities in terms of goodness of fit between cases 1, 4, 6 and 7, it is interesting

to see whether the inference about the unobserved state is similar in these cases. This is

reported in the lower-left panel of figure 2, where we can see that the smoothed probability

is virtually identical in these four cases. On the contrary, if we compute this probability for

the other cases that do not include a changing variance (cases 2, 3 and 5), we can see in the

lower-right panel of the figure that the inference is quite different relative to the other cases,

and that these estimated probabilities are more erratic.

A similar pattern can be found if we analyze cases 8 and 9, presented in figure 3: while

the inference for the low variance probability is comparable with that obtained for case 4, the

filtered probability for the Markov process for the constant and lag coefficients cannot clearly

identify the presence of different states for these parameters.7

The conclusion of this part of the analysis is that, in explaining the in-sample evolution of

copper price, considering a regime-switching variance is crucial. Moreover, it is less clear that

allowing with regime switches in the other parameters of the model can significantly improve

over a model that just accounts for switching in the variance of the error term.

6The fact that the inference is less precise at the end of the sample was in part expected, for we are
conditioning in a smaller information set latter in the sample given the two-sided filtered probability.

7Moreover, if we were to include the confidence bands for these filtered probabilities, they will show significant
uncertainty associated with the smoothed probabilities presented in the left graph of the figure.
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3.2 Robustness

Here we present several robustness exercises, guided by the following observation. At first

glance, the plot of the copper price in figure 1 would suggest a change in the unconditional

mean of the series, starting somewhere near 2005. The results so far, on the other hand, had

emphasized the role of the variance but not of the mean or lags coefficients. One might then

wonder whether the model is somehow confusing changes in the variances for those in the

unconditional mean.

A starting point is to test whether the unconditional mean is significantly different across

regimes in the models we have estimated so far. The confidence set of the differences across

regimes is presented in table 4 for cases 6, 8 and 9, where one can appreciate that these models

do not imply a significant difference in this statistic across regimes.

A second exercise consists in re-estimating the models in two subsamples: one finishing in

December 2004, where the price reached values closed to its then historical maximum period

attained during 1989, and another one finishing in December 2007, so that we eliminate the

observations associated with the 2008 global financial crisis and its aftermath. Table 5 reports

the information criteria for cases 1 to 7, where we can see that the ranking of models found for

the full sample remains in these two cases. In particular, case 4 (only the variance changing)

highlights as the preferred model, and the difference with the close competitors is somehow

wider.

In terms of parameters, table 6 displays the point estimates for case 4. The coefficients

are really similar in the different samples, with only a minor reduction in the variance in the

high-variance state, which was expected given that we are eliminating a highly volatile period

in both samples. Finally, figure 4 plots the filtered probability of the low-variance state in the

different samples. As can be seen, the inference in terms of this probability is comparable with

that obtained with the full sample.

As a final exercise we estimated a model for the log-difference of copper price. In such a

setting, a one-time regime change in the unconditional mean will just represent an outlier in

the sample and, therefore, if the model is really confusing variance with unconditional mean,

the time-varying variance should not be identified if we use the log-difference for estimation.

Table 7 presents the information criteria analysis for cases 1 to 7 using this alternative series,

where results indicate that case 4 is also the preferred specification in this case, and that models

that include a regime-switching variance outperform those who do not. Moreover, in terms of

the filtered probabilities, figure 5 replicates the analysis presented in figure 2 for the log of

copper price. The two patterns detected before can be found here as well: all the models that

include a regime switch in the variance provide the same inference for this probability, while the

other models estimate really erratic probabilities that do not allow to identify periods where

the model clearly indicates the presence of one of the regimes.

The results of these exercises reinforce the findings previously presented and allow us to say,

with some degree of confidence, that the model is truly detecting a change in the variance that

is not being confused by a change in the unconditional mean.
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4 Out-of-Sample Analysis

In this section, we evaluate the forecasting ability of the MS model, in terms of both point

forecast as well as in terms confidence sets. The inclusion of confidence-set analysis is motivated

by the importance previously highlighted of the regime-switching variance. The exercises we

perform consist in comparing the MS model of case 4 with both AR and GARCH models used

also in the previous section. We focus in case 4 only just to make the analysis more clear

and shorter. Nevertheless, we have compared also case 4 with the other cases and found no

significant improvements with these other alternatives.

In terms of point forecast, we run a progressive estimation starting in January 2004 (i.e.

dropping the last 15% of the sample), and for each new sample we estimated the model by

maximizing the likelihood and computed the forecast (up to twelve month ahead) using the

likelihood mode. Notice that, at least ex-ante, it is not clear which of the three models should

dominate; for in all cases the estimators of the parameters should be consistent, and the correct

specification of the variance should only matters for efficiency. Table 8 displays the root-mean-

squared forecast errors (RMSFE) for each of the models. In addition, we present the statistics

of the tests by Diebold and Mariano (1995), and the refinement proposed by Harvey et al.

(1997), of the null that both models have the same RMSFE. On one hand, we can see that

the MS model seems to outperforms the AR model at all horizons. On the other hand, the

advantage over the GARCH model is less clear, with the MS model providing a significantly

smaller RMSFE only at two and three month ahead horizons, while for the other both models

seem to be equally good.

In terms of the confidence sets and coverage analysis, we choose an approach that allows us

to characterize all the sources of uncertainty that are present in forecasting with MS models.

Given the model, a forecast starting on period T of future values of the observed variables up

to T + J , {yT+h}J
h=1

, can be formed as a function of the parameters, θ, current values of the

unobserved states, ST , a sequence of shock, {εT+h}J
h=1

, and the history of observables up to date

T , yT . The object of interest is then the distribution of the forecasted variables conditional

on observed information up to period T , i.e. p({yT+h}|yT ). A convenient way to write this

distribution is

p({yT+h}|yT ) =

∫

p({yT+h}, θ|yT )dθ =

∫

p({yT+h}|yT , θ)p(θ|yT )dθ =

=

∫

p({yT+h}|yT , θ, ST )p(ST |yT , θ)p(θ|yT )dθ =

=

∫

p({yT+h}|yT , θ, {εT+h}, ST )p({εT+h}|θ)p(ST |yT , θ)p(θ|yT )dθ, (1)

where p(θ|yT ) is the distribution of the parameters inferred in the estimation process and the

other probabilities are obtained from the structure of the model. This decomposition highlights

that the uncertainty about the forecast can be divided in three sources: parameter uncertainty

p(θ|yT ), initial unobserved-state uncertainty p(ST |yT , θ), and shock uncertainty p({uT+h}|θ).
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We are interested in confidence sets (percentiles) associated with p({yT+h}|yT ). However,

as the integral in (1) cannot be computed algebraically, simulation based methods can be used.

We propose the following pseudo-algorithm:

1. Draw a parameter vector θi from p(θ|yT ).8

2. Draw an initial state vector Si,j
T from p(ST |yT , θi).

3. Draw a sequence εi,j,n
T+1

, ..., εi,j,n
T+J from the distribution p({εT+h}|θi).

4. Use the model, θi, Si,j
T , and εi,j,n

T+1
, ..., εi,j,n

T+J to generate the forecast yi,j,n
T+1

, ..., yi,j,n
T+J .

5. Repeat 3 and 4 for n = 1, ..., Nε for the same θi and si,j
T .

6. Repeat 2 to 5 for j = 1, ..., NS for the same θi.

7. Repeat 1 to 6 for i = 1, ..., Nθ.

This algorithm will give us N = Nε ·NS ·Nθ draws from the distribution of interest p({yT+h}|yT )

that can be used to construct confidence sets, where all sources of uncertainty are taken into

account. In the exercises we preset below, we used Nε = NS = Nθ = 50, giving us a total of

125K simulations to construct the confidence sets.9

The starting date for this forecast exercise starts in December 2004, and we repeat the

algorithm presented before for each new sample consisting on adding one observation at a

time.10 To have a first look at how inference about confidence sets can be different with

different models, figure 6 presents two examples of a 90% confidence set: one when the forecast

starts at January 2005 (a period identified to be a low-variance state) and the other starting

in January 2008 (a period identified to be a high-variance state). We can see that in both

cases the MS provides a tighter confidence set than the other two alternatives. The difference

between the two pictures is the behavior of the AR and GARCH models: in the low-variance

state, the GARCH model estimates a smaller confidence set than the AR model, while the

opposite happens in the high-variance state.

Regardless of the width of the confidence set, a more formal analysis is to compare the

coverage of these sets (i.e. the percentage of times that the actual observation turned up to

be inside the set). This is presented for the three models in table 9, were we also included

the p-values of the Giacomini and White (2006) test of predictive ability, using a quadratic

8This is obtained as a by-product of the MCMC procedure used for estimation.
9As a robustness check, we also tried, for some starting dates for the forecast, increasing the number of draws

up to Nε = NS = Nθ = 500, which gives a total of 125M simulations. This alternative, which is considerably
more time consuming, yields similar results to those presented here. For the AR and GARCH models, NS = 0
by definition, and we choose Nθ = 1000 and Nε = 100, for a total of 100K simulations. The draws from p(θ|yT )
for these two models were obtained by the same MCMC procedure used for the MS alternative.

10A difference with the exercise used for the RMSFE analysis is that we do not re-estimate the model for
each new date we add. We choose to do this to save computational time, because to re-estimate will entail
running the MCMC procedure for each sample, which is quite time consuming, thinking also that after doing
the MCMC we would need to run the 125K simulations to construct the confidence set.
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coverage accuracy loss function, of the null that a given model provides the same coverage that

the MS model. We can see that the MS model seems to have better coverage properties than

both of the alternatives, particularly compared to the GARCH specification, although the test

appears to indicate that these difference are not significant.

A final exercise that can be obtained as a by product of the algorithm used to compute the

confidence set is a forecast-error variance decomposition, allowing us to identify how important

are the alternative sources of uncertainty in characterizing the density of the forecast.11 The

results are presented in table 10. For all models, the mayor source of forecast uncertainty is

the variance of the error term. The difference is that, while in both AR and GARCH models

parameter uncertainty plays a non-negligible role, particularly at long horizons, in the MS model

the uncertainty about parameters is relatively unimportant, while not knowing the initial state

can have a relevant impact on the variance of the forecast.

5 Conclusions

We have presented a thorough analysis of the virtues of Markov switching models in explaining

the time series of copper price. The main message of the paper is that including a regime-

switching variance is most relevant in modeling this price. Moreover, MS models that include

this feature seem to outperform both ARMA and GARCH specifications in sample, and are

slightly better out of sample relative to these alternatives.

We conclude by suggesting two alternative routs for future research related to our analysis.

On one hand, a natural extension is to consider a Markov switching vector auto-regression

model that includes copper price along with other relevant determinants such as inventories,

exchange rates, world interest rates, among others, and to evaluate the role of MS models in

explaining and forecasting copper price in such a framework. On the other hand, in terms

of forecasting, it would be interesting to study whether the forecast and its density can be

improved by pooling MS with other models such as ARMA or GARCH.

11The appendix shows how to construct this decomposition from outcome of the simulation exercise.
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A Technical Appendix

Here we present several details regarding the specification and estimation of MS models. In

general, an autoregressive model of order p, where parameters follow a N-states Markov process,

MS(N)AR(p), can be written as

yt = cSt + φ1,Styt−1 + ... + φp,Styt−p + σStεt

where εt ∼ N (0, 1) and St = {1, 2, ..., N} is the state variable with transition probability matrix

P =











p11 p21 · · · pN1

p12 p22 · · · pN2

...
...

. . .
...

p1N p2N · · · pNN











where the characteristic element is defined as pij = Pr(st = j|st−1 = i).

Let θ = (c1, ..., cN , φ1,1, ...., φp,N , σ1, ...., σN , p11, ..., pNN) be the vector that groups all the

parameter of the model. We can also define the probability of being in state j at time t,

conditional on the parameter vector and on the data up to data t, as ξjt = Pr(st = j|Ωt; θ).

The procedure to evaluate the likelihood of the model can be summarized as follows:

1. Given θ and an initial value for ξj0, the density for period t in the state j,

ηjt = f(yt/st = j, Ωt−1; θ) =
1√

2πσj

exp

[

−(yt − cj − φ1,jyt−1 − ... − φp,jyt−p)
2

2σ2
j

]

2. The conditional likelihood for observation t is defined as:

f(yt|Ωt−1; θ) =
N

∑

i=1

N
∑

j=1

pijξi,t−1ηjt

3. Using these, the inference over the states of the model in the period t is

ξjt =

∑

2

i=1
pijξi,t−1ηjt

f(yt|Ωt−1; θ)

4. Repeat these steps for t = 1, 2, ..., T .

Through these iterations it is possible to calculate the whole sequence of ξjt and the condi-

tional density f(yt|Ωt−1; θ) for each observation. Therefore, we are able to write and evaluate

the conditional log likelihood of the data given θ as

log f(y1, ..., yT |y0; θ) =
T

∑

t=1

log f(yt|Ωt−1; θ).
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Two alternatives can be used as the initial value of ξj0. The first one is to take an arbitrary

value for it, and the second uses the unconditional probability of each state implied by the

parameter vector. The latter is preferred because the initial value of ξj0 changes endogenously

in each iterations of the numerical algorithm. The unconditional probability vector π can be

obtained by solving the system

π = (A′A)
−1

A′eN+1,

where A =

[

IN − P

1

]

, 1 denotes a N × 1 vector of ones and eN+1 is the N + 1th column of

IN+1.

Another relevant issue for the initialization of the maximization algorithm is the starting

values for the parameters in each of the regimes. In particular, we try four different alternatives.

First, we run a QLR test of structural break in the parameters and compute the different values

of the coefficients before and after the break. The disadvantage of this alternative is that it

detects only on break that is deterministic. As an alternative, we also try two threshold

models (TAR), where the regime depends on whether the variable is above or below of, in one

alternative, its mean or, in the other, its median. Finally, we also considered a SETAR model in

which the threshold value is estimated.12 To choose among these alternatives, we ran a Monte

Carlo experiment were data was generated by an artificial MS model, and check which of the

alternatives used to initialize the algorithm generate maximum likelihood estimates closer to

the true parameters. According to the results of this experiment, we choose to use the SETAR

alternative to find the initial values for the estimation of the MS model

As we mentioned, our estimation approach consist in characterizing the likelihood function

using MCMC methods. In particular, we proceed in two steps. First, the likelihood is maxi-

mized, using the optimization algorithm csminwel developed by Chris Sims.13 The resulting

mode is used as the starting value of a Random Walk Metropolis-Hastings algorithm, using a

N (0, cΣ) as the proposal distribution.14 The parameter c is calibrated to obtain an acceptance

ratio close to 30% and the convergence of the chain is analyzed by checking recursive means.

For each estimated alternative we generate 300K draws from the posterior, eliminating the first

half of the chain to reduce the dependence from initial values.

A.1 Forecast Error Variance Decomposition

A relevant question in these models is what fraction of the total forecast uncertainty can be

attributed to each of the sources described in the text. In what follows we show a theoretical

decomposition of the forecast variance and suggest an implementation based on the outcome

from the algorithm used to construct the confidence sets. For this, the following result would

12The estimation of these last three alternatives was implemented using concentration methods to minimize
the sum of squared residuals.

13Available at http://sims.princeton.edu/yftp/optimize/.
14Σ is the inverse of the posterior’s Hessian evaluated at the mode computed in the first step.
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prove useful. Let xt and zt be two random vectors, then

Vx(xt) = Ez

[

Vx|z(xt|zt)
]

+ Vz

[

Ex|z(xt|zt)
]

, (2)

where Ew(·) and Vw(·) denote, respectively, the expectation and variance-covariance operator

computed over the distribution of a generic random vector wt.
15

We are interested in VyT+h|yT
(yT+h|yT ). Using the previous results, we can write

VyT+h|yT
(yT+h|yT ) = Eθ|yT

[

VyT+h|θ,yT
(yT+h|θ, yT )

]

+ Vθ|yT

[

EyT+h|θ,yT
(yT+h|θ, yT )

]

.

The first term Eθ|yT

[

VyT+h|θ,yT
(yT+h|θ, yT )

]

represents the average uncertainty in the forecast

when parameters are assumed to be known. The second term Vθ|yT

[

EyT+h|θ,yT
(yT+h|θ, yT )

]

therefore represents the additional volatility that comes from parameter uncertainty. Applying

again (2) to the first term we get,

VyT+h|yT
(yT+h|yT ) = Eθ|yT

{

EST |θ,yT

[

VyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]}

+ Eθ|yT

{

VST |θ,yT

[

EyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]}

+ Vθ|yT

[

EyT+h|θ,yT
(yT+h|θ, yT )

]

.

Now, the second term Eθ|yT

{

VST |θ,yT

[

EyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]}

represents the average un-

certainty brought about by not knowing the current state ST , while the first term Eθ|yT

{

EST |θ,yT

[

VyT+h|ST ,θ,yT
(y

can then be interpreted as the uncertainty related to the exogenous shocks.

The outcome from the algorithm proposed in section 4 can be used to compute each of these

terms as follows:16

− Computing Eθ|yT

{

EST |θ,yT

[

VyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]}

(shock uncertainty):

– EyT+h|ST ,θ,yT
(yT+h|ST , θ, yT ) ≈ N−1

ε

∑

n yi,j,n
T+h ≡ ȳi,j

T+h, [Nθ · Ns]

– VyT+h|ST ,θ,yT
(yT+h|ST , θ, yT ) ≈ N−1

ε

∑

n

(

yi,j,n
T+h − ȳi,j

T+h

)2 ≡ V i,j
T+h, [Nθ · Ns]

– EST |θ,yT

[

VyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]

≈ N−1

S

∑

j V i,j
T+h ≡ V̄ i

T+h, [Nθ]

– Eθ|yT

{

EST |θ,yT

[

VyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]}

≈ N−1

θ

∑

i V̄
i
T+h. [1]

− Computing Eθ|yT

{

VST |θ,yT

[

EyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]}

(initial-state uncertainty):

– EST |θ,yT

[

EyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]

≈ N−1

S

∑

j ȳi,j
T+h ≡ ȳi

T+h, [Nθ]

15A proof of this claim for the univariate case is as follows (the extension for vectors is straightforward):

Vx(xt) = Ex

{

[xt − Ex(xt)]
2
}

= Ex(x2

t ) − [Ex(xt)]
2

= Ez

[

Ex|z(x
2

t |zt)
]

−
{

Ez

[

Ex|z(xt|zt)
]}2

,

= Ez

[

Ex|z(x
2

t |zt)
]

− Ez

{

[

Ex|z(xt|zt)
]2

}

+ Vz

[

Ex|z(xt|zt)
]

= Ez

[

Vx|z(xt|zt)
]

+ Vz

[

Ex|z(xt|zt)
]

,

where the third equality follows from the law of iterated expectations, and the fourth and fifth use the formula
for the variance Vw(wt) = Ew(w2

t ) − [Ew(wt)]
2
.

16The number of simulations left in each case is shown in brackets at the end of each line.
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– VST |θ,yT

[

EyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]

≈ N−1

S

∑

j

(

ȳi,j
T+h − ȳi

T+h

)2 ≡ V i
T+h, [Nθ]

– Eθ|yT

{

VST |θ,yT

[

EyT+h|ST ,θ,yT
(yT+h|ST , θ, yT )

]}

≈ N−1

θ

∑

i V
i
T+h. [1]

− Computing Vθ|yT

[

EyT+h|θ,yT
(yT+h|θ, yT )

]

(parameter uncertainty):

– EyT+h|θ,yT
(yT+h|θ, yT ) ≈ (NεNS)−1

∑

n,j yi,j,n
T+h ≡ ȳi

T+h, [Nθ]

– Vθ|yT

[

EyT+h|θ,yT
(yT+h|θ, yT )

]

≈ N−1

θ

∑

i

(

ȳi
T+h − N−1

S

∑

θ ȳi
T+h

)2
. [1]

− VyT+h|yT
(yT+h|yT ) ≈ N−1

∑

n,j

(

yi,j,n
T+h − N−1

∑

n,j yi,j,n
T+h

)2

, [1]

B Tables and Figures

Table 1: Information Criteria
Parameters Number

Case changing of states AIC HQC BIC
1 c, φ, σ 2 -2.9262 -2.8881 -2.8299
2 c 2 -2.7621 -2.7354 -2.6946
3 φ 2 -2.8376 -2.8072 -2.7605
4 σ 2 -2.9358 -2.9091 -2.8683
5 c, φ 2 -2.8554 -2.8211 -2.7687
6 c, σ 2 -2.9317 -2.9012 -2.8546
7 φ, σ 2 -2.9272 -2.8929 -2.8404
8 c, φ, σ 4 -2.9369 -2.8912 -2.8213
9 c, σ 4 -2.9390 -2.9009 -2.8426

AR(2) -2.7632 -2.7516 -2.7338
AR(2)-GARCH(1,1) -2.8366 -2.8138 -2.7790

Note: See the text for the description of the cases.
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Table 2: Estimated Parameters
Case 1 Case 4

AR St = 1 St = 2 C.S. St = 1 St = 2 C.S.
c 0.037 0.008 0.155 [-0.37;0.05] 0.021

(0.03) (0.03) (0.13) (0.03)
φ1 1.370 1.321 1.397 [-0.32;0.16] 1.345

(0.00) (0.06) (0.13) (0.05)
φ2 -0.378 -0.323 -0.431 [-0.13;0.35] -0.349

(0.01) (0.06) (0.13) (0.05)
σ2 0.004 0.002 0.013 [-0.02;-0.01] 0.002 0.012 [-0.02;-0.01]

(0.00) (0.00) (0.00) (0.00) (0.00)
p1,1 0.953 [0.91;0.98] 0.955 [0.91;0.98]
p2,1 0.220 [0.08;0.45] 0.182 [0.07;0.36]

Note: Standard errors in parenthesis. For the parameters c, φ, σ2 the column C.S. reports
the confidence set of the difference of the coefficient between both states (e.g. cSt=1 −
cSt=2). For the probabilities, the column C.S. reports the confidence set of the estimated
probability. The rest of the entries are the mean of the distribution. All these where
obtained using the MCMC procedure described in the appendix, using 150K draws from
the distribution.

Table 3: Estimated Parameters, Cont.

Case 6 Case 8 Case 9
St = 1 St = 2 C.S. St = 1 St = 2 C.S. St = 1 St = 2 C.S.

c 0.026 0.033 [-0.03;0.02] 0.001 1.345 [-1.38;-1.32] 0.025 0.020 [-0.05;0.07]
(0.03) (0.04) (0.01) (0.02) (0.04) (0.04)

φ1 1.343 -0.342 0.195 [-1.59;-1.44] 1.337
(0.05) (0.02) (0.04) (0.05)

φ2 -0.349 1.203 -0.262 [0.34;0.55] -0.342
(0.05) (0.03) (0.04) (0.05)

σ2 0.002 0.012 [-0.02;-0.01] 0.001 0.010 [-0.01;0.00] 0.002 0.011 [-0.02;-0.01]
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

p1,1 0.955 [0.91;0.98] 0.946 [0.9;0.98] 0.955 [0.91;0.98]
p2,1 0.189 [0.07;0.37] 0.233 [0.08;0.48] 0.183 [0.07;0.37]
p2

1,1 0.813 [0.71;0.9] 0.589 [0.07;0.99]
p2

2,1 0.621 [0.43;0.8] 0.454 [0.02;0.93]

Note: See Table 2. p2
1,1 and p2

2,1 are the transition probabilities associated with the process
that governs parameters other than the variance.
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Table 4: Confidence Set for difference in the Unconditional Mean Across Regimes.

95% Confidence Set
Case 6 [-9.54;7.36]
Case 8 [-28.31;-18.09]
Case 9 [-30.03;30.03]

Note: These were computed from the outcome of the MCMC procedure.

Table 5: Information Criteria in Sub-Sample

1975.01 - 2004.12 1975.01 - 2007.12
Case AIC HQC BIC AIC HQC BIC

1 -3.098 -3.055 -2.990 -3.001 -2.961 -2.900
2 -2.999 -2.969 -2.923 -2.304 -2.276 -2.234
3 -3.066 -3.032 -2.980 -2.925 -2.893 -2.844
4 -3.104 -3.073 -3.028 -3.013 -2.985 -2.942
5 -2.970 -2.931 -2.872 -2.942 -2.906 -2.851
6 -3.100 -3.066 -3.013 -3.009 -2.977 -2.928
7 -3.094 -3.055 -2.997 -3.005 -2.969 -2.914

Note: See the text for the description of the cases.

Table 6: Parameter Estimates Case 4, Different Samples.

Full 1975.01 to 1975.01 to
Sample 2004.12 2007.12

c 0.021 0.084 0.018
φ1 1.345 1.313 1.324
φ2 -0.349 -0.335 -0.328

σ2
St=2 0.002 0.002 0.002

σ2
St=1 0.012 0.009 0.009
p1,1 0.955 0.967 0.966
p2,1 0.818 0.804 0.860

Note: See Table 2

17



Table 7: Information Criteria, Log-Difference of Copper Price.

Case AIC HQC BIC
1 6.289 6.328 6.386
2 6.449 6.475 6.516
3 6.396 6.427 6.473
4 6.278 6.305 6.346
5 6.395 6.430 6.482
6 6.282 6.312 6.359
7 6.286 6.321 6.373

Table 8: Root-Mean-Squared Forecast Error and Tests

Test Statistic vs. Case 4
Months AR GARCH
Ahead AR GARCH Case 4 DM HLN DM HLN

1 0.099 0.100 0.098 2.00∗∗ 1.98∗ 1.50 1.49
2 0.182 0.182 0.178 2.01∗∗ 1.95∗ 1.79∗ 1.74∗

3 0.257 0.257 0.250 2.39∗∗ 2.27∗∗ 1.75∗ 1.66∗

6 0.425 0.424 0.412 2.61∗∗ 2.29∗∗ 1.16 1.02
12 0.465 0.458 0.445 2.06∗∗ 1.45 0.53 0.37

Note: The column DM reports the Diebold and Mariano (1995) test statistic of the null
that both models have the same Root-Mean-Squared Forecast Error, while the column
HLM reports the modification to the DM test suggested by Harvey et al. (1997). ∗∗

denotes rejection at 5% significance level and ∗ at 10%.

Table 9: Forecast Coverage of a 90% Confidence Interval and Tests

Months Test P-val vs. Case 4
Ahead AR GARCH Case 4 AR CARCH

1 50.0 36.1 51.4 0.49 0.35
2 64.8 60.6 64.8 0.50 0.47
3 68.6 72.9 80.0 0.43 0.46
6 85.1 85.1 91.0 0.47 0.47
12 95.1 96.7 95.1 0.50 0.49

Note: The second to fourth column denote the coverage (in percentage) of the simulated
forecast confidence bands of 90%. The last two columns show the p-value of the Giaco-
mini and White (2006) test of predictive ability, using a cuadratic coverage accuracy loss
function, of the null that both models provide the same coverage.
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Table 10: Forecast Error Variance Decomposition

Months AR GARCH Case 4
Ahead Param. Shock Param. Shock Param. State Shock

1 2.6 97.4 5.2 94.8 0.04 3.2 96.7
2 4.4 95.6 8.7 91.3 0.04 4.6 95.4
3 5.6 94.4 11.2 88.8 0.04 5.5 94.4
6 7.9 92.1 16.9 83.1 0.04 7.9 92.1
12 12.2 87.8 21.1 78.9 0.04 12.6 87.4

Note: Each entrance is the percentage of the forecast error variance due to each of the
possible sources of uncertainty.

Figure 1: Copper Price (in logs)
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Note: The series is the log of the monthly spot price of copper (in dollars) at the
London Market, from January 1975 to January 2010. The source is the International
Financial Statistics database from the IMF.
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Figure 2: Smoothed (two-sided) Probabilities of the Low-Variance State
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Figure 3: Smoothed (two-sided) Probabilities
Constant and Lags Variance
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Figure 4: Smoothed (two-sided) Probabilities of the Low-Variance State, Case 4, Different
Samples
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Figure 5: Smoothed (two-sided) Probabilities of the Low-Variance State, Log-Difference of
Copper Price
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Figure 6: Forecast 90% Confidence Bands Examples
Low Variance State High Variance State
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