
Banco Central de Chile 
Documentos de Trabajo  

 
 

Central Bank of Chile 
Working Papers 

 
 

N° 542 
 

Diciembre 2009 
 

 
A NETWORK MODEL OF SUPER-SYSTEMIC 

CRISES 
 

Prasanna Gai Sujit Kapadia 

 
 
 
 
 
 
 
 
 
 
 
 

                                                 
 La serie de Documentos de Trabajo en versión PDF puede obtenerse gratis en la dirección electrónica:  
http://www.bcentral.cl/esp/estpub/estudios/dtbc. Existe la posibilidad de solicitar una copia impresa 
con un costo de $500 si es dentro de Chile y US$12 si es para fuera de Chile. Las solicitudes se pueden hacer 
por fax: (56-2) 6702231 o a través de correo electrónico: bcch@bcentral.cl. 
 
Working Papers in PDF format can be downloaded free of charge from: 
http://www.bcentral.cl/eng/stdpub/studies/workingpaper. Printed versions can be ordered 
individually for US$12 per copy (for orders inside Chile the charge is Ch$500.) Orders can be placed by fax: 
(56-2) 6702231 or e-mail: bcch@bcentral.cl. 

http://www.bcentral.cl/Estudios/DTBC/doctrab.htm
http://www.bcentral.cl/Estudios/DTBC/doctrab.htm
mailto:carriaga@condor.bcentral.cl
http://www.bcentral.cl/Estudios/DTBC/doctrab.htm
mailto:carriaga@condor.bcentral.cl


 
BANCO CENTRAL DE CHILE 

 
CENTRAL BANK OF CHILE 

 
 
 

La serie Documentos de Trabajo es una publicación del Banco Central de Chile que divulga 
los trabajos de investigación económica realizados por profesionales de esta institución o 
encargados por ella a terceros. El objetivo de la serie es aportar al debate temas relevantes y 
presentar nuevos enfoques en el análisis de los mismos. La difusión de los Documentos de 
Trabajo sólo intenta facilitar el intercambio de ideas y dar a conocer investigaciones, con 
carácter preliminar, para su discusión y comentarios. 
 
La publicación de los Documentos de Trabajo no está sujeta a la aprobación previa de los 
miembros del Consejo del Banco Central de Chile. Tanto el contenido de los Documentos 
de Trabajo como también los análisis y conclusiones que de ellos se deriven, son de 
exclusiva responsabilidad de su o sus autores y no reflejan necesariamente la opinión del 
Banco Central de Chile o de sus Consejeros. 
 
 
 
The Working Papers series of the Central Bank of Chile disseminates economic research 
conducted by Central Bank staff or third parties under the sponsorship of the Bank. The 
purpose of the series is to contribute to the discussion of relevant issues and develop new 
analytical or empirical approaches in their analyses. The only aim of the Working Papers is 
to disseminate preliminary research for its discussion and comments. 
 
Publication of Working Papers is not subject to previous approval by the members of the 
Board of the Central Bank. The views and conclusions presented in the papers are 
exclusively those of the author(s) and do not necessarily reflect the position of the Central 
Bank of Chile or of the Board members. 
 
 
 
 

Documentos de Trabajo del Banco Central de Chile 
Working Papers of the Central Bank of Chile 

Agustinas 1180 
Teléfono: (56-2) 6702475; Fax: (56-2) 6702231 



Documento de Trabajo Working Paper 
N° 542 N° 542 

 

A NETWORK MODEL OF SUPER-SYSTEMIC 
CRISES 

 
Prasanna Gai Sujit Kapadia 

 
 
 
Resumen 
 
Si bien los países avanzados han podido sortear múltiples shocks financieros en los últimos años, 
los sucesos que desencadenó la crisis hipotecaria de agosto del 2007 han tenido un alcance 
“supersistémico” al alcanzar a las instituciones financieras de las principales economías y a otras 
tan lejanas como Islandia y Nueva Zelanda. Aquí aplicamos técnicas de red para desarrollar un 
marco analítico para estudiar el contagio financiero que aíslan la probabilidad de contagio de su 
posible propagación. Nuestros resultados sugieren que un sistema financiero complejo puede ser 
robusto y a la vez frágil por naturaleza. Bajo supuestos plausibles, la mayor conectividad implícita 
en instrumentos financieros novedosos tales como derivados crediticios, reduce la probabilidad de 
contagio, pero puede multiplicar significativamente su impacto en el sistema financiero cuando 
ocurre un problema.  
 
Abstract  
 
Although the financial systems of advanced countries have weathered numerous shocks in recent 
years, the events triggered by the sub-prime crisis of August 2007 have been “super-systemic” in 
scope, enveloping financial institutions across the major economies as well as far away Iceland and 
New Zealand. In this paper, we apply network techniques to develop a framework for analyzing 
financial contagion that isolate the probability of contagion from its potential spread. Our results 
suggest that complex financial systems may be robust-yet-fragile in nature. Under plausible 
assumptions, the greater connectivity implied by new financial instruments (e.g., credit derivatives) 
reduces the likelihood of contagion. But the impact on the financial system, in the event of 
problems, can be on a significantly larger scale than before. 
 
 
 
 
 
 
 
______________ 
We are grateful to Jason Dowson for excellent research assistance. We would also like to thank Michael Bordo, Fabio 
Castiglionesi, Geoff Coppins, Avinash Dixit, Andy Haldane, Simon Hall, Jorge Selaive, Gabriel Sterne, Garry Schinasi, 
and seminar participants at the Bank of England and the 12th Annual Conference of the Central Bank of Chile on 
"Financial Stability, Monetary Policy and Central Banking" (Santiago, 6-7 November 2008) for helpful comments and 
suggestions. This paper represents the views of the authors and should not be thought to represent those of the Bank of 
England or Monetary Policy Committee members. Prasanna Gai: E-mail address: prasanna.gai@anu.edu.au. Sujit Kapadia 
E-mail adddress: sujit.kapadia@bankofengland.co.uk. 

mailto:prasanna.gai@anu.edu.au
mailto:sujit.kapadia@bankofengland.co.uk


1 Introduction  
 
Are financial systems shock absorbers or shock amplifiers? Policymakers and academics 
have long remained divided over this fundamental question. On one hand, some contend 
that financial innovation and integration make the financial world a safer place (Greenspan, 
1999); while others argue the opposite by appealing to the same driving forces (Rajan, 
2005). On this view, recent rapid financial innovation has been both good and bad 
cholesterol -- serving to lower the probability of crisis, but fattening the tail of the 
distribution of losses for the financial system as a whole (Gieve, 2006; Gai and Haldane, 
2007). Although advanced country financial systems have weathered numerous shocks in 
recent years (the collapse of Amaranth, the events surrounding GM, 9/11, and the Dotcom 
crash to name a few), the events triggered by the sub-prime crisis of August 2007 have 
been “super-systemic” in scope, enveloping financial institutions across the major 
economies as well as far away Iceland and New Zealand1.  
 
The intricate network of claims and obligations that now link the balance sheets of financial 
intermediaries raises challenges for the positive analysis of contagion in the modern 
financial system. In a seminal analysis, Allen and Gale (2000) demonstrate how the spread 
of contagion depends crucially on the pattern of interconnectedness between banks. When 
the network is “complete”, with all banks having exposures to each other such that the 
amount of interbank deposits held by any bank is evenly spread over all other banks, the 
impact of a shock is readily attenuated. By contrast, when the network is “incomplete”, 
with banks only having exposures to a few counterparties, the system is more fragile. The 
initial impact of a shock is concentrated among neighbouring banks. Once these succumb, 
the premature liquidation of long-term assets and the associated loss of value bring 
previously unaffected banks into the front line of contagion2.  
 
The financial turmoil of 2007-9 has also made clear how the interdependent nature of 
financial balance sheets creates an environment for indirect contagion to occur. As 
Cifuentes et.al (2005), Shin (2008) and Brunnermeier and Pederson (2009) stress, the 
knock-on effect of the default of a financial institution on asset prices can trigger further 
rounds of default as other financial entities are forced to write down the value of their 
assets. And, in practice, as recent events highlight, technical default is not necessary for this 
effect to be relevant. Contagion due to direct interlinkages of claims and obligations may 
thus be reinforced, particularly if the market for key financial assets is illiquid. 
 
Given the speed with which shocks propagate, there is a need to develop tools that permit 
economists to articulate the probability and impact of shocks to the financial system. The 
complexity of modern financial systems means that policymakers have scant information 
about the true interlinkages between financial intermediaries. Securitisation, for example, 
means that US mortgage-backed securities acquired by investors in New Zealand or India 
exposes households in these countries to credit events in Ohio. Information on such 
                                                 
1 We owe the term "super-systemic" to Andy Haldane. 
2 See Friexas et.al (2000) for similar results. Network models have also been applied to a range of other topics 
in finance: for a comprehensive survey, see Allen and Babus (2008). 
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linkages is typically not in the public domain. Moreover, the intricacy of financial 
transactions has been such that private sector agents' are also often no longer able to 
ascertain their own or others' exposures to credit risk. In this context, models such as Allen 
and Gale (2000), which are based on rigid structures with a handful of banks, have limited 
appeal. And more recent literature on endogenous network formation (e.g. Leitner, 2005; 
Castiglionesi and Navarro, 2007) also fails to offer a framework that allows for arbitrary 
network structures or for a distinction to be made between the probability and spread of 
contagion. 
 
In this paper, we develop a network model of financial contagion that builds on techniques 
from the literature on complex systems (Strogatz, 2001). Although this type of approach is 
frequently applied to the study of epidemiology and ecology, and despite the obvious 
parallels between financial systems and ecosystems highlighted by prominent authors (e.g. 
May et.al, 2008), this methodology has yet to be applied to economic problems. Our model 
allows for arbitrary network structure and explicitly accounts for the nature and scale of 
aggregate and idiosyncratic shocks as well as asset 
price interactions. Although the model can be solved analytically under certain 
assumptions, we present numerical results to illustrate and clarify the non-linear system 
dynamics of the model3. In so doing, we are able to isolate the probability of contagion in 
the financial system from its potential spread.  
 
We find that financial systems exhibit a robust-yet-fragile tendency. While greater 
connectivity reduces the likelihood of contagion, the impact on the financial system, should 
problems occur, could be on a significantly larger scale than before. Our results thus nest 
the two views of financial systems as shock absorbers and/or amplifiers. The wider and 
deeper is financial innovation and integration, the more likely that the financial system 
serves as a shock absorber by enabling risk sharing. But innovation also has a dark side and 
can lead risk sharing to become risk spreading. So, although the 
incidence of acute financial distress may have fallen with greater financial inter-
connectedness, episodes of distress could have greater impact. 
 
The recent rescue of American International Group (AIG) serves to illustrate the type of 
analysis made possible by our framework. A key reason given by policymakers for the 
rescue was concern that banks across the international financial system might have been 
exposed to AIG via credit derivative contracts. But how far could contagion have spread 
had AIG been allowed to fail? More generally, how might the expansion of credit risk 
transfer over the past decade have affected the nature of contagion? Given the limited 
information that policymakers have about the true interlinkages involved, the connections 
implied by credit derivatives are, perhaps, best captured by a random graph network of the 
type we consider here. Our results suggest that under plausible parameter values, greater 
use of credit derivatives might have reduced the likelihood of contagion. But, by creating 
complex and far-reaching interlinkages in the financial system, their increased use may 
mean that when contagion breaks out, it is transmitted much more widely. 

                                                 
3 Gai and Kapadia (2008) provide details of the analytical solution, applying techniques used in percolation 
theory (Callaway et al., 2001; Newman et al., 2001; Watts, 2002) and the epidemiological literature on the 
spread of disease in networks (e.g. Newman, 2002; Meyers, 2007). 
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A natural criticism of our framework is that it assumes that financial connections between 
intermediaries are formed randomly and exogenously and are static in nature. This leads us 
to model the contagion process in a relatively mechanical fashion, holding balance sheets 
and the size and structure of interbank linkages constant as default propagates through the 
system. Although not cast in a traditional optimizing set-up, our approach, nevertheless, 
yields a useful and realistic benchmark for analysis. Arguably, in normal times, developed 
country banks are robust and minor variations in their default probabilities do not affect 
lending decisions on the interbank market. But in crises, as illustrated by the sudden 
failures of Bear Stearns and Lehman Brothers, contagion may spread rapidly, with banks 
having little time to alter their behaviour before they are affected. Note also that banks have 
no choice over whether to default. This precludes strategic behaviour on networks of the 
type discussed by Morris (2000), Jackson and Yariv (2007) and Galeotti and Goyal (2007), 
where nodes can choose whether to adopt a particular state (e.g. adopting a new 
technology). 
 
Our paper is related to a large empirical literature which uses counterfactual simulations to 
assess the danger of contagion in a range of national banking systems (see Upper, 2007, for 
a comprehensive survey). This literature has largely tended to use actual or estimated data 
on interbank lending to simulate the effects of the failure of an individual bank on financial 
stability4. The evidence of contagion risk from idiosyncratic shocks is mixed. Furfine 
(2003) and Wells (2004) report relatively limited scope for contagion in the U.S. and U.K. 
banking systems. By contrast, Upper and Worms (2004) and van Lelyveld and Liedorp 
(2006) suggest that contagion risk may be somewhat higher in Germany and the 
Netherlands. Meanwhile, Mistruilli's (2007) results for the Italian banking system echo the 
findings of this paper: he finds that while only a relatively low fraction of banks can trigger 
contagion, large parts of the system are affected in worst-case scenarios. Moreover, he 
shows that when 
moving from an analysis of actual bilateral exposures (which form an incomplete network) 
to a complete structure estimated using maximum entropy techniques, the probability of 
contagion from a random, idiosyncratic bank failure is reduced but its spread is sometimes 
widened. 
 
Contagion due to aggregate shocks is examined by Elsinger et.al (2006) who combine a 
model of interbank lending in the Austrian banking system with models of market and 
credit risk. They take draws from a distribution of risk factors and compute the effects on 
banks' solvency, calculating the probability and the severity of contagion. Their findings 
also echo the results reported in our paper. While contagious failures are relatively rare, if 
contagion does occur, it affects a large part of the banking system. 
 
As noted by Upper (2007), existing empirical studies are plagued by data problems and the 
extent to which reported interbank exposures reflect true linkages is unclear: generally, 
interbank exposures are only reported on a particular day once a quarter and exclude a 
range of items, including intraday exposures. As such, they underestimate the true scale of 
financial connectivity. Moreover, national supervisory authorities do not generally receive 
                                                 
4  A parallel literature explores contagion risk in payment systems -- see, for example, Angelini et.al (1996). 
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information on the exposures of foreign banks to domestic institutions, making it difficult 
to model the risk of global contagion in the increasingly international financial system. All 
of this, coupled with short time series for the relevant data, makes it difficult to empirically 
assess the effects of changes in network structure, as perhaps induced by credit risk 
transfer, on contagion risk. This highlights the importance of analytical and simulation-
based approaches to explore these issues. 
 
The structure of the paper is as follows. Section 2 describes the analytical framework. 
Section 3 uses numerical simulations to study the effects of failures of individual 
institutions and articulate the likelihood and extent of contagion. It also considers the 
impact of liquidity effects and credit derivatives on system stability. A final section 
concludes. 
 

2 Analytical Framework 
 
Consider a financial network in which $n$ financial intermediaries, `banks' for short, are 
randomly linked together by their claims on each other. In the language of graph theory, 
each bank represents a node on the graph and the interbank exposures of bank i define the 
links with other banks. Since interbank linkages comprise assets as well as liabilities, the 
links in the network are  directed: incoming links, which point into a node or bank, 
correspond to the interbank assets / exposures of that bank (i.e. money owed to that bank by 
a counterparty); by contrast, outgoing links, which point out from a node, correspond to its 
interbank liabilities. Figure 1 shows an example of a directed financial 
network in which there are five banks. 
 
Two crucial properties of graphs such as those in Figure 1 are their degree distribution and 
average degree. Let us denote the number of incoming links, or in-degree, to bank  i by ij , 
and the number of outgoing links, or out-degree, by . We can then define the joint degree 
distribution of in- and out-degree, 

ik

jkp , to be the probability that a randomly chosen node 
simultaneously has in-degree j and out-degree k. Further, since every interbank asset of a 
bank is an interbank liability of another, every outgoing link for one node is an incoming 

link for another node. Therefore, the average in-degree in the network, 
,

1
i j

k
k

i j

j jp
n

=∑ ∑ , 

must equal the average out-degree,
,

1
i

i j k

k k
n

=∑ ∑ jp k . We simply refer to this quantity as the 

average degree and denote it by 
 

, ,
.jk jk

j k j k
z jp k p= =∑ ∑  (1) 

 
In what follows, the joint distribution of in- and out-degree governs the potential for the 
spread of shocks through the network. A feature of our analysis is that this joint degree 
distribution, and hence the structure of the links in the network, is entirely arbitrary, though 
a specific distributional assumption is made in our numerical simulations. 
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Suppose that the total assets of each bank are normalised to unity and that these consist of 
interbank assets, , and illiquid external retail assets, such as mortgages and corporate 
loans, 

IB
iA

R
iA . Since we might expect a bank with more incoming links to have a greater total 

interbank asset position, we allow for the relative shares of interbank and retail assets to 
depend on the bank's in-degree, ij . Given these assumptions,  
 ( ) ( ) 1%  ,IB R

i i i iA j A j i+ = ∀  (2) 
   
Where ( )0IB

iA = 0 5. We assume that the total interbank asset position of every bank is 
evenly distributed over each of its incoming links. Although this assumption is stylised, it 
provides a useful benchmark which emphasises the possible benefits of diversification. 
 
Since every interbank asset is another bank's liability, interbank liabilities, , are 
endogenously determined. Apart from interbank liabilities, the only other component of a 
bank's liabilities are exogenously given customer deposits, . The condition for bank i to 
be solvent is therefore 

IB
iL

iD

 
 ( ) ( ) ( )1 IB R IB

i i i i i iA j qA j L Dλφ− + − − 0,>  (3) 
 
where φ  is the fraction of banks with obligations to bank i that have defaulted, λ is the 
average loss-given-default on interbank loans, and q is the resale price of the illiquid asset. 
The value of λ  is constrained to lie between zero and one: 1λ =  corresponds to a zero 
recovery assumption, namely that when a linked bank defaults, bank i loses all of its 
interbank assets held against that bank. The value of q may be less than one in the event of 
asset sales by banks in default, but equals one if there are no `fire sales'. The solvency 
condition can also be expressed as 
 

 ( ) ( )
( ) ( )1

, for 0,
R

i i i IB
i iIB

i i

K q A j
A j

A j
φ λ

λ
− −

< ≠

i

                                                

 (4) 

 
where  is the bank's capital buffer, i.e. the difference 
between the book value of its assets and liabilities. 

( ) ( )IB R IB
i i i iK A j A j L D= + − −

 
To model the dynamics of contagion, we suppose that all banks in the network are initially 
solvent and that the network is perturbed at time t=1 by the initial default of a single bank. 
Although purely idiosyncratic shocks are rare, the crystallisation of operational risk (e.g. 
fraud) has led to the failure of financial institutions in the past (e.g. Barings). Alternatively, 
bank failure may result from an aggregate shock which has particularly adverse 

 
5 Across the entire financial system, we might expect total retail assets to be fixed. This would imply a 
dependence between the average share of retail assets on bank balance sheets and the number of financial 
intermediaries in the system. As discussed below, our numerical simulations take this dependency into 
account.} 
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consequences for one institution: this can be captured in the model through a general 
erosion in the stock of retail assets or, equivalently, capital buffers across all banks, 
combined with a major loss for one particular institution. 
 
Recall that ij  denotes the number of incoming links for bank i. Since linked banks each 
lose a fraction 1/ ij  of their interbank assets when a single counterparty defaults, it is clear 
from (4) that the only way default can spread is if there is a neighbouring bank for which  
 

 ( ) ( )
( )

1 1 .
R

i i i
IB
i i i

K q A j
A j jλ

− −
<  (5) 

 
We define banks that are exposed in this sense to the default of a single neighbour as 
vulnerable and other banks as safe. The vulnerability of a bank clearly depends on its in-
degree, j. Specifically, a bank with in-degree j is vulnerable with probability   

 ( ) ( )
( )

 
1 1 1. 

R
i i

j IB
i

K q A j
P

A j j
υ

λ
⎡ ⎤− −

= <⎢
⎣ ⎦

j∀ ≥⎥  (6) 

Further, the probability of a bank having in-degree j, out-degree k and being vulnerable is 
·j jkpυ . 

 
The model structure described by equations (2) to (6) captures several features of interest in 
systemic risk analysis. First, as noted above, the nature and scale of adverse aggregate or 
macroeconomic events can be interpreted as a negative shock to the stock of retail assets, 

R
iA , or equivalently, to the capital buffer, . Second, idiosyncratic shocks can be modelled 

by assuming the exogenous default of a bank. Third, the structural characteristics of the 
financial system are described by the distribution of interbank linkages, 

iK

jkp , and much can 
be learnt about the nature of contagion by simply exploring the effects of varying the 
average degree in the network, z. Fourth, the implications of different dependencies 
between the total interbank asset position and the number of exposures can be explored by 
changing the functional form of ( )IB

iA ji . And finally, liquidity effects associated with the 
potential knock-on effects of default on asset prices are captured by allowing q to vary. 
 
Gai and Kapadia (2008) use probability generating function techniques to obtain analytical 
results on the transmission of shocks in the system as a function of  and jv jkp  in the 
special case where the total interbank asset position is independent of the number of 
incoming links the bank has (i.e. ( )IB

i iA j is constant and does not depend on ) and both ji λ  
and q are set equal to 1. They show that under these assumptions, financial systems exhibit 
a robust-yet-fragile tendency. While greater connectivity reduces the likelihood of 
contagion, its potential spread, should problems occur, could be significantly greater. 
 
The intuition underpinning these results is straightforward. In a more connected system, the 
counterparty losses of a failing institution can be more widely dispersed to, and absorbed 
by, other entities. So increased connectivity and risk sharing may lower the probability of 
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contagion. But, conditional on the failure of one institution triggering contagious defaults, a 
higher number of financial linkages also increases the potential for contagion to spread 
more widely. In particular, greater connectivity increases the chances that institutions 
which survive the effects of the initial default will be exposed to more than one defaulting 
counterparty after the first round of contagion, thus making them vulnerable to a second-
round default. The impact of any crisis that does occur could, therefore, be larger. 
 
Although Gai and Kapadia (2008) discuss how assuming an uneven distribution of 
interbank assets over incoming links would not change any of their fundamental results, the 
effects of the other simplifying assumptions required to obtain an analytical solution are 
less clear. In particular, they do not explore the implications of making the total interbank 
asset position dependent on the number of exposures, making it difficult to assess, for 
example, the effects of more widespread use of credit derivatives. Therefore, in what 
follows, we use numerical simulations to explore the implications of relaxing some of the 
simplifying assumptions needed to solve the model analytically. 
 

3 Numerical Simulations 
 

3.1 Methodology 
 
In our numerical simulations, we assume a uniform (Poisson) random graph in which each 
possible directed link in the graph is present with independent probability $p$. In other 
words, the network is constructed by looping over all possible directed links and choosing 
each one to be present with probability p. Consistent with bankruptcy law, we do not net 
interbank positions, so it is possible for two banks to be linked with each other in both 
directions. The average degree, z, is allowed to vary in each simulation. And although our 
model applies to networks of fully heterogeneous financial intermediaries, we take the 
capital buffers and asset positions on banks' balance sheets to be identical. 
 
As a benchmark, we consider a network of 1,000 banks. Clearly, the number of financial 
intermediaries in a system depends on how the system is defined and what counts as a 
financial intermediary. But several countries have banking networks of this size, and a 
figure of 1,000 intermediaries also seems reasonable if we are considering a global 
financial system involving investment banks, hedge funds, and other players. Given this 
rather high number of banks, however, when calculating the probability and conditional 
spread of contagion, we only count episodes in which over 5% of the system defaults, as 
this seems a suitable lower bound for defining a systemic financial crisis in such a large 
system. When assessing the impact of credit risk transfer, we change these assumptions to 
reflect the smaller number of major players in credit derivative markets and their greater 
systemic importance. 
 
Except for the credit derivative experiment, interbank assets are assumed not to depend on 
the number of incoming links and are held constant so that they comprise 20\% of total 
assets, with retail assets making up the rest -- the 20% share of interbank assets is broadly 
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consistent with the figures for developed countries reported by Upper (2007). Banks' capital 
buffers are set at 4%, a figure calibrated from data contained in the 2005 published 
accounts of a range of large, international financial institutions6. Since each bank's 
interbank assets are evenly distributed over its incoming links, interbank liabilities are 
determined endogenously within the network structure. And the liability side of the balance 
sheet is `topped up' by customer deposits until the total liability position equals the total 
asset position. 
 
In the experiments that follow, we draw 1,000 realisations of the network for each value of 
z used. In each of these draws, we shock one bank at random, wiping out all of its external 
assets -- this type of idiosyncratic shock may be interpreted as a fraud shock. The failed 
bank defaults on all of its interbank liabilities. As a result, neighbouring banks may also 
default if their capital buffer is insufficient to cover their loss on interbank assets. Any 
neighbouring banks which fail are also assumed to default on all of their interbank 
liabilities, and the iterative process continues until no new banks are pushed into default. 
 

3.2 Benchmark Case 
 
As a benchmark, Figure 2 depicts the numerical solution under the assumptions needed to 
solve the model analytically. With no links, contagion is impossible by definition. 
Therefore, for very low values of z, the likelihood of contagion is increasing in 
connectivity. 
 
More interesting is what happens for higher values of z. Gradually, the frequency of 
contagion falls as risk-sharing effects serve to reduce the number of vulnerable banks in the 
system. But when contagion does break out, it affects an increasing fraction of the system. 
Indeed, for , contagion never occurs more than five times in 1,000 draws but in each 
case where it does break out, every bank in the network fails. As well as pointing towards 
the robust-yet-fragile nature of financial networks, this serves to highlight that a priori 
indistinguishable shocks to the network can have vastly different consequences for 
contagion. In each draw, the initial shock is the failure of a single bank. In general, this 
does not cause contagion. But, in a in a small handful of cases, it is catastrophic. This 
feature of the complex network cautions against assuming that past resilience to a particular 
shock will continue to apply to future shocks of a similar magnitude. It also highlights the 
acute difficulties that policymakers may have when trying to assess the contagion risk from 
the failure of an institution if they do not have a good understanding of the structure of the 
financial network. 

8z >

 
Figure 3 shows how the results change as banks' capital buffers vary. As might be expected, 
an erosion of capital buffers increases the probability of contagion for fixed values of z7. 
For small values of z, the extent of contagion is also slightly greater when capital buffers 
are lower but, in all cases, it reaches one for sufficiently high values of z. When the capital 
                                                 
6 Further details are available on request from the authors. 
7 Reduced capital buffers may also increase the likelihood of an initial default. Therefore, they may contribute 
to an increased probability of contagion from this perspective as well. 
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buffer is increased to 5%, however, this occurs well after the peak probability of contagion. 
This neatly illustrates how increased connectivity can simultaneously reduce the probability 
of contagion but increase its spread conditional on it breaking it out. 
 

3.3 Positive Recovery Rates 
 
Solving the model analytically requires assuming a 100\% loss-given-default on interbank 
assets. This assumption may well be realistic in the midst of a crisis -- in the immediate 
aftermath of a default, the recovery rate and the timing of recovery will be highly uncertain 
and banks' funders are likely to assume the worst-case scenario. But to assess the 
robustness of the results, Figure 4 relaxes the zero recovery assumption. Instead, we assume 
that when a bank fails, its default in the interbank market equals its asset shortfall (i.e. its 
outstanding loss after its capital buffer is absorbed) plus half of any remaining interbank 
liabilities, where the additional amount is interpreted as reflecting bankruptcy costs that are 
lost outside the system8. As we might expect from equation (6), this reduces the likelihood 
of contagion because fewer banks are vulnerable when the recovery rate is positive. But it 
is also evident that relaxing the zero recovery assumption does not fundamentally affect our 
broad results. 
 

3.4 Liquidity Risk 
 
We now incorporate liquidity effects into our analysis. When a bank fails, financial markets 
may have a limited capacity to absorb the illiquid external assets which are sold. As a 
result, the asset price may be depressed. Following Schnabel and Shin (2004) and Cifuentes 
et.al (2005), suppose that the price of the illiquid asset, q, is given by 
 
 ,xq e α−=  (7) 
where x>0 is the fraction of system (illiquid) assets which have been sold onto the market 
(if assets are not being sold onto the market, q=1). We calibrate α  so that the asset price 
falls by 10\% when one-tenth of system assets have been sold. 
 
We integrate this pricing equation into our numerical simulations. Specifically, when a 
bank defaults, all of its external assets are sold onto the market, reducing the asset price 
according to equation (7). We assume that when the asset price falls, the external assets of 
all other banks are marked-to-market to reflect the new asset price. From equation (6), it is 
clear that this will reduce banks' capital buffers and has the potential to make some banks 
vulnerable, possibly tipping them into default. 
 

                                                 
8 Since interbank assets make up 20\%\ of each bank's total asset position, interbank liabilities must, on 
average, make up 20% of total liabilities. Therefore, for the average bank, if we take (insured) customer 
deposits as senior, the maximum bankruptcy cost under this assumption is 10% of total assets / liabilities, 
which accords with the empirical estimates of bankruptcy costs in the banking sector reported by James 
(1991). 
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The incorporation of (market) liquidity risk introduces a second potential source of 
contagion into the model from the asset-side of banks' balance sheets. Note, however, that 
liquidity risk only materialises upon default. Realistically, asset prices are likely to be 
depressed by asset sales before any bank defaults. So accounting only for the post-default 
impact probably understates the true effects of liquidity risk. 
 
Figure 5 illustrates the effects of incorporating liquidity risk into the model. As we might 
expect, liquidity effects magnify the extent of contagion when it breaks out. Contagion is 
also slightly more likely for given values of z. 
 
As shown, liquidity effects do not drastically alter the main results of our model. But this 
should not be taken to mean that liquidity effects are unimportant. In part, the limited effect 
of liquidity risk reflects the already high spread of contagion embedded in the benchmark 
scenario. If a fraction of banks were assumed to be totally immune to counterparty credit 
risk (i.e. they would survive even if all their counterparties defaulted), then liquidity risk 
would probably be much more significant in amplifying the extent of contagion for 
intermediate levels of connectivity. And, to the extent that liquidity risk materialises before 
any bank defaults, it can be viewed as having the potential to erode capital buffers and 
increase the likelihood of an initial default. 

3.5 The Impact of Credit Derivatives 
 
We now illustrate the type of analysis made possible by our framework by using it to assess 
the possible impact of credit derivatives on the nature of contagion. In recent years, the use 
of credit derivatives has grown tremendously. For the net buyers of credit protection 
(typically traditional banks), this has reduced their exposure to non-financial corporates. 
But, at the same time, it has increased both their number of links to financial 
counterparties and their overall exposure to them. Meanwhile, net sellers of credit 
protection (e.g. insurance companies and monolines) have implicitly taken on corporate 
credit risk and become part of the financial network through their activities. Perhaps more 
contentiously, it has also been argued that for the system as a whole, the greater use of 
credit risk transfer may have slightly reduced capital buffers. 
 
To capture these features in our model, we assume that the greater use of credit derivatives 
has meant that a typical bank has a greater number of incoming links and a correspondingly 
higher share of interbank assets on their balance sheet. Specifically, we assume the 
following functional form for ( )IB

i iA j : 
 
 ( ) ,IB b

i i iA j aj c= +  (8) 
where a>0 and b>0 are parameters controlling the extent to which the total interbank 
exposure increases with the number of incoming links9. We also assume that the total stock 
of retail assets in the economy has remained constant. Together, these assumptions imply 

                                                 
9 Intuitively, introducing this relationship curtails the risk-sharing benefits of greater connectivity because the 
greater absolute exposure associated with a higher number of links partially offsets the positive effects from 
greater diversification. 
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that the number of institutions in the network must have increased -- we associate this with 
the integration of insurance companies, hedge funds and monolines into the system. To 
capture the possible erosion in capital buffers, we suppose that the total capital in the 
system remains unchanged despite the increase in the number of participants -- as a result, 
all institutions become slightly less well capitalised as credit derivatives assume a greater 
role. All of these effects automatically key off an increase in the average degree, z. 
 
Since our focus is on the relatively limited set of key players in global credit derivative 
markets, we suppose that in the initial state before the advent of credit derivatives, there 
were only 100 banks, with each having a 4% capital buffer and just two interbank links on 
average. We then simulate the system for different values of z, assuming that a=0.02, 
b=0.85, c=0.03, that the loss-given-default on interbank exposures is 100%, and that there 
are no liquidity effects. Bearing in mind that the typical bank currently has an interbank 
asset share of approximately 20% (Upper, 2007), it seems from the second column of Table 
1 that this parameterization generates reasonably plausible interbank asset shares for the 
corresponding number of links. For example, if a bank is linked to one-fifth of the system 
(z=20), interbank assets comprise 28.5% of its balance sheet. 
 
Table 1 shows how the probability and spread of contagion vary with z. Given our focus on 
major international financial institutions in this analysis, we adopt a lower threshold for 
recording contagion events, counting all episodes in which more than one bank defaults as 
a result of the initial failure. It is evident from the table that the greater use of credit 
derivatives, as captured by an increase in z, may have reduced the likelihood of contagion 
following an initial failure. Moreover, to the extent that credit risk transfer may reduce the 
probability of an initial default, the results may understate its beneficial effects. But the role 
of credit derivatives as a potential shock amplifier is made clear by the sharply increasing 
spread of contagion. Even with an average of five links, contagion only affects roughly 5% 
of the system when it breaks out. But an increase to ten or fifteen links changes the picture 
completely – once started, crises become super-systemic. 
 
It is worth noting that these results (and indeed all of the numerical results presented in the 
paper) are cast in terms of random graph network structures involving financial 
intermediaries (nodes) with comparable balance sheets. As such, our findings could 
underestimate the impact of an actual financial crisis. If the first bank to fail is particularly 
large or highly connected (e.g. Lehman Brothers), then the consequences could be much 
more severe -- indeed, work by Albert et.al (2000) studies the effects of 
targeted attacks on hubs and shows how critical nodes are vital to the spread of contagion10. 
But the existence of a key `node' may also be beneficial. With clear analogies to the 
epidemiological literature on targeted vaccination of highly connected nodes (Anderson and 
May, 1991), if the authorities are able to identify and `bail out' key players in the network 
ex ante, then prospective contagion could be very substantially contained. Extensions of our 
analysis along these directions are likely to reach similar conclusions. 
 

                                                 
10 Nier et.al (2007) also provide some analysis of shocks to key nodes in `hub and spoke' networks. 
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4 Conclusion 
 
In this paper, we develop a model of contagion in arbitrary financial networks that nests the 
two competing views of financial systems as shock absorbers or amplifiers. In so doing, our 
framework helps clarify how shocks are transmitted across markets and banking systems. A 
key finding is that while greater connectivity helps lower the probability of contagion, it 
can also increase its spread in the event of problems occurring. Illiquid markets for key 
financial assets compound the problem, amplifying both the likelihood and extent of 
contagion. 
 
Our model helps illustrate how the failure of a large organization linked to other entities via 
credit derivatives might play out in the absence of a public sector rescue. The use of credit 
derivatives in our model creates far-reaching interlinkages and large absolute exposures 
compared with financial systems that lack such instruments. We demonstrate how the 
expansion of credit derivative activity may have worked to curtail some of the risk-sharing 
benefits offered by such innovation, leaving open the scope for a much more virulent or 
“super-systemic” crisis. 
 
Finally, the paucity of relevant balance sheet data on many financial entities and the 
international nature of financial intermediation make the empirical modelling of contagion 
risk difficult to undertake. By isolating probability and impact, our paper also makes a 
methodological contribution -- pointing towards analytical and numerical ways of assessing 
the effects of changes in network structure on contagion risk. 
 
Our paper is best viewed as a first step in a research agenda that seeks to develop a deeper 
understanding of large, complex financial networks. Clearly, there remains scope to 
sharpen the calibration that forms the basis of the main results. A more pressing challenge, 
however, is to relax some of the more mechanical assumptions of the analysis. Developing 
a more behavioural foundation in ways that capture the richness of financial network 
structure is a crucial next task if such models are to offer further meaningful guidance for 
policymakers. 
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Figure 1: A Directed Network with five nodes 

 
Figure 2: Contagion in the Benchmark Case 
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Figure 3: Contagion under different capital buffers 
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Figure 4: Contagion with Positive Recovery Rates 

 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

Average Degree (i.e. connectivity)

Frequency of Contagion
(Benchmark Case)
Extent of Contagion
(Benchmark Case)

Frequency of Contagion
(Positive Recovery Rate)

Extent of Contagion
(Positive Recovery Rate)

 

 17



Figure 5: Liquidity Effects and Contagion 
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Table 1: Credit Derivative Simulation 
 

Average Degree (z) IBA (%) Retail Assets (%) No. of Banks Capital Buffer Frequency of Contagion Scale of Contagion
2 6.6% 93.4% 100 4.00% 7.8% 3.8%
5 10.9% 89.1% 105 3.82% 6.2% 5.4%

10 17.2% 82.8% 113 3.55% 2.1% 35.4%
15 23.0% 77.0% 121 3.30% 0.9% 67.8%
20 28.5% 71.5% 131 3.06% 0.9% 89.1%
25 33.9% 66.1% 141 2.83% 0.2% 100.0%  
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