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Resumen  
 
En este artículo comparamos las predicciones puntual y de densidad obtenidas a partir 
de la estimación de modelos AR y VAR usando datos desagregados de la inflación 
chilena de frecuencia trimestral. Esta comparación responde a nuestra creencia de que, 
en el contexto actual de inflación alta, el uso de la dinámica conjunta de la inflación de 
los componentes de la canasta básica de consumo produce mejores predicciones 
individuales de la inflación de estos componentes que aquellas obtenidas a partir de 
modelos univariados. Encontramos evidencia a favor de nuestra creencia solo para las 
predicciones puntuales. 
 
 
 
 
 
Abstract  
 
In this paper we compare point and density forecasts generated by estimating AR and 
VAR models using disaggregated quarterly data of Chilean inflation. We motivate this 
comparison by our belief that, in the recent high inflation context, the use of the joint 
dynamics of the price index inflation of the consumer basket’s components renders 
multivariate model’s forecasts more useful than the forecasts constructed based on 
univariate models. We find supportive evidence for our belief only for the case of point 
forecasts. 
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1 Introduction and Motivation

Currently, inflation is at the center of policymakers’ concern. It is well known that shocks of

different size and persistence like the increase of oil and grains prices have been the main drivers

behind the recent upward trend in inflation rates observed in many emerging and developed

countries.

Specially in this context, central banks committed to attain low, stable inflation rates need

inflation forecasts at the relevant policy horizon in order to carry out in advance the necessary

policy actions to bring inflation back to desired values. Thus, inflation forecasts are important

tools not only because they are useful for guiding policy actions but also because expectations

play a key role in the monetary policy transmission as central banks affect the real economy

through real interest rates, whose values are determined ultimately by the inflation expected by

private agents.

Accordingly, the construction of forecasting models has been at the core of technical im-

provements undertaken by many central banks in the last two decades. In practice, central

banks’ inflation forecasts rely on a combination of a battery of (semi-)structural and times se-

ries models and policy makers’ judgements. Although recent improvements have been taken by

many central banks for developing and understanding dynamic stochastic general equilibrium

models (DSGE), the use of time series models seems to be more widespread.

Undoubtedly, the current scenario of high and persistent inflation rates, where the like-

lihood of having second-round effects in place is high,1 is a challenge for people involved in

making forecasts and developing models to do so because dealing with time series properties

such as persistence is not an easy task and finding the best model or combination of a subset

of models to forecast inflation has non trivial consequences on monetary policy, as pointed out

above. Hence, one possible explanation—the persistence of food price inflation shocks (i.e, rice,

wheat and maize) and the propagation of second-round effects are certainly complementary

explanations—for still observing high inflation rates in many countries could emerge from an

insufficient monetary policy reaction coming, in turn, from a biased reading—based on wrong

projections—of the external scenario and its relationship with domestic conditions.

In this paper we use time series models to forecast the Chilean inflation rate. We believe

that this unusual inflation scenario offers an opportunity to exploit the joint dynamics of dis-

aggregated inflation data in a multivariate setting in order to improve forecasts performance at

the univariate level. If this disaggregated information corresponds to the price index inflation of

the consumer basket’s components used to construct the aggregated price index (the Consumer

1Here, second-round effects stand for revisions made by private agents on their inflation expectations and
adjustments in indexed prices as a result of big-magnitude inflationary shocks.
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Price Index, CPI), our null hypotheses would be that, say, the food price inflation forecasts

based on multivariate models—using the information of the rest of the components as well—is

at least as accurate as than those constructed using univariate models. Our presumption on

the superior predictive ability of multivariate models in high inflation environments would be

consistent with the alternative hypothesis.2

For evaluating the forecast performance of multivariate models vis-à-vis univariate models

we use recent point and density forecasts ability tests. Although discussions on inflation fore-

casts among policy makers are usually focused on point forecasts estimates, it is clear that the

interest should change toward density forecasts as by nature inflation forecasts are statistical

objects subject to uncertainty.

This paper is laid out as follows. In the next section we present briefly the forecasting

models and discuss their modeling specification. We use traditional univariate and multivariate

autoregressive models, which are known to be useful for making time series forecasts. Next, in

section 3 we describe the data. In the fourth section we report the estimation and specifica-

tion results. In section 5 we evaluate the relative performance of point and density forecasts

using two samples, one of them capturing the recent upward trend in inflation rates. Finally,

in section 6 we conclude.

2 Forecasting Models

In this section we discuss issues such as specification, stability conditions, and estimation

related to VAR models. We can write a VAR(p) model as follows:

yt = v + A1yt−1 + . . . + Apyt−p + ut (1)

where yt is a (K × 1) vector containing the stacked values in moment t of each variable.

v and Ai, with i = 1, . . . , p, are (K × 1) and (K × K) matrices of parameters, respectively.

Finally, ut is a (K × 1) vector of residuals with multivariate normal distribution.3 Clearly, the

AR model is a particular case of (1) when K = 1.

The search for the correct VAR specification4 is a key task because estimation results are

2During the elaboration of this paper, we realized that this idea of non-linearities in the relative predictive
ability of competitive models (in our case, which depends on the high or low inflation scenario) is currently
undertaken formally in the literature; see Giacomini and Rossi (2008) and Rossi and Sekhposyan (2008). The
conditional predictive ability test of Giacomini and White (2006) also allows for non-linearities in the explanation
of the relative forecast performance.

3Although we do not estimate model (1) by Maximum Likelihood, it is well known that OLS is equivalent to
Quasi-maximum Likelihood assuming normality for errors; see White (1982).

4This claim is pretentious as any estimation model, in essence, is misspecified.
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sensitive to the lag order p chosen for the VAR system representation. Commonly, this parameter

is chosen based on traditional information criteria (i.e., Akaike, Schwarz and Hannan-Quinn),

which in the VAR context are expressed as follows:

AIC = − 2

T ∗

(
−T ∗K

2
ln(2π) +

T ∗

2
ln

(
det(Ω̂−1)

)−T ∗K
2

)
+2

Pθ

T ∗ (2)

BIC = − 2

T ∗

(
−T ∗K

2
ln(2π) +

T ∗

2
ln

(
det(Ω̂−1)

)−T ∗K
2

)
+

Pθ

T ∗ ln(T ∗) (3)

HQN = − 2

T ∗

(
−T ∗K

2
ln(2π) +

T ∗

2
ln

(
det(Ω̂−1)

)−T ∗K
2

)
+2

Pθ

T ∗ ln(ln(T ∗)) (4)

where T ∗ = T−p is the effective sample size after accounting for the use of initial conditions

in the VAR estimation, Pθ = K(Kp + 3) is the total number of estimated parameters, and Ω̂ is

the estimated covariance matrix of residuals.

But this modus operandi only suggests parsimony degrees for the model and tell us nothing

with regard to the correct specification of VAR processes—with regard to the generation of

white noise residuals. As in univariate models the researcher usually performs autocorrelation

tests for the residuals (e.g., Box and Pierce (1970), Ljung and Box (1978)), this requirement

should also be accomplished in a multivariate setting. Lütkepohl (2007) proposes a test of zero

serial autocorrelation in a vectorial sense (i.e., among errors of different VAR equations).

To optimize the selection strategy of the best VAR process it is advisable, first, to use

information criteria to prioritize parsimony—Schwarz (BIC) and Hannan-Quinn (HQN) criteria

penalize the inclusion of parameters more than what the Akaike criterion does—and then, to

prove if the residuals of the chosen VAR specification—associated to an order p∗—are white

noise in the vectorial sense. If that p∗ produces white noise residuals, that order should suggest

the final VAR specification. Otherwise, researcher should look for another p for which the null

hypothesis of zero serial autocorrelation is not rejected.

The Lütkepohl (2007)’s test is useful theoretically but not in practice if relying in asymptotic

results. This test’s asymptotic distribution for the null hypothesis follows approximately a chi-

squared distribution
(
χ2

)
with K2(h− p) degrees of freedom, and only follows it exactly when

assuming that h, the maximum order of autocorrelation to be tested, grows with T .5 As we do

not know the true distribution of the test when assuming h fixed, or the autocorrelation order

value the test requires given the sample size when h is large, we calculate the associated p-values

by bootstrap—using 2000 replications—and report the test statistic for several values of h.

Finally, after selecting the best VAR representation, the researcher should verify if that

5Technically speaking, it is required that h → ∞ as T → ∞. As usual, a sample biased-corrected test is
available in the literature; see Lütkepohl (2007), Ch. 4.
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model satisfies the stability condition. This condition in the VAR context applies if:

det(IK − A1z − A2z
2 − . . .− Apz

p) 6= 0 for |zi| ≤ 1 with i = 1, . . . , p (5)

Next, we describe briefly the parametric bootstrap algorithm used for generating artificial

series of the VAR model’s variables.

2.1 Bootstrap Algorithm For Generating Artificial Data

Before describing the algorithm, it is convenient to rewrite the VAR model (1) in a compact

manner:6

Y = BZ + U

where

Y(K×T ) =
(
y1, . . . , yT

)

B(K×(Kp+1)) =
(
v, A1, . . . , Ap

)

Zt =




1

yt

...

yt−p+1




Z((Kp+1)×T ) =
(
Z0, . . . , ZT−1

)

U(K×T ) =
(
u1, . . . , uT

)

The bootstrap algorithm is composed of the following steps:

1. Obtain the VAR model’s estimated parameters, v̂ and Âi, with i = 1, . . . , p—by OLS or

Maximum Likelihood.

2. Generate the estimated matrix of residuals Û(K×T ). Given that the covariance matrix

of residuals is any squared matrix but diagonal by construction—there is cross-section

correlation among the VAR equations’ residuals—resampling should be done by K-tuples

in each period t.

6In this notation we follow closely Lütkepohl (2007).
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Consider the following matrix of estimated residuals:

Ût =




û11 û12 û13 . . . û1T−2 û1T−1 û1T

û21 û22 û23 . . . û2T−2 û2T−1 û2T

...
...

...
...

...
...

...

ûK1 ûK2 ûK3 . . . ûKT−2 ûKT−1 ûKT




An artificial (bootstrapped) matrix of residuals would be:

Ũt =




ũ15 ũ1T−3 ũ12 . . . ũ1T−1 ũ15 ũ12

ũ25 ũ2T−3 ũ22 . . . ũ2T−1 ũ25 ũ22

...
...

...
...

...
...

...

ũK5 ũKT−3 ũK2 . . . ũKT−1 ũK5 ũK2




3. Compute artificial time series of the variables by simulating recursively the VAR system,

using the parameters estimated in step 1, the pseudo-estimated residuals, and assuming

some initial conditions. For each variable, the initial condition could be its unconditional

mean.

4. Repeat steps 2-3 B times, where B is large—e.g., 1000, 2000.

3 The Data

Our sample consists of monthly Chilean CPI information at the first level of disaggregation.

Since December 1998, the aggregate price index components are the following (with their respec-

tive weight in the CPI):7 food (27.25%), housing (20.15%), housing equipments (8.11%), clothes

(7.9%), transportation (12.18%), health (9.39%), education (11.12%), and others8 (3.9%). The

data source is the National Institute of Statistics (INE)’ website and the time sample covers the

period December 1998–August 2008.

As the selected VAR order could be large given the size of the estimation sample, the use

of these 8 price index components in the estimations is cumbersome. For that reason, we re-

group those components in 4 items without losing the informational linkages at disaggregated

data that motivate this paper. Thus, in the empirical exercises we merge the groups housing

and housing equipments in only one item which we call housing, whose weight is 28.25%. We

7See table 1.
8The items that compose this group are professional services, cigarettes, and various expenditures.
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follow the same approach with items such as clothes, health, education, and others, calling the

resulting item others, with 32.31% of importance in the CPI. Thus, we work with a sample of

4 groups of disaggregation—i.e., food, housing, transportation, and others.

For the estimations, we use the seasonally adjusted quarterly inflation rate. This is an

important issue—which must be considered by researchers in future works—since the stability

of the VAR representation is sensitive to the frequency basis in which inflation is measured—

annual, quarterly, or monthly inflation rates. For instance, if we use annual inflation rates, the

estimation, simulation, and forecast exercises of the variables involved in the VAR model show

patterns associated to the system’s instability—the condition stated in equation 5 is violated—

which is a typical outcome when dealing with highly persistent time series. With quarterly

inflation data, however, we do not face with this problem, and this is the reason why we use

this inflation variable.

As mentioned before, our key hypothesis is that the predictive ability of VAR models im-

proves in high inflation environments where, as a result of the activation of indexation mecha-

nisms and revision of inflation expectations, the relationship among the consumer price index

components becomes more important. For assessing this hypothesis empirically, we use two

samples. The first one, which we call sample I, ends in February 2006, and the second one,

which we call sample II, ends in August 2007. We choose intentionally these samples for work-

ing with a period of stable inflation rates (sample I) and a period of high and volatile inflation

rates (sample II).

To warrant the choice of these samples, and motivate at the same time our paper we propose

the natural logarithm of the determinant of the covariance matrix of the 4 price index inflation’s

components as a measure of their whole variation. To see how this measure has changed over

time, we compute rolling estimates of 24 monthly observations since February 2004 to August

2008.9 This measure is displayed in figure 1. We see that this measure starts to growth rapidly

since the middle of 2007.

From this figure, however, we cannot know if this recent increase in our measure of whole vari-

ation is due mainly to the specific contribution of variance or covariance components. Certainly,

our interest rests on the specific contribution of covariances. For this purpose, we decompose the

variance of the sum of the 4 price index inflation’s components into the variance and covariance

components. The product of the decomposition are obviously rough measures because of the

following reasons. First, as we estimate the variance of the sum of the 4 inflations we assume

that the weight is the same for all the components. Second, even if we use the proper weights,

the calculation of the aggregate inflation is not based on the application of weights on rates

9For instance, in figure 1 the rolling estimate reported for period t is estimated using the last 24 observations,
including the observation in t.
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but on price index levels. Third, as we sum the inflation rates we implicitly assume that the

logarithm approximation works well. But quarterly inflation data exhibit in general low values,

implying that this latter assumption should be uncritical.

The result of this exercise is shown in figure 2 suggesting the following. First, interestingly,

the behavior of both series is similar in the whole sample. Both series exhibit an u-shaped curve

with high values during the periods 2002-2003 and 2003-2004, at the beginning, and during

the period 2007-August 2008 at the end of the sample. Second, the period in which the series

of the left panel show negative values coincides with the low inflation period (annual inflation

rates below 2%, which is the inferior limit of the inflation target) registered between the middle

of 2003 and 2004. Third, chiefly, we notice that at the end of the sample both series share

an increasing tendency toward values never registered before (right panel), or similar to those

registered in the past (left panel).

As a conclusion, in recent times, both the variance and covariance components are important

to explain the increase on the whole variance of the aggregate inflation.

4 Estimation Results

We report the specification and estimation results for samples I and II in the set of tables 2-6

and 7-11, respectively.10 We remark the following key findings. First, as we argued above the

traditional information criteria do not necessarily suggest VAR representations that produce

white noise residuals. Nevertheless, focusing on the BIC statistic, which is the more parsimo-

nious criterion, we see that the suggested VAR order coincides with the lag order for which we

are able to not reject the null hypothesis of zero serial autocorrelation in 3 cases of 5 for each

sample.

Second, interestingly, a cross comparison among the set of tables 2-6 and 7-11 reveals that

the lag order needed to generate white noise estimated residuals increases when using the sample

II, which is the sample that incorporates the most recent information, characterized, in turn,

by more persistent inflation data.

Third, the p-values associated to the Lütkepohl (2007)’s test calculated by bootstrap show

that in general that test has low power against many alternative hypothesis11—recall the null

is a joint hypothesis—as the asymptotic p-value does not reject the null hypothesis while its

bootstrap counterpart rejects it.

10The selected (V)AR lag order in each table are remarked in bold numbers.
11Indeed, this finding is consistent with Monte Carlo experiments; see Lütkepohl (2007).
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5 Forecast Results: Forecast Performance Comparison

Before presenting the point and density ability tests and their results we describe briefly the

forecasting exercise parameters. We perform two exercises that correspond to each estimation

sample. The predictive window (P ), which is the out-of-sample period for making forecasts

comparisons, is 12 months of quarterly inflation data in both cases. For sample I the predictive

window covers the period March 2006-February 2007 while for sample II the predictive window

covers the period September 2007-August 2008. Moreover, for distinguishing forecasts results

by their horizon—short and long-term forecasts—we consider prediction horizons of 1, 3, and 6

months; that is, we construct 1, 3 and 6 step-ahead forecasts.

The estimation of the parameters are based, again in both exercises, on the rolling scheme—

thus, taking into account the uncertainty due to parameters’ estimation—and estimation win-

dows (R) of 60 months.

5.1 Point Forecasts

Today, it is well known that for assessing the relative predictive ability of competitive fore-

casts it is not sufficient to rely on traditional forecast performance indicators, such as the mean

squared error (MSE) or the mean absolute error (MAE). From the perspective of point fore-

casts, what really matters is if a competitive method or model is statistically more accurate in

average than the alternative in producing forecasts. Diebold and Mariano (1995) initiate the

literature on comparing predictive accuracy. This literature has evolved noticeably over the

years. Recently, Giacomini and White (2006) propose a conditional test of predictive ability

among forecasting methods—instead of forecasting models, thus, allowing for the comparison

among nested models. This test works in such a setup because it is constructed taking into

account the uncertainty due to the parameters’ estimation by proposing rolling or fixed schemes

for this purpose. The Giacomini and White (2006)’s unconditional test in a particular case of

their conditional test, by imposing the conditional information to be the trivial σ-algebra.

We apply this predictive ability test in the prediction horizons associated to samples I and

II, showing the results in tables 12 and 13, respectively. The following results arise. First, as

we said before, the forecasts comparison based on traditional forecast performance indicators

is poorly informative as it is silent with regard to the statistical relative predictability among

competitive models.12 This is more noticeable in table 12. Consider the results corresponding to

the item called housing. In horizons of 1 month the AR(2) produces more accurate forecasts, in

12The measure proposed by Peña and Sánchez (2007) for comparing VAR and AR point forecasts fits in this
class of indicators.
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average, than the VAR(4)—the benchmark model—as shown by the MSE statistic (in italics),

but in horizons of 3 and 6 months, the opposite results holds. Statistically speaking, however,

despite of the predictive horizons considered we find that VAR’s forecasts are at least as accu-

rate as than those constructed using the AR model, as revealed by the associated p-values. As

a conclusion, relying in traditional forecasts performance measures is naive.

Second, using the sample I we are not able to reject the null hypothesis at conventional

levels of significance in any predictive horizon and for any price index component; see table 12.

When we carry out the forecasting exercise using the sample II, however, we reject generally

at 5% or 10% of significance the null in horizons of 3 and 6 months. We find exceptions in the

items transportation, in which there is no evidence for rejecting the null in any case, and in the

item others, where we only find evidence in favor of VAR’s forecast superiority in horizons of 6

months.

5.2 Density Forecasts

This section discusses the comparison of predictive density of AR and VAR models. We

devote some space to discuss this test in detail because it is less common in the empirical

literature.

Corradi and Swanson (2005) and Corradi and Swanson (2006) introduce and discuss a test

of distributional accuracy for comparing multiple misspecified models. Their approach can be

interpreted as a distributional generalization of the mean square error.

Let’s suppose that F1

(·|X, θ∗1
)

is the predictive density obtained from the benchmark model.

Our goal is to compare this benchmark with others models (F2(·|X, θ∗2), . . . , Fm(·|X, θ∗m)) in

terms of their predictive densities accuracy. The latter comparison is always relative to the true

model, whose density forecast is denoted by F0

(·|X, θ0

)
.

It is direct to define the mean square error (MSE) associated to model i (i = 1, . . . , m)

calculated over a zone of interest. If U is our region of interest, then the MSE in terms of the

average over U is the following expression:

MSE = E

[
(Fi(u|X, θ∗i )− F0(u|X, θ0))

2

]

with u ∈ U .

If our interest is to compare, for example, model 1 and model 2, we have that model 1 is

more accurate than model 2 if:

∫

U

E

[
(F1(u|X, θ∗1)− F0(u|X, θ0))

2 − (F2(u|X, θ∗2)− F0(u|X, θ0))
2

]
φ(u)du < 0

9



where
∫

U
φ(u)du = 1 and φ(u) ≥ 0, for all u ∈ U .

As said before, the main goal is to compare the benchmark (model 1 in our case) with others

models in terms of density forecast accuracy. Then, by generalizing the latter expression, the

null and the alternative hypotheses are defined as:

H0 : max
k=2,...,m

∫

U

E

[
(F1(u|X, θ∗1)− F0(u|X, θ0))

2 − (Fk(u|X, θ∗k)− F0(u|X, θ0))
2

]
φ(u)du ≤ 0

H1 : max
k=2,...,m

∫

U

E

[
(F1(u|X, θ∗1)− F0(u|X, θ0))

2 − (Fk(u|X, θ∗k)− F0(u|X, θ0))
2

]
φ(u)du > 0

Basically, if we cannot reject H0 we have that, in terms of density forecast ability, model 1

is at least as accurate as than the others models. Moreover, however we do not know the true

model —and therefore, the true density F0(·|X, θ0))—we can disregard our knowledge about

F0(·|X, θ0) because of the following equality:

E

[
(F1(u|X, θ∗1)− F0(u|X, θ0))

2 − (F2(u|X, θ∗2)− F0(u|X, θ0))
2

]

= E

[
(1(yt+1 ≤ u)− F1(u|X, θ∗1))

2

]
−E

[
(1(yt+1 ≤ u)− Fk(u|X, θ∗k))

2

]

where 1(·) is the indicator function which is set equal to 1 if the argument is true and 0

otherwise. In this context, the statistic of interest is the following:

ZP = max
k=2,...,m

∫

U

ZP,u(1, k)φ(u)du ≤ 0

The statistic defined above can be constructed with rolling and recursive estimation schemes.

In addition, ZP,u(1, k) is defined as follows:

ZP,u(1, k) =
1√
P

T−1∑
t=R

[
(1(yt+1 ≤ u)− F1(u|X, θ̂∗1))

2

]
−E

[
(1(yt+1 ≤ u)− Fk(u|X, θ̂∗k))

2

]

where P is the prediction’s window. Unfortunately, this statistic follows an unknown dis-

tribution. Therefore, for inference purposes the latter statistic is compared with critical values

obtained by bootstrap techniques. Later, we discuss this procedure with more detail.

Other important issue is the choice of φ(u) and the set U over which the MSE counterpart

in the forecast density literature is calculated. Depending on the problem (or simply, for the

sake of robustness), the researcher can assume a particular distribution for u—i.e., normal,

10



uniform—choosing the set U accordingly.

Next, we discuss the approach we follow for generating density forecasts. We use a bootstrap-

based parametric method to generate artificial forecasts realizations relying in the parametric

structure of VAR or AR models according to the model of interest.13 The bootstrap algorithm

builds on the algorithm described in section 2.1. After passing step 4, when all the artificial

time series have been generated, we estimate (V)AR models for each pseudo-sample and store

the estimated parameters (ṽ, Ãi). As our models are autoregressive structures, we compute the

artificial forecasts by using the last p observations of the original data and the parameters esti-

mated using the artificial data,14 which is generated following the algorithm outlined in section

2.1.15

Once we have the artificial forecasts we use the Gaussian kernel function to estimate the

density associated to them. It is well known in the density estimation literature that the choice

of the kernel function is not as crucial as it is the choice of the bandwidth or smoothing pa-

rameter. We use the Silverman (1986)’s bandwidth parameter as this is proper when using the

Gaussian kernel.16

In the exercises we discuss below we let φ(u) to be the uniform, the normal and a normal-

based mixture distribution. We choose these distribution functions in order to investigate if

the relative density predictive ability of VAR and AR models varies with the local importance

given to the range of values over which the out-of-sample forecasts distribute. If φ(u) is the

uniform distribution, we assign the same probability of occurrence to all the values while if φ(u)

is normal distribution, we assign the major probability to the values locally distributed around

the mean. We generate a left-biased mixture distribution in order to investigate if that relative

predictive accuracy changes when weighting more high inflation values.

We show the associated results for sample I and II in tables 14 and 15, respectively. By com-

paring both tables, we see that in sample I, which is the sample that disregard the recent high

inflation period, the evidence is strong at not rejecting the null hypothesis for any distribution

assumed for φ(u). Table 15 reveals, however, interesting patterns, some of them consistent with

findings reported in the preceding section and despite of the high p-values that make difficult

13Manzan and Zerom (2008) discuss a recent bootstrap-based non-parametric method.
14This approach is similar to that one discussed in Alonso et al. (2003).
15Two notes at this respect. First, unlike Corradi and Swanson (2006) we do not face with the location bias

problem attributed to the use of the block bootstrap when using rolling estimation schemes because we use
a parametric-based bootstrap method that relies on the recursive simulation of the entire series. Second, in
each bootstrap replication, VAR and AR series are simulated separately in order to not introduce a bias in the
generation of the series.

16We use 500 and 100 bootstrap replications for the generation of the time series and the construction of the
estimated density forecasts, respectively.
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to not reject the null at conventional levels in all cases but one.

First, for the items food and others we see that the p-value decreases when increasing the

predictive horizon. Although in the items housing and transportation we do not observe that

monotonic relationship, the p-values corresponding to horizons of 3 months are noticeably lower

than those shown for horizons of 1 month. In this table, the only case in which we are able to

reject the null hypothesis at 10% of significance corresponds to the forecasts of housing price

inflation in horizons of 3 months and for the uniform distribution case.

Second, interestingly, we see that when using the normal distribution in the construction

of the statistic, we do not reject the null with more strength than when using the alternative

distribution function. That is, the evidence against the VAR’s forecasts superiority is weaker

when assuming the uniform distribution.

6 Conclusions

In this paper we have compared point and density forecasts generated by estimating VAR

and AR models using disaggregated Chilean inflation data. We have motivated this comparison

by our belief that in the recent high inflation context the use of the joint dynamics of the price

index inflation of the consumer basket’s components renders multivariate model’s forecasts more

profitable than the forecasts constructed based on univariate models.

These paper’s results confirm our belief only for point inflation forecasts and for some price

index components as revealed by the comparison of the relative predictive ability of our times

series models in two samples, one of them capturing the high inflation scenario.

We think that more conclusive results could be reached if using more data of the recent high

inflation period. In this sense, our results are promising because we were able to find gains in

producing forecasts based on multivariate models despite of working with the starting phase of

the recent upward trend in inflation rates.

Finally, the idea of using VAR models in high inflation scenarios fits in the recent literature

on non-linearities in the relative forecasts performance as was pointed out in the introduction.

This fact should prone policy makers to use forecasting models based on their specific abilities

and conditions that make them profitable in terms of forecast performance.
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Figure 1: Measure of whole variance

Rolling estimations of ln(det(Ω̂)) (scaled by a factor of 10−16)

Figure 2: Decomposition of total variance into individual variance and covariance

components

Rolling estimations of the sum of Rolling estimations of the sum of
individual variance components covariance components∑4

i=1 V (πi,t) 2
∑4

i=1

∑4
j 6=i Cov(πi,t, πj,t)
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Table 1: Annual end-of-year Inflation Rate by Price Index Components (%)

Group Name Number of Weight (%) Dec-03 Dec-04 Dec-05 Dec-06 Dec-07items

Food 58 27.25 -0.83 0.18 5.25 1.28 15.16
Housing 12 20.15 3.03 3.53 3.96 3.35 12.05
Housing Equipments 25 8.11 -2.40 -0.78 -0.51 -1.51 -0.10
Clothes 26 7.90 -4.56 -1.78 -0.16 -1.21 -0.84
Transporting 11 12.18 0.35 9.12 4.73 6.10 3.16
Health 9 9.39 4.81 1.03 2.51 1.30 1.94
Education 12 11.12 3.90 2.63 3.19 3.74 3.97
Others 3 3.90 2.05 -1.71 4.03 2.74 6.80

Aggregated Inflation - - 1.1 2.4 3.7 2.6 7.8

Source: INE and own elaboration.

Table 2: Vectorial White Noise Test: Food, Housing, Transportation and Others
Prices Inflation (Sample I)

VAR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1 BIC
78.36 141.37 213.32 282.20 527.18

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

2 FPE,AIC,HQN
37.89 96.69 161.23 223.53 429.98

(0.0016) (0.0052) (0.0016) (0.0007) (0.0028)
[0.0145] [0.0025] [0.0005] [0.0000] [0.0000]

3
- 76.10 128.82 174.57 366.22
- (0.0060) (0.0143) (0.0421) (0.1234)
- [0.0190] [0.0055] [0.0105] [0.0000]

4
- 58.40 99.28 144.54 324.02
- (0.0030) (0.0710) (0.1507) (0.4268)
- [0.1350] [0.2060] [0.1350] [0.0105]

5 LR
- 46.33 82.33 130.08 299.37
- (0.0001) (0.0612) (0.1165) (0.5642)
- [0.6065] [0.6980] [0.4135] [0.0695]

6
- - 78.29 122.02 291.14
- - (0.0037) (0.0377) (0.4372)
- - [0.8190] [0.6530] [0.1170]

The test requires that h > p, see Lütkepohl (2007). Numbers in the table correspond to test statistic
values. (·) denotes asymptotic p-value, [·] denotes p-value calculated by bootstrap. For this latter
computation we use 2000 bootstrap replications. AIC: Akaike criterion, BIC: Schwarz criterion, HQN:
Hannan-Quinn criterion, FPE: final prediction error, LR: likelihood ratio test (at 5% level).
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Table 3: Vectorial White Noise Test: Food Price Inflation (Sample I)

AR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1
15.44 16.78 21.09 27.00 35.83

(0.0004) (0.0049) (0.0069) (0.0046) (0.0429)
[0.0000] [0.0030] [0.0095] [0.0020] [0.0140]

2 BIC,HQN
6.08 7.94 11.08 14.23 21.23

(0.0137) (0.0938) (0.1351) (0.1627) (0.5065)
[0.0155] [0.0790] [0.0850] [0.0850] [0.2135]

3
- 8.21 11.47 15.20 22.99
- (0.0419) (0.0750) (0.0855) (0.3447)
- [0.0260] [0.0495] [0.0390] [0.1120]

4 LR,FPE,AIC
- 3.74 7.86 10.45 17.81
- (0.1542) (0.1639) (0.2346) (0.5997)
- [0.1370] [0.1100] [0.1310] [0.2590]

5
- 3.17 5.67 7.54 15.13
- (0.0748) (0.2250) (0.3746) (0.7143)
- [0.1365] [0.1945] [0.2660] [0.3570]

6
- - 5.06 6.91 15.77
- - (0.1672) (0.3294) (0.6087)
- - [0.1450] [0.2400] [0.2350]

See footnote in table 2.
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Table 4: Vectorial White Noise Test: Housing Price Inflation (Sample I)

AR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1
10.42 14.60 15.97 18.23 49.28

(0.0055) (0.0122) (0.0428) (0.0765) (0.0011)
[0.0020] [0.0085] [0.0275] [0.0430] [0.0020]

2 BIC
6.41 12.66 13.92 17.94 43.94

(0.0113) (0.0131) (0.0525) (0.0560) (0.0036)
[0.0125] [0.0085] [0.0330] [0.0215] [0.0005]

3
- 11.15 12.74 15.33 42.11
- (0.0110) (0.0473) (0.0822) (0.0041)
- [0.0075] [0.0250] [0.0385] [0.0000]

4
- 12.41 13.60 16.72 42.93
- (0.0020) (0.0184) (0.0331) (0.0021)
- [0.0000] [0.0070] [0.0095] [0.0005]

5
- 14.99 16.97 22.53 50.07
- (0.0001) (0.0020) (0.0021) (0.0001)
- [0.0000] [0.0010] [0.0005] [0.0000]

6 LR,FPE,AIC,HQN
- - 9.62 11.78 35.73
- - (0.0221) (0.0671) (0.0076)
- - [0.0085] [0.0305] [0.0005]

See footnote in table 2.

18



Table 5: Vectorial White Noise Test: Transportation Price Inflation (Sample I)

AR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1
28.54 35.44 38.35 44.57 67.80

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

2
3.42 13.77 16.54 19.06 32.01

(0.0644) (0.0081) (0.0206) (0.0396) (0.0772)
[0.0770] [0.0045] [0.0110] [0.0225] [0.0290]

3
- 8.91 11.41 12.36 24.62
- (0.0305) (0.0766) (0.1937) (0.2641)
- [0.0235] [0.0435] [0.1115] [0.0735]

4 LR,BIC,HQN
- 3.02 4.41 5.56 16.15
- (0.2214) (0.4926) (0.6959) (0.7072)
- [0.2505] [0.4340] [0.6265] [0.3830]

5 FPE,AIC
- 2.29 4.02 4.84 15.76
- (0.1303) (0.4031) (0.6789) (0.6735)
- [0.2540] [0.4195] [0.6060] [0.3510]

6
- - 2.56 3.27 13.50
- - (0.4647) (0.7739) (0.7613)
- - [0.5655] [0.7750] [0.4285]

See footnote in table 2.
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Table 6: Vectorial White Noise Test: Others Price Inflation (Sample I)

AR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1
20.76 25.62 35.65 46.66 62.94

(0.0000) (0.0001) (0.0000) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

2 BIC
4.37 8.91 18.60 25.26 31.32

(0.0366) (0.0633) (0.0095) (0.0049) (0.0897)
[0.0365] [0.0415] [0.0045] [0.0015] [0.0245]

3
- 7.39 15.18 22.18 28.26
- (0.0603) (0.0189) (0.0083) (0.1330)
- [0.0395] [0.0115] [0.0015] [0.0280]

4 LR,FPE,AIC,HQN
- 7.61 14.19 20.62 26.06
- (0.0223) (0.0145) (0.0082) (0.1637)
- [0.0150] [0.0060] [0.0010] [0.0235]

5
- 7.37 13.69 20.02 25.39
- (0.0066) (0.0084) (0.0055) (0.1480)
- [0.0050] [0.0060] [0.0000] [0.0215]

6
- - 13.25 22.23 30.65
- - (0.0041) (0.0011) (0.0316)
- - [0.0040] [0.0010] [0.0030]

See footnote in table 2.
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Table 7: Vectorial White Noise Test: Food, Housing, Transportation and Others
Prices Inflation (Sample II)

VAR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1 BIC
98.95 170.02 236.20 307.46 570.68

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

2 HQN
54.18 114.50 176.66 237.41 434.53

(0.0000) (0.0001) (0.0001) (0.0001) (0.0017)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

3
- 86.85 142.03 185.81 359.55
- (0.0005) (0.0016) (0.0108) (0.1805)
- [0.0010] [0.0015] [0.0055] [0.0030]

4
- 61.30 103.95 137.20 317.02
- (0.0014) (0.0373) (0.2733) (0.5365)
- [0.0970] [0.1655] [0.3975] [0.0850]

5 LR,FPE
- 49.54 90.85 123.44 296.04
- (0.0000) (0.0153) (0.2165) (0.6174)
- [0.3375] [0.3455] [0.6255] [0.2315]

6 AIC
- - 89.60 118.05 289.95
- - (0.0003) (0.0629) (0.4566)
- - [0.2865] [0.6735] [0.2290]

See footnote in table 2.
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Table 8: Vectorial White Noise Test: Food Price Inflation (Sample II)

AR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1
14.27 15.50 20.80 25.31 30.49

(0.0008) (0.0084) (0.0077) (0.0082) (0.1360)
[0.0030] [0.0170] [0.0130] [0.0155] [0.0920]

2 BIC
7.27 9.09 14.75 16.82 25.14

(0.0070) (0.0589) (0.0394) (0.0785) (0.2903)
[0.0135] [0.0600] [0.0295] [0.0475] [0.1225]

3
- 9.01 14.52 16.76 24.92
- (0.0291) (0.0244) (0.0525) (0.2508)
- [0.0305] [0.0150] [0.0265] [0.0975]

4 LR,FPE,AIC,HQN
- 4.13 9.93 12.18 22.54
- (0.1270) (0.0773) (0.1434) (0.3121)
- [0.2445] [0.1045] [0.1425] [0.1510]

5
- 3.60 9.07 10.98 21.37
- (0.0577) (0.0594) (0.1396) (0.3168)
- [0.1785] [0.0695] [0.1265] [0.1325]

6
- - 8.48 9.86 19.34
- - (0.0371) (0.1308) (0.3713)
- - [0.0475] [0.1080] [0.1360]

See footnote in table 2.
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Table 9: Vectorial White Noise Test: Housing Price Inflation (Sample II)

AR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1
23.08 26.26 28.53 32.74 56.19

(0.0000) (0.0001) (0.0004) (0.0006) (0.0001)
[0.0000] [0.0005] [0.0010] [0.0005] [0.0005]

2
8.95 14.81 17.12 22.90 48.41

(0.0028) (0.0051) (0.0166) (0.0111) (0.0010)
[0.0025] [0.0050] [0.0120] [0.0090] [0.0010]

3
- 13.01 16.25 20.21 43.95
- (0.0046) (0.0125) (0.0166) (0.0024)
- [0.0060] [0.0055] [0.0095] [0.0005]

4
- 13.76 15.31 19.93 43.12
- (0.0010) (0.0091) (0.0106) (0.0020)
- [0.0000] [0.0060] [0.0050] [0.0005]

5
- 17.83 20.38 27.86 55.34
- (0.0000) (0.0004) (0.0002) (0.0000)
- [0.0000] [0.0000] [0.0000] [0.0000]

6 LR,FPE,AIC,BIC,HQN
- - 9.02 11.09 29.93
- - (0.0290) (0.0857) (0.0381)
- - [0.0310] [0.0525] [0.0085]

See footnote in table 2.
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Table 10: Vectorial White Noise Test: Transportation Price Inflation (Sample II)

AR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1
30.74 43.47 49.61 58.03 99.76

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

2
4.50 19.31 25.92 28.73 50.32

(0.0339) (0.0007) (0.0005) (0.0014) (0.0005)
[0.0350] [0.0005] [0.0020] [0.0020] [0.0010]

3
- 15.96 23.40 24.26 42.79
- (0.0012) (0.0007) (0.0039) (0.0033)
- [0.0010] [0.0010] [0.0025] [0.0015]

4 LR,BIC,HQN
- 5.49 8.95 9.88 23.87
- (0.0643) (0.1109) (0.2736) (0.2480)
- [0.0710] [0.0750] [0.2050] [0.0895]

5
- 5.70 9.49 10.27 24.44
- (0.0170) (0.0499) (0.1737) (0.1799)
- [0.0225] [0.0370] [0.1165] [0.0390]

6 FPE,AIC
- - 5.12 5.66 17.85
- - (0.1635) (0.4627) (0.4654)
- - [0.1675] [0.4195] [0.2005]

See footnote in table 2.
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Table 11: Vectorial White Noise Test: Others Price Inflation (Sample II)

AR Information Maximum autocorrelation order
(
h
)

order
(
p
)

criteria 3 6 9 12 24

1
21.22 24.68 34.17 45.95 62.79

(0.0000) (0.0002) (0.0000) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0005]

2
9.42 12.23 20.25 28.32 33.47

(0.0021) (0.0157) (0.0051) (0.0016) (0.0555)
[0.0015] [0.0080] [0.0030] [0.0000] [0.0200]

3
- 7.92 13.15 20.70 25.40
- (0.0476) (0.0408) (0.0140) (0.2302)
- [0.0330] [0.0190] [0.0035] [0.0865]

4 LR,FPE,AIC,BIC,HQN
- 7.34 12.66 19.42 23.42
- (0.0255) (0.0267) (0.0128) (0.2686)
- [0.0160] [0.0165] [0.0075] [0.0855]

5
- 6.41 12.36 18.94 23.25
- (0.0113) (0.0149) (0.0084) (0.2263)
- [0.0150] [0.0060] [0.0045] [0.0545]

6
- - 13.45 22.67 29.20
- - (0.0038) (0.0009) (0.0460)
- - [0.0025] [0.0000] [0.0075]

See footnote in table 2.

Table 12: Point Forecast Performance Results: Sample I

Price Index Benchmark Competitive Prediction Horizon

Component Model Model 1 3 6

Food AR(2) VAR(4) 0.96 1.00 0.94
0.65 0.49 0.65

Housing AR(2) VAR(4) 0.84 0.11 0.29
0.80 1.16 1.08

Transportation AR(3) VAR(4) 0.20 0.76 0.92
1.18 0.92 0.80

Others AR(2) VAR(4) 0.61 0.71 0.55
0.87 0.86 0.94

Reported number in the first row for each price index component are p-values.
Numbers in italics (in the second row) are the ratio of the MSE of the AR
model to the MSE of the VAR model.
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Table 13: Point Forecast Performance Results: Sample II

Price Index Benchmark Competitive Prediction Horizon

Component Model Model 1 3 6

Food AR(2) VAR(4) 0.31 0.00 0.06
1.22 1.65 1.42

Housing AR(6) VAR(4) 0.35 0.00 0.02
1.14 3.19 1.77

Transportation AR(4) VAR(4) 0.79 0.79 0.48
0.68 0.78 1.02

Others AR(3) VAR(4) 0.84 0.66 0.01
0.74 0.90 1.48

See footnote in table 12.

Table 14: Density Forecast Performance Results: Sample I

Price Index Benchmark Competitive Prediction Horizon

Component Model Model 1 3 6

φ(u) is the uniform distribution

Food AR(2) VAR(4) 0.98 0.74 0.86
Housing AR(2) VAR(4) 0.97 1.00 0.58
Transportation AR(3) VAR(4) 0.91 1.00 0.75
Others AR(2) VAR(4) 0.98 0.71 0.99

φ(u) is the normal distribution

Food AR(2) VAR(4) 0.97 0.89 0.78
Housing AR(2) VAR(4) 0.99 1.00 0.69
Transportation AR(3) VAR(4) 0.97 1.00 0.68
Others AR(2) VAR(4) 0.97 0.38 0.86

φ(u) is the normal-based mixture distribution

Food AR(2) VAR(4) 0.97 0.74 0.65
Housing AR(2) VAR(4) 0.96 1.00 0.67
Transportation AR(3) VAR(4) 0.90 1.00 0.71
Others AR(2) VAR(4) 0.93 0.48 0.84

Reported numbers are p-values.
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Table 15: Density Forecast Performance Results: Sample II

Price Index Benchmark Competitive Prediction Horizon

Component Model Model 1 3 6

φ(u) is the uniform distribution

Food AR(2) VAR(4) 0.99 0.74 0.10
Housing AR(6) VAR(4) 0.87 0.07 0.19
Transportation AR(4) VAR(4) 0.97 0.61 1.00
Others AR(3) VAR(4) 0.86 0.29 0.17

φ(u) is the normal distribution

Food AR(2) VAR(4) 1.00 0.81 0.39
Housing AR(6) VAR(4) 0.89 0.14 0.49
Transportation AR(4) VAR(4) 1.00 0.66 1.00
Others AR(3) VAR(4) 0.88 0.27 0.21

φ(u) is the normal-based mixture distribution

Food AR(2) VAR(4) 0.99 0.94 0.71
Housing AR(6) VAR(4) 0.97 0.50 0.95
Transportation AR(4) VAR(4) 0.97 0.54 1.00
Others AR(3) VAR(4) 0.95 0.58 0.48

See footnote in table 14.
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