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ROBUST LEARNING STABILITY WITH OPERATIONAL 

MONETARY POLICY RULES1 
 

 
 
 
 
 
Resumen  
 
En este trabajo consideramos estabilidad robusta bajo aprendizaje de reglas de tasa de 
interés alternativas. Definimos “estabilidad robusta” como la estabilidad del equilibrio de 
expectativas racionales, bajo aprendizaje lineal-cuadrático descontado (ganancia 
constante), para un rango de parámetros de ganancia. Encontramos que muchas reglas de 
tasa de interés no son robustas, en este sentido, cuando se emplean formas operacionales de 
reglas de política. Las reglas se consideran operacionales si no dependen de los valores 
contemporáneos de las variables endógenas agregadas. Consideramos una variedad de 
reglas de tasa de interés, incluyendo reglas instrumentales, funciones de reacción óptima 
bajo discreción o compromiso, y reglas que aproximan la política óptima bajo compromiso. 
Para algunas de las reglas que buscan alcanzar la política óptima, permitimos un motivo de 
estabilización de las tasas de interés en el objetivo de política. Las reglas basadas en 
expectativas que proponemos en Evans y Honkapohja (2003, 2006) llevan a estabilidad 
robusta bajo aprendizaje. En contraste, muchas alternativas propuestas se hacen inestables 
bajo aprendizaje incluso para valores pequeños del parámetro de ganancia. 
 
 
Abstract  
 
We consider robust stability under learning of alternative interest-rate rules. By “robust 
stability” we mean stability of the rational expectations equilibrium, under discounted 
(constant gain) least-squares learning, for a range of gain parameters. We find that many 
interest-rate rules are not robust, in this sense, when operational forms of policy rules are 
employed. Rules are considered operational if they do not depend on contemporaneous 
values of endogenous aggregate variables. We consider a variety of interest-rate rules, 
including instrument rules, optimal reaction functions under discretion or commitment, and 
rules that approximate optimal policy under commitment. For some of the rules that aim to 
achieve optimal policy, we allow for an interest-rate stabilization motive in the policy 
objective. The expectations-based rules proposed in Evans and Honkapohja (2003, 2006) 
deliver robust learning stability. In contrast, many proposed alternatives become unstable 
under learning even at small values of the gain parameter. 
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1. INTRODUCTION 
 
The recent literature examines the conduct of monetary policy in terms of interest rate rules 

from the viewpoint of imperfect knowledge and learning by economic agents. The stability of the 
rational expectations equilibrium is taken as a key desideratum for good monetary policy design.1 
Most of this literature postulates that agents use least squares or related learning algorithms to 
carry out real-time estimations of the parameters of their forecast functions as new data become 
available. Moreover, it is usually assumed that the learning algorithms have a decreasing gain; in 
the most common case, the gain is the inverse of the sample size so that all data points have equal 
weights. Use of such a decreasing-gain algorithm makes it possible for learning to converge exactly 
to the rational expectations equilibrium in environments without structural change. Convergence 
requires that the equilibrium satisfies a stability condition, known as E-stability. 

Decreasing-gain algorithms do not perform well, however, when occasional unobservable 
structural changes take place. So-called constant-gain algorithms are a natural alternative for 
estimating parameters in a way that is alert to possible structural changes. If agents use a constant-
gain algorithm, then parameter estimates of the forecast functions do not fully converge to the 
rational expectations equilibrium values. Instead, they remain random, even asymptotically. For 
small values of the gain parameter, the estimates mostly remain in a small neighborhood of the 
rational expectations equilibrium, provided that the equilibrium is E-stable.2 Constant-gain 
algorithms have recently been employed in empirical work, such as Milani (2005, 2007a), 
Orphanides and Williams (2005a, 2005b), and Branch and Evans (2006). 

The connection between convergence of constant-gain learning and E-stability noted above is a 
limiting result for sufficiently small gain parameters. For finite values of the gain parameter, the 
stability condition for constant-gain learning is more stringent than E-stability. In this paper we 
examine the stability implications of various interest rate rules when agents use constant-gain 
learning rules with plausible positive values of the gain. We say that an interest rate rule yields 
robust learning stability of the economy if stability under constant-gain learning obtains for all 
values of the gain parameter in the range suggested by the empirical literature.3 We focus on 
interest rate rules that are operational in the sense discussed by McCallum (1999), who holds that 
monetary policy cannot be conditioned on current values of endogenous aggregate variables. The 
rules we consider therefore assume that policy responds to expectations of contemporaneous (or 
future) values of inflation and output, but not on their actual values in the current period. 

We consider robust learning stability for a variety of operational interest rate rules that have 
been suggested in the recent literature. These include Taylor rules and optimal reaction functions 
under discretion and commitment when central bank policy aims for interest rate stabilization in 
addition to the usual motives for flexible inflation targeting. The reaction function may be 
expectations-based in the spirit of Evans and Honkapohja (2003b, 2006) or of the Taylor-type form 
suggested by Duffy and Xiao (2007). We also analyze two interest rate rules that approximate 
optimal policy under commitment, as suggested by Svensson and Woodford (2005) and McCallum 
and Nelson (2004). Our results show that expectations-based rules deliver robust learning stability, 
whereas the proposed alternatives often become unstable under learning even at quite small values 
of the constant-gain parameter. 

 
 

                                                      
1. For surveys, see Evans and Honkapohja (2003a), Bullard (2006), and Evans and Honkapohja (in this volume). 
2. See Evans and Honkapohja (2001, chaps. 3 and 7) for the basic theoretical results on constant-gain learning. See also 

Evans, Honkapohja, and Williams (forthcoming) for references on recent papers on constant-gain learning. The possibility of 
divergence resulting from constant gain learning was noted in Slobodyan, Bogomolov, and Kolyuzhnov (2006). 

3. Numerous concepts of robustness are relevant to policymaking, reflecting, for example, uncertainty about the structure 
of the economy and a desire by both private agents and policymakers to guard against the risk of large losses. We do not mean 
to downplay the importance of such factors, but we abstract from them here to focus on the importance of setting policy in 
such a way as to ensure stability in the face of constant-gain learning. 
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2. CONSTANT-GAIN STEADY-STATE LEARNING  
 
In this paper we employ multivariate linear models. In this simplest case, in which the shocks 

are white noise and there are no lagged endogenous variables, the rational expectations equilibrium 
takes the form of a stochastic steady state. We now briefly review the basics of steady-state learning 
in linear models and then apply the results to Taylor rules.4  

 
2.1 Theoretical Results  

 
The steady state can be computed by postulating that agents’ beliefs, called the perceived law of 

motion (PLM), take the form  
 
yt = a + et 
 
for a vector yt, where et ~ i.i.d.(0, σ2). Using the model, one then computes the actual law of motion 
(ALM), which describes the temporary equilibrium in the current period, given the PLM. We write 
the ALM using a linear operator T as 
 
yt = α + Ta + et, 
 
where the matrix T depends on the structural parameters of the model. Examples of the T map are 
provided below. A rational expectations equilibrium is a fixed point, a  ,of the T map, that is, 
 

 a Ta= α + . 
 
We assume that I – T is nonsingular, so that there is a unique solution −= − 1 ( )a I T α . For 
convenience, and without loss of generality, we now assume that the model has been written in 
deviation-from-the-mean form, so that α = 0. Thus the rational expectations equilibrium corresponds 
to  a = 0  in our analysis. Under learning, agents attempt to learn the value of  a , and hence in 
deviation-from-the-mean form we are examining whether agents’ estimates of the mean converge to 
a = 0. 

Steady-state learning under decreasing gain is given by the recursive algorithm, 
 
at = at-1 + γt(yt – at-1),  (1) 
 
where the gain γt is a sequence of small decreasing numbers, such as γt = 1/t. Assuming that yt = Tat-1 
+ et, that is, that expectations are formed using the estimate at-1 based on data through time t – 1, 
the convergence condition of algorithm (1) is given by the conditions for local asymptotic stability of 
 a  under an associated differential equation:  
 

  

da
dτ

= Ta − a , 

 
which is known as the E-stability differential equation. Here τ denotes notional or virtual time. The 
E-stability condition holds if and only if all eigenvalues of the matrix T have real parts less than 
one.5 

Under constant-gain learning, the estimate at of a is updated according to 
 

                                                      
4. See Evans and Honkapohja (2001, chaps. 8 and 10) for a detailed discussion of adaptive learning in linear models. 
5. Throughout, we rule out boundary cases in which the real part of some eigenvalue of the T map is one. 
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at = at-1 + γ(yt − at-1),   (2) 
 
where 0 < γ ≤ 1 is the constant-gain parameter. The only difference between equation (2) and 
equation (1) is the constancy of the gain sequence. We now have  
 
at = at-1 + γ(Tat-1 + et – at-1),  
 
or 
 
at = [γT + (1 – γ)I]at-1 + γet. 
 
This converges to a stationary stochastic process around the rational expectations equilibrium value 
(in deviation-from-the-mean form) provided all roots of the matrix γT + (1 – γ)I lie inside the unit 
circle.  

Stability under constant-gain learning depends on the value of γ, and we have the following 
result. 

Proposition 1. For a given 0 < γ ≤ 1, the stability condition is that the eigenvalues of T lie inside a 
circle of radius 1/γ and origin at (1 – 1/γ, 0). This condition is therefore stricter for larger values of γ. 

Proof. The stability condition is that the roots of γ[T + γ–1(1 – γ)I] lie inside the unit circle centered 
at the origin. Equivalently, the roots of [T + γ–1(1 – γ)I] must lie inside a circle of radius 1/γ centered 
at the origin. Since the roots of T + γ–1(1 – γ)I are the same as the roots of T plus γ–1(1 – γ), this is 
equivalent to the condition given. 

The right edge of the circle is at (1, 0) in the complex plane, and as γ → 0 we obtain the standard 
(decreasing-gain) E-stability condition that the real parts of all roots of T are less than one. Looking 
at the other extreme, γ = 1, gives the following corollary of proposition 1: 

Proposition 2. We have stability for all 0 < γ ≤ 1 if and only if all eigenvalues of T lie inside the 
unit circle.  

Stability for all constant gains, 0 < γ ≤ 1, is equivalent to a condition known as iterative E-
stability, sometimes called IE-stability. Iterative E-stability is said to hold when Tj → 0 as j → ∞.6 

When the stability condition holds, the parameter at converges to a stationary stochastic process 
that we can fully describe. This, in turn, induces a stationary stochastic process for yt = Tat–1 + et. 

 
2.2 Application to Taylor Rules 

 
Consider the standard forward-looking New-Keynesian model, 

 

  xt
= −ϕ(i

t
− π

t+1
e ) + x

t+1
e + g

t
; (3) 

 

  πt
= λx

t
+ βπ

t+1
e + u

t
.  (4) 

 
For convenience we assume that (gt, ut)′ are independent and identically distributed (i.i.d.), so that 
the preceding technical results can be applied. Later we consider cases with first-order 
autoregressive, or AR(1), shocks. We use x

t+1
e  and π

t+1
e  to denote expectations of πt+1 and xt+1. Below 

we specify the information sets available to agents when they are forming expectations, and 
throughout the paper we explore the implications of alternative assumptions.  

Bullard and Mitra (2002) consider Taylor rules of various forms, including the contemporaneous 
data rule,  
 

                                                      
6. In many models, iterative E-stability is known to be a necessary condition for the stability of eductive learning; see, for 

example, Evans and Guesnerie (1993).  
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it = χπ πt + χx xt,, (5) 
 
and the “contemporaneous expectations” rule, 
 

  it
= χ

π
 π

t
e + χ

x
x

t
e .  (6) 

 
In this section, our analysis of the contemporaneous expectations rule follows Bullard and Mitra 
(2002) in assuming that all expectations are based on information at time t – 1, that is,   πt

e = Ê
t−1
π

t
, 

  xt
e = Ê

t−1
x

t
,   πt+1

e = Ê
t−1
π

t+1
, and   xt+1

e = Ê
t−1

x
t+1

. Since we have i.i.d. shocks, forecasts are based purely 
on the estimated intercept. 

Bullard and Mitra (2002) show that the determinacy and E-stability conditions are the same and 
are identical for both interest rate rules. They are given by 
 
λ(χπ – 1) + (1 – β)χx > 0.  (7) 
 
Bullard and Mitra consider this finding important because of McCallum’s (1999) argument that 
interest rate rules cannot plausibly be conditioned on contemporaneous observations of endogenous 
aggregate variables like inflation and output, whereas they could plausibly be conditioned on central 
bank forecasts or “nowcasts”   Ê t−1

π
t
,   Ê t−1

x
t
. 

We reconsider this issue from the vantage point of constant-gain learning. For the interest rate 
rule (6), the model takes the form 
 

   y t
= M

0
y

t
e + M

1
y

t+1
e + P v

t
,  (8) 

 
where yt′ = (xt, πt) andvt′ = (gt, ut) and where 
 

   
M

0
=

−χ
x
ϕ −χ

π
ϕ

−χ
x
ϕλ −χ

π
ϕλ

⎛

⎝
⎜

⎞

⎠
⎟  and 

  
M

1
=

1 ϕ
λ β + ϕλ

⎛

⎝⎜
⎞

⎠⎟
,  (9) 

 
and  
 

  
P =

1 0
λ 1

⎛

⎝⎜
⎞

⎠⎟
. 

 
Since our shocks are i.i.d., the PLM is simply yt = a + et, and the corresponding ALM is yt = (M0 + 
M1)a + et, where et = Pvt. The usual E-stability condition is that the eigenvalues of M0 + M1 have real 
parts less than one, which leads to condition (7). According to proposition 2, for convergence of 
constant-gain learning for all gains 0 ≤ γ ≤ 1, both eigenvalues of M0 + M1 must lie inside the unit 
circle. 

We investigate the stability of constant-gain learning numerically, using the Woodford 
calibration of ϕ−1 = 0.157, λ = 0.024, β = 0.99. Setting χπ = 1.5, eigenvalues with real parts less than –
1 arise for χx > 0.31 and eigenvalues with real parts less than –9 arise for χx > 1.57. This implies that 
when χπ = 1.5 and χx > 1.57, the equilibrium is unstable under learning for constant gains γ ≥ 0.10. 
This is perhaps not a significant practical concern since Taylor’s recommended parameters are χπ = 
1.5 and (based on the quarterly calibration of Woodford) χx = (0.5)/4 = 0.125. However, it does show a 
previously unrecognized danger that arises under constant-gain learning if the Taylor rule has too 
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strong a response to   Ê t−1
x

t
, and this finding foreshadows instability problems that arise in more 

sophisticated rules discussed below. 
Finally, the potential for instability under constant-gain learning arises specifically because of 

the need to use forecasts    Ê t−1
y

t
. For the current-data Taylor rule (5), it can be shown that condition 

(7) guarantees stability under learning for all constant gains 0 < γ ≤ 1.7 
 
 

3. OPTIMAL DISCRETIONARY MONETARY POLICY 
 
We now consider optimal policy under constant-gain learning, starting with optimal 

discretionary policy. We focus on homogeneous learning by private agents and the policymaker. We 
initially restrict attention to the case of i.i.d. exogenous shocks, so that steady-state learning is 
appropriate. We also analyze the more general case, in which the observable shocks follow AR(1) 
processes. 

Consider the loss function 
 

  
E

0
[(π

t
− π* )2 + α

x
(x

t
− x * )2 + α

i
(i

t
− i * )2 ]

t=0

∞

∑ ,  (10) 

 
where π*, x*, and i* represent target values. For simplicity, we set π* = x* = 0. The weights αx, αi > 0 
represent relative weights given by policymakers to squared deviations of xt and it from their targets, 
compared with squared deviations of πt from its target. 

The first-order condition for discretionary optimal policy is 
 
λπt + αxxt − αiϕ−1(it − i*) = 0. (11) 
 
We first consider a Taylor-type rule proposed by Duffy and Xiao (2007) and then discuss the 
expectations-based rule recommended by Evans and Honkapohja (2003b). 

 
3.1 Taylor-Type Optimal Rules 

 
Duffy and Xiao (2007) propose using the equation (11) directly to obtain a Taylor-type rule that 

implements optimal discretionary policy. Solving the first-order condition for it yields the rule 
 

  
i

t
=
ϕλ
α

i

π
t
+
ϕα

x

α
i

x
t
,  

 
where at this point we drop the term i* since for brevity we are suppressing all intercepts. As Duffy 
and Xiao (2007) discuss, this is formally a contemporaneous-data Taylor rule. They show that for 
calibrated values of structural parameters and policy weights, this leads to a determinate and E-
stable equilibrium. 

The central bank’s observing contemporaneous output and inflation is problematic. We therefore 
examine the rule 
 

                                                      
7. The model now takes the form    y t

= M
1
Ê

t
y

t+1
+ P v

t
, and the required condition is the same as the determinacy 

condition. 
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i

t
=
ϕλ
α

i

Ê
t−1
π

t
+
ϕα

x

α
i

Ê
t−1

x
t
,  (12) 

 
where the information set for the nowcasts π

t
e = Ê

t−1
π

t
, x

t
e = Ê

t−1
x

t
 is past endogenous variables and 

exogenous variables.8 This again leads to a model of the form (8) with coefficients (9), where χπ = 
ϕλ/αi and χx = ϕαx/αi. We assume that private agents and central banks estimate the same PLM. 
Since we are here assuming steady-state learning, we also have tttt EE ππ 111

ˆˆ
−+− =  and 

tttt xExE 111
ˆˆ
−+− = .  

For a sufficiently large αi, the model under this Taylor-type rule will suffer from indeterminacy. 
This follows from the Bullard-Mitra result that the determinacy condition is equation (7), from which 
the critical value of αi can be deduced. The condition for determinacy is  
 

  αi
< α

i
≡ ϕλ + (1 − β)λ−1ϕα

x
.  (13) 

 
If the central bank’s desire to stabilize the interest rate is too strong—that is, if condition (13) is not 
met—then the central bank fails to adjust the interest rate sufficiently to ensure that the 
generalized Taylor principle (7) is satisfied. To assess this point numerically, we use the calibrated 
parameter values of Woodford (2003, table 6.1), with αx = 0.048, ϕ = 1/0.157, λ = 0.024, and β = 0.99, 
which yields approximately  αi

 = 0.28. Woodford’s calibrated values of αi are 0.077 or 0.233 (the 
latter value is from Woodford, 1999). Thus the condition for determinacy does hold for these 
calibrations.  

We next consider stability under learning. For the PLM yt = a + et, we again get the ALM yt = (M0 
+ M1)a + et and  
 

   
T ≡ M

0
+ M

1
=

1 − α
i
−1α

x
ϕ2 ϕ − α

i
−1λϕ2

λ − α
i
−1λα

x
ϕ2 β + λϕ − α

i
−1λ2ϕ2

⎛

⎝
⎜

⎞

⎠
⎟ .  

 
It can be shown that 
 

   det(T ) = β(1 − α
i
−1α

x
ϕ2 ) . 

 
Stability under all values 0 < γ ≤ 1 requires that 
 

  
β(1 − α

i
−1α

x
ϕ2 ) <1 , 

 
and it is clear that for given β, αx, ϕ this condition will not be satisfied for a sufficiently small αi > 0. 
This leads to our next proposition:  

Proposition 3. Let   α̂i
= β(1 + β)−1α

x
ϕ2 . For 0 < α

i
< α̂

i
, there exists 0 < γ̂(β,ϕ,α

i
,α

x
) <1  such 

that the optimal discretionary Taylor-type rule (12) renders the rational expectations equilibrium 
unstable under learning for  γ̂ < γ ≤1 . 

Thus, in addition to the indeterminacy problem for large values of αi, the Taylor-type optimal 
rule suffers from a more serious problem of instability under constant-gain learning for small values 

                                                      
8. An alternative would be to assume that agents and the policymaker see the contemporaneous value of the exogenous 

shocks but not the contemporaneous values of xt and πt. This would not alter our results. 
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of αi. The source of this difficulty is the interaction of strong policy responses seen in equation (12) 
and a large gain parameter. This combination leads to cyclical overshooting of inflation and the 
output gap. This is particularly evident as αi tends to zero, since in this case, a positive change in 
inflation expectations   Ê t−1

π
t
 leads to a large increase in it, which in turn leads to large negative 

changes in xt and πt via equations (3) and (4). The severity of this problem depends on the value of γ̂  
in proposition 3. Ideally, stability would hold for all 0 < γ ≤ 1, but the problem might not be a major 
concern if  γ̂  is high. 

We investigate the magnitude of  γ̂  numerically by computing the eigenvalues of γT + (1 – γ)I. As 
an example, for the Woodford calibration β = 0.99, ϕ = 1/0.157, and λ = 0.024, we find that with αx = 
0.048 and αi = 0.077, the critical value γ̂ ≈ 0.04 . Since estimates in the macroeconomic literature 
suggest gains in the range 0.02 to 0.06, this indicates that optimal Taylor-type rules may not be 
stable under learning.9 The source of the problem is that with low αi the implied weights on Ê

t−1
π

t
 

and especially   Ê t−1
x

t
 are very high. Under constant-gain learning, this can lead to instability unless 

the gain parameter is very low. As we demonstrate later, this problem can be avoided by using a 
suitable expectations-based optimal rule. 

We next consider the case in which the exogenous shocks are AR(1) processes. The literature uses 
various information assumptions in this setting. Perhaps the most common assumption is that 
agents see current and lagged exogenous variables and lagged, but not current, endogenous 
variables. Expectations under this assumption are denoted Ê

t
π

t
,  Ê

t
x

t
,    Ê t

π
t+1

,    Ê t
x

t+1
. An 

alternative would be to replace these with Ê
t−1
π

t
,  Ê

t−1
x

t
,  Ê

t−1
π

t+1
,  Ê

t−1
x

t+1
, indicating that agents 

only see lagged information.10 Whether agents see current or only lagged exogenous shocks is not 
particularly crucial and does not affect our main results. We therefore follow the most common 
assumption that expectations are specified as Ê

t
π

t
,  Ê

t
x

t
,  Ê

t
π

t+1
 and Ê

t
x

t+1
.11 In contrast, whether 

agents and policymakers are able to see current endogenous variables is an important issue for 
stability under learning, as we have already seen. This is why we use the term operationality to 
indicate an interest rate rule that does not depend on current endogenous variables. 

We now assume that the exogenous shocks gt and ut follow AR(1) processes, that is,  
 

−= μ + �1t t tg g g  
 
and 
 

−= ρ + �1t t tu u u , 
 
where 0 < |μ|, |ρ|< 1, and σ� ∼ 2i.i.d.(0, )t gg , σ� ∼ 2i.i.d.(0, )t uu  are independent white noise 
processes. We write this in vector form as 
 

                                                      
9. Milani (2007b) considers a setting in which agents switch between decreasing-gain and constant-gain estimators, 

depending on recent average mean-square errors. The estimated gains are even higher in the constant-gain regime, at around 
0.07 to 0.08. 

10. A third alternative, which is occasionally used in the literature, allows agents to see the contemporaneous values of 
endogenous variables. However, this assumption runs against the requirement of operationality that we want to emphasize 
here. 

11. The standard assumption under rational expectations is that agents have contemporaneous information. Our 
information assumption takes account of the operationality critique, but nonetheless allows for the possibility of convergence 
under learning to the rational expectations equilibrium. 
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= + �t t tv Fv v . 
 
Under the current assumptions, the PLM of the agents is 
 
yt = a + cvt,,  
 
and the forecasts are now    Ê t

y
t
= a + cv

t
 and Ê

t
y

t+1
= a + cFv

t
. Using the general model (8), the 

ALM is 
 
yt = (M0 + M1)a + (M0c + M1cF + P)vt,  
 
and the E-stability conditions are that all eigenvalues of the matrices M0 + M1 and I ⊗ M0 + F′ ⊗ M1 
have real parts less than one. Here ⊗ denotes the Kronecker product of two matrices.12 

To examine stability under constant-gain learning, we simulate the model under constant-gain 
recursive least squares (RLS) estimation of the PLM parameters a and c.13 Under constant-gain least 
squares, agents discount old data geometrically at the rate 1 – γ. Let at, ct denote the estimates based 
on data through t – 1.14 Given these estimates, expectations are formed as y

t
e = Ê

t
y

t
= a

t
+ c

t
v

t
 and 

   y t+1
e = Ê

t
y

t+1
= a

t
+ c

t
Fv

t
, and the temporary equilibrium is then given by equation (8) with these 

expectations.  
We use the previous values for the structural parameters and also set μ = ρ = 0.8. Simulations of 

the system indicate instability under constant-gain RLS learning for gain parameters at or in excess 
of 0.024. Thus, with regressors that include exogenous AR(1) observables, instability arises at even 
lower gain values than in the case of steady-state learning. Figures 1 and 2 illustrate the evolution of 
parameters over time under constant-gain RLS learning with the Taylor-type rule (12) in stable and 
unstable cases.  

 
3.2 Expectations-Based Optimal Rules 

 
Assume now that at time t the exogenous shocks gt, ut and private-sector expectations Ê

t
π

t+1
,  

  Ê t
x

t+1
 are observed by the central bank. The expectations-based rule is constructed so that it exactly 

implements equation (11), the first-order condition under discretion, even outside a rational 
expectations equilibrium for given expectations, as suggested by Evans and Honkapohja (2003b). To 
obtain the rule, we combine equations (3), (4), and (11) and solve for it in terms of the exogenous 
shocks and the expectations. The resulting  expectations-based rule is 

 

  
i

t
=

(α
x
+ λ2 )ϕ

α
i
+ (α

x
+ λ2 )ϕ2

Ê
t
x

t+1
+
βλϕ + (α

x
+ λ2 )ϕ2

α
i
+ (α

x
+ λ2 )ϕ2

Ê
t
π

t+1
+

(α
x
+ λ2 )ϕ

α
i
+ (α

x
+ λ2 )ϕ2

g
t
+

λϕ
α

i
+ (α

x
+ λ2 )ϕ2

u
t
.  

 
This leads to a reduced form, 
 

   y t
= MÊ

t
y

t+1
+ P v

t
.  (14) 

 

                                                      
12. In the case of lagged information, the PLM is specified as yt = a + cvt-1 + ηt, and the ALM is then 

−= + + + + + �0 1 0 1 1( ) ( )t t ty M M a M c M cF P F v v .  
13. The RLS formulae are given in the appendix. 
14 . See the appendix for the recursive formulation of constant-gain least squares. 
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Determinacy of the rational expectations equilibrium corresponding to optimal discretionary 
monetary policy requires that M has both eigenvalues inside the unit circle.15 We again have the 
condition  αi

< α
i
, where  α i

 is given by equation (13). 
For stability under learning, first consider the case in which the exogenous shocks vt are i.i.d. 

and agents use steady-state learning under constant gain. For this reduced form, the PLM yt = a + et 
gives the ALM yt = Ma + et (where et = Pvt), as discussed in section 1.1. Thus T = M, and there is a 
very close connection between determinacy and stability under learning. This leads to proposition 4: 

Proposition 4. Assume that  αi
< α

i
 and that the shocks are i.i.d. Then the expectations-based 

rule, which implements the first-order condition, yields a reduced form that is stable under steady-
state learning for all constant-gain rules 0 < γ ≤ 1.  

Provided  αi
< α

i
, so that determinate optimal policy is possible, the  expectations-based optimal 

rule will successfully implement the optimal rational expectations equilibrium: under decreasing-
gain learning there will be convergence to the equilibrium, and under small constant-gain learning, 
it will converge to a stochastic process near the optimal equilibrium. Furthermore, for all constant 
gains 0 < γ ≤ 1, there will be convergence to a stationary process centered at the optimal equilibrium. 

Second, we examine numerically the case of AR(1) shocks with (constant-gain) RLS learning. For 
the Woodford calibration β = 0.99, ϕ = 1/0.157, λ = 0.024, αx = 0.048, and αi = 0.077 (and ρ = μ = 0.8), 
we find that learning converges for gain values at or below γ = 0.925. In other words, the 
expectations-based optimal discretionary rule is quite robustly stable under learning. When the 
agents have to run genuine regressions, as in the current case, then the IE-stability condition does 
not imply convergence of constant-gain learning for all 0 < γ ≤ 1. However, we see that stability does 
hold even for γ quite close to one. 

 
 

4. OPTIMAL POLICY WITH COMMITMENT 
 
For brevity, in the remainder of the paper we assume that αi = 0, that is, that the central bank 

does not have an interest rate stabilization objective.16 Given the model described in equations (3) 
and (4) and the loss function (10) with αi = 0, optimal monetary policy under commitment (from a 
timeless perspective) is characterized by the condition17 
 
λπt = –αx(xt − xt−1),  (15) 
 
which is often called the optimal targeting rule. The optimal rational expectations equilibrium of 
interest has the form 
 
xt = bxxt−1 + cxut  
 
and 
 
πt = bπxt−1 + cπut,  
 
where we choose the unique 0 < bx < 1 that solves the equation βbx2 – (1 + β + λ2/αx) bx + 1 = 0 and bπ 
= αx /λ(1 – bx), cx = – [λ + βbπ + (1 – βρ)(αx /λ)]–1, and cπ = – (αx /λ) cx. 

                                                      
15. Equivalently, we need |tr(M) | < 1 + det(M) and |det(M)| < 1. 
16. See Duffy and Xiao (2007) for an extension to the case in which the central bank also has an interest rate stabilization 

motive. 
17. See, for example, Clarida, Galí, and Gertler (1999) and Woodford (1999). For the exposition, we follow Evans and 

Honkapohja (2006). 
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The literature proposes a number of optimal reaction functions that implement the optimal 
targeting rule (15). Under rational expectations, one obtains the fundamentals-based reaction 
function  
 
it = ψxxt−1 + ψggt + ψuut,  (16) 
 
where 
 
ψx = bx[ϕ−1(bx – 1) + bπ],  
 
ψg = ϕ−1, 
 
and 
 
ψu = [bπ + ϕ−1 (bx + ρ – 1)] cx + cπρ.  
 
Evans and Honkapohja (2006) show that the reaction function (16) often leads to indeterminacy and 
always leads to expectational instability. They propose instead the expectations-based reaction 
function  
 

  
i
t
= δ

L
x

t -1
+ δ

π
Ê

t
π

t+1
+ δ

x
Ê

t
x

t+1
+ δ

g
g

t
+ δ

u
u

t
, (17) 

 
where the coefficients are18 
 

  
δ

L
=

−α
x

ϕ(α
x
+ λ2 )

,  
  
δ
π
= 1 +

λβ
ϕ(α

x
+ λ2 )

,  δ
x
= δ

g
= ϕ−1 ,  and δ

u
=

λ
ϕ(α

x
+ λ2 )

.  

 
Under the interest rate reaction rule (17), the reduced-form model is of the form 
 

   y t
= M

1
Ê

t
y

t+1
+ Ny

t−1
+ P v

t
, 

 
with yt′ = (xt, πt) and vt′ = (gt, ut). The corresponding rational expectations equilibrium takes the form 

   y t
= by

t−1
+ cv

t
. Evans and Honkapohja (2006) show that the optimal expectations-based reaction 

function (17) delivers a determinate and E-stable optimal equilibrium for all values of the 
parameters. It is therefore clearly preferred to the fundamentals-based rule (16).  

In connection with constant-gain learning we have the following partial result:19  
Proposition 5. The expectations-based rule under commitment (17) yields a reduced form for 

which the eigenvalues of the derivative of the T map, at the rational expectations equilibrium, are 
inside the unit circle for all values of the structural parameters. 

This result is partial in the sense that the eigenvalues condition is no longer sufficient for 
stability of constant-gain learning for all 0 < γ ≤ 1. This is because in the model the regressors 
include exogenous and lagged endogenous variables. 

We now examine numerically the performance of constant-gain RLS learning under the 
expectations-based optimal rule with commitment. Using Woodford’s parameter values (but with αi = 
0), we find that constant-gain RLS learning converges for values of the gain parameter below 

 γ̂ ≈ 0.25 . The inclusion of a lagged variable among the regressors appears to have a significant 

                                                      
18. In the discretionary case with αi = 0, the same coefficients would obtain, except that δL = 0.  
19. See the appendix for a proof. 
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effect on learning stability for large gains. However, the rule is still robust for all plausible values of 
the gain parameter. 

As noted above, the Duffy and Xiao (2007) formulation under commitment breaks down when αi 
= 0 (as it does in the discretionary case). One might investigate numerically the performance of the 
Duffy-Xiao rule under constant-gain RLS for calibrated values of αi. Based on the results in the 
discretionary case, we are not optimistic about robust learning stability of the Duffy-Xiao rule with 
commitment. 

 
 

5. ALTERNATIVE RULES FOR OPTIMAL POLICY UNDER COMMITMENT 
 
This section explores two alternative rules for optimal policy under commitment: the Svensson-

Woodford rule and the McCallum-Nelson rule.  
 

5.1 Svensson-Woodford Rule 
 
Given that the fundamentals-based optimal rules (without interest rate stabilization) lead to 

problems of indeterminacy and learning instability, Svensson and Woodford (2005) suggest a 
modification in which the fundamentals-based rule (16) is complemented with a term based on the 
commitment optimality condition. We again assume that contemporaneous data are not available to 
the policymaker, so that current values of inflation πt and the output gap xt are replaced by their 
nowcasts   Ê t

π
t
 and   Ê t

x
t
. This results in the interest rate rule  

 

  
i
t
= ψ

x
x

t−1
+ ψ

g
g

t
+ ψ

u
u

t
+ θ[Ê

t
π

t
+
α

x

λ
(Ê

t
x

t
− x

t−1
)],  (18) 

 
where θ > 0. 

The full model is now given by equations (3), (4), and (18). By substituting equation (18) into 
equation (3), we can reduce this model to a bivariate model of the form  
 

   y t
= M

0
Ê

t
y

t
+ M

1
Ê

t
y

t+1
+Ny

t−1
+ P v

t
,  (19) 

 
where the information set in the forecasts and nowcasts includes current values of the exogenous 
shocks but not of the endogenous variables. We also assume for convenience that −= + �1t t tv Fv v  is a 
known, stationary process. The coefficient matrices are 
 

M
0
=

−ϕα
x
θλ−1 −ϕθ

−ϕα
x
θ −ϕθλ

⎛

⎝
⎜

⎞

⎠
⎟ ,  

 

  
M

1
=

1 ϕ
λ β + λϕ

⎛

⎝⎜
⎞

⎠⎟
,  

 

   
N =

−ϕψ
x
+ ϕα

x
θλ−1 0

−λϕψ
x
+ ϕα

x
θ 0

⎛

⎝
⎜

⎞

⎠
⎟ ,  

 
and 
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P =

0 −ϕψ
u

0 1 − λϕψ
u

⎛

⎝
⎜

⎞

⎠
⎟ . 

 
The PLM has the form 
 
yt = a + byt-1 + cvt, 
 
and the T mapping is 
 
T(a, b, c) = {[M0 + M1(I + b)]a, M1b2 + M0b + N, M0c + M1(bc + cF) + P}.  
 
The usual E-stability conditions are stated in terms of the eigenvalues of the derivative matrices, 
 

  DT
a
= M

0
+ M

1
(I + b ) , 

 

  DT
b
= ′b ⊗ M

1
+ I ⊗ M

1
b + I ⊗ M

0
, 

 
and 
 

  DT
c
= ′F ⊗ M

1
+ I ⊗ M

1
b + I ⊗ M

0
,  

 
where ⊗ is the Kronecker product and b  is the rational expectations value of b. 

We compute numerically the E-stability eigenvalues for the Woodford calibration with αx = 0.048 
and θ = 1.0.20 For this case the eigenvalues of DTa are –9.570 and 0.990, while the eigenvalues of DTb 
are –10.605, –9.672, 0.878, and –0.0118. However, θ = 1.0 is very close to the lower bound on θ 
needed for E-stability (since one root of DTa is almost one), and the eigenvalues are sensitive to the 
value of θ. For example, for θ = 1.5, the eigenvalues of DTa are –15.975 and 0.949, while the 
eigenvalues of DTb are –17.059, –16.082, 0.842 and –0.011. Thus, large negative eigenvalues appear.  

The calculation of the E-stability eigenvalues suggests that the interest rate rule (18) can be 
subject to instability if learning is based on constant gain. We now examine numerically the 
performance of rule (18) under different values of the constant gain using the Woodford calibrated 
values of the model parameters and θ = 1.5. Numerical simulations show that under the interest rate 
rule (18), constant-gain RLS learning becomes unstable for values of γ at 0.019 or higher. 

We also examine numerically the sensitivity of the stability upper bound on γ for different values 
of αx, that is, the degree of flexibility of inflation targeting. Table 1 gives the approximate highest 
value,  γ̂ , of the gain for which stability under constant-gain learning obtains. The table shows that 
robust learning stability of the Svensson-Woodford hybrid rule is very sensitive to the degree of 
flexibility in inflation targeting. Robust stability obtains only when the central bank is an inflation 
hawk. 

 
 
Table 1. Critical Values of γ for Stability: Svensson-Woodford Rule  
αx 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10 

 γ̂  0.185 0.060 0.035 0.020 0.018 0.014 0.009 0.007 
 

                                                      
20. The eigenvalues of the same model, but with contemporaneous data available, would not deliver large negative 

eigenvalues in the E-stability calculation for this parameterization. 
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5.2 McCallum-Nelson Rule 

 
McCallum and Nelson (2004) propose a different rule that approximates optimal interest rate 

policy from a timeless perspective. They suggest that the interest rate be raised above inflation 
whenever the timeless-perspective optimality condition is above zero. Their rule performs well if yt is 
observable, but as McCallum and Nelson (2004) themselves point out, such a rule would be subject to 
the operationality problem that we have encountered several times: it presupposes that 
contemporaneous data on inflation and the output gap are available. One way to overcome this 
problem is to replace unknown contemporaneous data by nowcasts of the variables. In this case, the 
interest rate rule becomes 
 

  
i
t
= Ê

t
π

t
+ θ[Ê

t
π

t
+
α

x

λ
(Ê

t
x

t
− x

t−1
)].  (20) 

 
Under rational expectations, this rule approximates optimal policy under (timeless-perspective) 
commitment, provided θ > 0 is large.  

The model is then given by equations (3), (4), and (20). The model can be reduced to a bivariate 
model of the form (19), where the coefficient matrices are 
 

   
M

0
=

−ϕα
x
λ−1 −ϕ(1 + θ)

−ϕα
x

−ϕλ(1 + θ)

⎛

⎝
⎜

⎞

⎠
⎟ ,  

 

  
M

1
=

1 ϕ
λ β + λϕ

⎛

⎝⎜
⎞

⎠⎟
,  

 

   
N =

−ϕα
x
λ−1 0

ϕα
x

0

⎛

⎝
⎜

⎞

⎠
⎟ ,  

 
and 
 

  
P =

1 0
λ 1

⎛

⎝⎜
⎞

⎠⎟
. 

 
Using the same parameter values as in the case of the Svensson-Woodford hybrid rule, with αx = 

0.048, we obtain that for θ = 1.0, the eigenvalues of DTa are –9.719 and 0.869, while the eigenvalues 
of DTb are –10.780, –9.833, 0.750, and –0.213. For θ = 1.5 the eigenvalues of DTa are –9.997 and 
0.841, while the eigenvalues of DTb are –11.087, –10.138, 0.701 and –0.213. The results are very 
sensitive to αx. For αx = 0.100, we obtain that for θ = 1.0 the eigenvalues of DTa are –22.954 and 
0.912, while the eigenvaluesof DTb are –24.042, –23.033, 0.835 and –0.143. The large negative 
eigenvalues indicate the potential for instability under constant-gain learning. Using the Woodford 
calibration (including αx = 0.048) and choosing θ = 1.5, we find that constant-gain RLS learning 
becomes unstable for values of the gain at or above 0.029. 

We again examine numerically the sensitivity of the stability upper bound on γ for different 
values of αx, that is, the degree of flexibility of inflation targeting. Table 2 gives the approximate 
highest value  γ̂  of the gain for which stability under constant-gain learning obtains. Comparing the 
two tables reveals that the stability performance of the McCallum-Nelson rule (20) is somewhat 



  

14 

better than that of the hybrid rule (18) for the same parameter values. However, the McCallum-
Nelson rule is not robust for many plausible values of the gain parameter. 

 
 

Table 2. Critical Values of γ for Stability: McCallum-Nelson Rule 
αx 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10 

 γ̂  0.395 0.107 0.058 0.037 0.026 0.021 0.015 0.01 
 
 
McCallum and Nelson (2004) suggest that a preferable alternative to equation (20) is to use 

forward expectations instead of nowcasts, since this delivers superior results under rational 
expectations. In this case, the model has no lagged endogenous variables, that is, N = 0 in equation 
(19). We analyze this case numerically in Evans and Honkapohja (2003a, 2006). Large negative 
eigenvalues no longer arise in this formulation. However, determinacy and E-stability require a 
small value of the parameter θ, which can result in significant welfare losses for optimal policy. 

 
 

6. CONCLUSIONS 
 
A lot of recent applied research on learning and monetary policy emphasizes discounted 

(constant-gain) least-squares learning by private agents. We have examined the stability 
performance of various operational interest rate rules under constant-gain learning for different 
values of the gain parameter. Since estimates of the gain parameter tend to be in the range of 0.02 to 
0.06 for quarterly macroeconomic data, ideally there should be convergence of learning for gain 
parameters up to 0.1. Based on this criterion, we have found that many proposed interest rate rules 
are not robustly stable under learning in this sense. An exception to this finding is the class of 
expectations-based optimal rules in which the interest rate depends on private expectations in an 
appropriate way. 
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APPENDIX 
Constant-Gain RLS Algorithm 

 
Suppose the economy is described in terms of a multivariate linear model, which includes 

possible dependence on lagged endogenous variables. Under least-squares learning, agents have the 
PLM 
 
yt = a + byt-1 + cvt + et,  (21) 
 
where a, b, and c denote parameters to be estimated. Here yt is a p × 1 vector of endogenous 
variables. vt is k × 1 vector of observable exogenous variables, and et is a vector of white noise shocks. 
If the model does not have lagged endogenous variables, then the term byt−1 is omitted. 

At time t agents compute their forecasts using equation (21) with the estimated values (at, bt, ct) 
based on data up to period t – 1. Constant-gain RLS takes the form 
 

−
− − − − −′ ′= + γ −1
1 1 1 1 1( ) ,t t t t t t tR Z y Zξ ξ ξ  

 

   R t
= R

t−1
+ γ(Z

t−1
′Z
t−1
−R

t−1
) , 

 
where ′ = ( , , )t t t ta b cξ ,    ′Z

t
= (1, ′y

t−1
, ′v

t
) , and 1 > γ > 0. The algorithm starts at t = 1 with a 

complement of initial conditions. The only difference from standard RLS is that the latter assumes a 
decreasing gain γt = 1/t.21 

 
Proof of proposition 5 

 
We now sketch a proof of proposition 5. We examine the formulas given in equations (A7) 

through (A9) of Evans and Honkapohja (2006, p. 36). Two of the eigenvalues of DTb are 0, while the 
remaining eigenvalues are those of the matrix 
 

   

K
b
=

−λβb
π

α
x
+ λ2

−λβb
x

α
x
+ λ2

α
x
βb

π

α
x
+ λ2

α
x
βb

x

α
x
+ λ2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

. 

 
The eigenvalues of Kb are 0 and –1 < αxβ(2bx − 1)/(αx + λ2) < 1. Likewise, two of the eigenvalues of DTc 
are 0, while the other two eigenvalues are those of the matrix 
 

   

K
c
=

−λβb
π

α
x
+ λ2

−λβρ
α

x
+ λ2

α
x
βb

π

α
x
+ λ2

α
x
βρ

α
x
+ λ2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

. 

 
The eigenvalues of Kc are 0 and αxβ(bx − 1 + ρ)/(αx + λ2), which is inside the unit circle unless ρ is 
negative and large in magnitude. Finally, 

                                                      
21. The formal analysis of recursive least squares (RLS) learning in linear multivariate models is developed, for example, 

in Evans and Honkapohja (1998; 2001, chap. 10). 



  

16 

 

   

DT
a
=

−λβb
π

α
x
+ λ2

−λβ
α

x
+ λ2

α
x
βb

π

α
x
+ λ2

α
x
β

α
x
+ λ2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, 

 
and its eigenvalues are 0 and 0 < αxβbx/(αx + λ2) < 1. 
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