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Resumen

Este documento estudia las propiedades de estimadores de Variables Instrumentales,
para los casos en que los errores son heterocedasticos y se utilizan muchos
instrumentos. En particular, se compara el desempefio del estimador propuesto por
Hausman, Newey, Woutersen, Chao, y Swanson (2007) con la version robusta de JIVE,
propuesto por Angrist, Imbens y Krueger (1999). Se presentan resultados tedricos para
el test t que considera heterocedasticidad, encontrandose que el mayor efecto esta
relacionado al sesgo en muestras finitas del estimador.

Abstract

This paper studies inference performance of Instrumental Variables Estimators in
situations where error terms are heteroskedastic and there are many instruments. In
particular, performance of a estimator proposed by Hausman, Newey, Woutersen, Chao,
and Swanson (2007) with the robust version of JIVE -proposed by Angrist, Imbens and
Krueger (1999)- is analyzed. Theoretical results are presented for the robust t-statistics,
which is mostly affected by the finite-sample bias of the estimator.

E-mail: ralfaro@bcentral.cl.




1 Introduction

In this paper, I discuss feasible inference methods using Instrumental Variables estimators
in the presence of heteroskedastic error terms and many instruments. The discussion is
based on various instrumental variables (IV) estimators and inference is performed using
robust standard errors.

The Two Stage Least Squares (2SLS) estimator has a finite-sample bias that grows
with the number of instruments. Under homoskedastic errors, unbiased estimators, such as
the Limited Information Maximum Likelihood (LIML), the Bias Corrected 2SLS (B2SLS)
and the Fuller (1977) adjusted LIML (LIMLF) are available. However, these estimators
are no longer asymptotically unbiased in the presence of heteroskedastic errors and many
instruments. Hausman, Newey, Woutersen, Chao, and Swanson (2007) propose a robust
version of LIML (RLML) that is asymptotically unbiased under heteroskedasticity and
many instruments. This estimator follows the same principle as the Jackknife Instrumental
Variable Estimator (JIVE) proposed by Phillips and Hale (1977), and Angrist, Imbens and
Krueger (1999).

The inference properties of these estimators have not been studied yet. Hence, I derive
an Edgeworth expansion of the robust t-statistic computed with robust standard errors
based on White’s (1980) approach.

The rest of the paper is organized as follows. Section 2 defines the model and estimators
along with their asymptotic properties. Section 3 introduces the asymptotic expansion for
the estimator of the standard errors and the t-statistics. Section 4 presents Monte Carlo
simulations to check how the asymptotic results of previous sections work in finite samples.

Section 5 concludes.



2 Model and Estimators

I consider a linear model with one endogenous explanatory variable (z)

yi = Bxi+e =20+ u, (1)

/
T; = Z;T+ g,

where 3 is the parameter of interest, and # and 7 are the parameters of the reduced form
model. Errors terms are correlated (E(u;v;) # 0), and there is a K x 1 set of valid in-
struments (Z), that are used to estimate 3. I consider the following class of Generalized

Estimators (GE)

. 'Sy

GE — m
Depending on the choice of S, this estimator corresponds to Two Stage Least Squares
(2SLS), Donald and Newey (2001) bias-corrected 2SLS (B2SLS), Limited Information Maxi-
mum Likelihood (LIML), Fuller (1977) correction for LIML (LIMLF), robust LIML (RLML)
proposed by Hausman, Newey, Woutersen, Chao, and Swanson (2007), robust LIMLF
(RFLL), or JIVE2 (hereafter JIVE) proposed by Angrist, Imbens and Krueger (1999).

Table 1 shows the choices of S for these estimators, where W = [y, z].

Table 1: Generalized Estimator

2SLS | LIML LIMLF B2SLS RLML RFLL JIVE

(n+1)I-1 (K-2) (n+1)r—1
S| P |Pou Pl p K2 R_p poUHly R

Note P = Z(Z2'Z)"'Z', R = P — diag(P), and | and r are the minimum eigenvalues
of (W'W)=IW'PW and (W'W)~1W'RW, respectively.

Additionally, I consider an optimal Generalized Method of Moment (GMM) estimator,

defined as follows:



o ZM~ 7"y

JaMM = g 7

where M is the optimal weighting matrix

1 n
M= — E e?zz).
n
i=1

When the error terms (e) are known, the estimator is called the infeasible GMM. In the
case of unknown residuals, these can be computed together with 3, then M = M (/) and
the estimator does not have a closed form solution. This estimator is called Continuous
Updating Estimator (CUE) (see Hansen, Heaton and Yaron (1996)). Alternatively, residuals
can be estimated using an initial estimator. In that case, the estimator is termed two-
step GMM (GMM2) and cannot be represented by BGE- Under the traditional first-order
asymptotics, GMM2 is robust to heteroskedastic errors, if the initial estimator is consistent.

To approximate the behavior of the estimators in large samples, I consider an Edgeworth
expansion of the generalized estimator. Conditions on the distribution of errors and the set

of instruments are presented next.

Condition 2.1. The set of instruments is non-stochastic with the following quadratic prop-

erties:

%ZZZZSZ],Z’; = A+0(1),

i=1 j=1

where A and A are nonsingular finite positive definite matrices, and S;; denotes the (i, j)

element of the matrix S.

This condition follows Newey (2004) and it is used as a normalization. It is possible to
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extend the analysis to stochastic instruments, but that requires additional assumptions on
the joint distribution of the instruments and the error terms of the reduced form model. It

should be noted that as n — oo, for S;; = P;j = 2[(Z'Z) 12;

1 n n 1 n n
EZZZ@PUZ;- = EZZzizg(Z/Z/n)_lzjz;

i=1 j=1 i=1 j=1
-1
Iem L) [1< , 1
= — g ZiZ; — g % — E 2%
n 4 v n k n &= 77
i=1 k=1 j=1

— AATIA = A.

This result is important for the asymptotic analysis presented below. Also, for the case of

Sij = Rij, where the (4, j) component is equal to Pj; if ¢ # j and zero otherwise, we have

1 n n ) 1 n ) 1 n , Z/Z —1 .
EZZZiRiij = ;ZZZ,‘PZ'ij = ﬁzzzﬂl T ijj
i=1 j=1 i=1 j#i 1=1 j#i

n

-1
1 = ! 1 ! 1 ! 1 !
= = zia | = 2p2 - zizh — =22
nz; lznzkk nzj] n
1=

L k=1

—1
n n
. 1 / ! / 1 /
n “ n “ n
=1 =1

n

1
= > (1= Pi)zizj
i=1
1 n
— A— nh_)rgo (n2 Z ziz;A_lzizz’) = A*,
i=1

A* will be used in the asymptotic analysis of the jackknife estimators (JIVE, RLML, and

RFLL).

Condition 2.2. The error terms u; and v; are jointly distributed, with zero mean, possible

heteroskedasticity and finite fourth moments. Also, the bivariate distribution is symmetric

(E(uivi) = E(u;v}) =0).

This condition guarantees the existence of the first two moments for GE and is based on

Newey (2004). With these conditions, we will be able to develop inference methods valid
4



for large samples. !

Condition 2.3. The number of instruments (K ) increases along with the sample size (n),
but K/n converges to a fired number 0 < a < 1. These alternative asymptotic sequences

are proposed by Bekker (1994).

This condition also includes the standard first-order asymptotics (fixed number of instru-

ments) by setting a = 0. I will use — to denote double asymptotics in K and n.

2.1 Asymptotic Bias of GE

To analyze the asymptotic properties of the inference procedures, it is useful to derive an
approximation of the bias of GE. This bias is obtained using the alternative asymptotic

sequences (many instrument asymptotics) described in Condition 2.3.

Theorem 2.1. Under Conditions 2.2 and 2.3, the asymptotic bias for BGE s

Kn—oo | N

R 1 n
ABias(ﬂGE) = lim W E S“E(ezvz)
=1

Proof. See Appendix A .4. O

Theorem 2.1 summarizes several results available in the literature of IV estimators. The

following examples compute explicitly the bias for the estimators considered in Table 1.

Example: 2SLS estimator

Under homoskedastic errors and S = P, we have that A = A; then, the asymptotic bias
for 2SLS will be similar to the expression derived in Nagar (1959) or Hahn and Hausman

(2002).

n
Oev

. s . 1
ABias(fasrs) = Klv’lLIBOO nm! A Z PiB(eivs)| = aW’Aﬂ"
’ i=1

Tt is possible to generalize Condition 2.2 allowing for non-zero third moment. This does not change the
main conclusions presented in this chapter, but complicates the notation.



Example: B2SLS, LIML and LIMLF estimators

Define qposrs = (K —2)/n, qrrvr =1 and qriyrre = [(n+ 1)1 — 1]/[(n — 1) 4+ 1]. Nagar
(1959), Rothenberg (1984), and Donald and Newey (2001) show that for all these estimators
g = K/n+ o(1) as n — oo. Under Condition 2.3 we have ¢ — «.

Moreover, for these estimators we have S;; = P; — ¢ and S;; = Pj; if @ # j, then
) S R A DI
i=1 j=1 i=1 i=1 j£i
1 @ 1 &
= Z zi(Pi — @)z + - Z(l — Pii)ziz
i=1 i=1

- (1-a)A=A.

Using this expression, the asymptotic biases for B2SLS, LIML and LIMLF can be computed

as follows:

. 5 . Oev
ABias(f) = K%riloo 0 a)yan

(t57)-4]-

The last result is obtained using the fact that K = 2?21 P;;. When errors are not ho-

moskedastic, the asymptotic bias for B2SLS is not zero.

n

R K
ABias(fp2sps) = lim [m Z (PZZ — n) E(ewi)] :

K ,n—oo ¢
=1

Bekker and van der Ploeg (2005) report that B2SLS is asymptotically unbiased in the case
that instruments are group dummies of equal size. In that case, zx; = 1 if individual ¢
belongs to group k and zero otherwise. Then P} = 21i(Z1,2) Y2k = 1/ny, where ny is
the number of individuals in group k. Moreover, if the groups have the same size, then
ng = n/K, which implies that P = K/n.

In the case of LIML, the presence of heteroskedastic errors implies that the minimum

eigenvalue satisfies



where > | A; = 1 (see Lemma A.1 in Appendix A.1). Then, the asymptotic bias for LIML
is
n

y , 1 .
ABlaS(BL[ML) = lim [W Zz; (.F)“ — Zz; -P’L’L)\Z> E(@Z’Ul)

K,n—oo

Similarly to B2SLS, LIML is asymptotically unbiased when instruments are group dummies
of equal size. But, LIML is also asymptotically unbiased under another condition reported
in Hausman, Newey, Woutersen, Chao, and Swanson (2007). Define v; = E(e;v;)/E(e?),
and Q, = Y1, P;E(e?). Then, LIML is asymptotically unbiased when ; is constant
across units. Now, consider v; = 7 then E(e;v;) = vE(e?), and the asymptotic bias for

LIML is

ABias(BL]ML) = K}%IEOOMZ{PM ZPM [Z Ez )]}E(e?)

=1

N . Y - Qn
B K,lrlzrgoo n(l — a)w’'Ar {Qn B Z [2?21 E(ef)} E(ef)}

=1

= im -7 — L - o2 —
) K}wn(l_awm{ﬁn [Z?_lﬂe%)}ZE“’} .

Example: JIVE, RLML and RFLL estimators

Using Lemma A.1 (Appendix A.1), it is easy to show that the minimum eigenvalue for

RLML (r) converges in probability to zero.

K ,n—oo

-1 n
7"—> lim [nZE [:LZ;R“E(QQ)

Using this result and Theorem 2.1, the asymptotic biases for jackknife estimators (JIVE,
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RLML, and RFLL) are the same (r 2> 0) and can be computed as follows:

ABias(@RLML) = <mr’A*) lim ZR”E (e;v;) = 0.

K,n—oo

The expression equals zero because R;; = 0, then these estimators are asymptotically unbi-

ased regardless of whether the error terms are homoskedastic or heteroskedastic.

2.2 Asymptotic Variance of GE

In order to compute the asymptotic variance of GE, I follow the Laplace approach which is
commonly used to approximate the moments of a estimator defined as the ratio of quadratic

forms (see Ullah (2004) for details). In particular, we have

5 z'Se)?
El(for - 82 = [’j;[éch;]; e <i> |

Using this result we can get the asymptotic variance of \/ﬁ(ﬁg g — () as follows

/ —2 v
ke = 2] (259
B
- (A2’

where B = limg .00 By, and

n
B, = 7 7112.7],7;:121'5“E(€§)S]k2k T+ — ;1E 52 v e + viejvje;)].

It should be noted that the second argument converges to zero under a fixed number of

instruments (standard asymptotics). Also under standard asymptotics, S is replaced by

P in the cases of B2SLS, LIML and LIMLF estimators and by R for JIVE, RLML and

RFLL estimators. For example, for 2SLS, B2SLS, LIML and LIMLF estimators, the robust

asymptotic variance under standard asymptotics (fixed number of instruments) is



Var(3) =n {”“’Z(Zslx} ( ZeZ sz ) {ZZ;Z/”C]

In the following examples, the asymptotic variance is computed for the estimators under

analysis. An alternative approach is presented in the Appendix A.2.

Example: B2SLS, LIML, and LIMLF estimator

For the case of these estimators under homoskedastic errors the denominator 7/ Ar converges

o (1 — a)n’Am. The numerator requires considering the following facts:

— Z Z Z 2 PijPjrzy, = % i Zn: i zizg(Z'Z/n)_lzjz;-(Z’Z/n)_lzkz}C

21] 1 k=1 i—lj—lk—l
= n2 E E 2i2i(Z'Z/n)~ z] E g zZPUzJ — A.
=1 j=1 =1 j=1

Also, we have

1 n n 1 n n _ 3
EZZPEJ = EZZZQ(Z/Z/TL) 1,Z'J-Z;(Z/Z/n) =

i=1 j=1 i=1 j=1

n
- 22 (Z'Z/n) 2 = i;ai:fﬁa

To simplify the notation, consider g;; = ¢ X 1;;, where 1;; is the indicator function that is

1 when ¢ = j and zero otherwise. Then, the following relationships hold:

1 — q
E Z Zi(f)ij_Qij)(f)jk_ij)ZI/g = - Z 2 P, ij kzk ZZZ i ]+ ZZ’L

i,5,k=1 Jk 1 i,5=1
— (1 —a)n'Am,

n n n
%ZZ(‘PU_QU)Q - %ZZP%—%%ZH’@'JWZ—W@—O!)-

=1 j=1 i=1 j=1 =1



For B2SLS, ¢ is not stochastic, then E[S%(v?e? + viegvje;)] = (Pij — ¢ij)*[E(v2)E(e2) +

2

E(vie;)E(vje;)] = (Pij — qij)?(020% + 02,); using that, we have

1 < 1 &

2 1 / 2 2 2 2

B, = o' |~ § 2Py Pirzy, | m+ (0500 + 02,) EE P}
1,5,k=1 ij=1

— [O'gﬂ'lAﬂ' + a(agag + Ugv)](l —a)=B.

Then, the asymptotic variance for B2SLS under homoscedastic errors is

2 2.2, 2
_ O¢ « 0,0¢ + Oey
Veasps = ' Am Tz a [ (w! Amr)? ]

This expression is also obtained by Hahn and Hausman (2002).

For LIML and LIMLF, ¢ is stochastic; then, we can compute E[Sfj(vfe? + vievje;)]
using conditional expectations (see Appendix A.2). In particular, it is convenient to use
4 = a’e/e’e to build an uncorrelated residual w; = v; — ve;. Noting that ¥ LN Oev/ Jg, and
E(wie;) = E[(vi —7e;)ei] = Oy — 702 = 0oy — (0ev/02)0? = 0, then the asymptotic variance

for LIML and LIMLF is

® N

+

v o? a [oio
LIML
mAr - 1—a | (

— Uzv
s

~

™

Note that Vv < Veasrs-

Example: JIVE, RLML and RFLL estimators

Now we consider the cases of jackknife estimators under heteroskedastic errors. Theorem

A.2 in Appendix A.3 shows for JIVE that

1 & 2 1 ¢ 2 2 2
B, = - 'El ﬂ’zizgﬂPiijkE(ej) + n g 1 PU[E(UZ )E(ej) + E(Uiei)E(Ujej)]'
1= =
J#i JFi
k#j

Defining the first and second terms in parentheses as Vjy and V1, respectively, the asymptotic

10



variance of JIVE becomes

v _ Vo+ V1
ve = MmO

For the case of RLML and RFLL, we can apply Lemma A.5 in Appendix A.3 to show that

. Vo+V/
V = ] AUNERS I
RLML = O (m' A*m)2’

where V{ = 13700 30 PAE(w?) E(€3) + E(wie;) E(wje;)).
Now, we consider the asymptotic variance of these estimators under homoskedastic

errors. In this case, Vj can be written as follows:

.

1 ¢ 1 <
b = ot (1SS any et | r ot [ ESn - n

J=1 i#j k#j i=1

Also, V7 and V] become

1 — K 1<
Vio= (ofot+ol) | -SSP = (oketrat) |- SRR
i=1j#i | i j=1 i
1 & K 1<
Vll = (0-1210-3_0-31)) EZZP% :(0-12)0-3_0-6’0) ;_E ‘P_]2_]
| =1 A | j=1 i

With these, the asymptotic variances for JIVE and RLML under homoscedastic errors are

02 [ 2ia ™ (1= Pi)*zizim] + (0302 + 02,) (5 — 5 Siey Pi)

Vitve = Kléfiloo = (7 A)? ;
v _ oy Celm i (= Pz + (0002 — 08) (5 — 5 Xiny i)
RLML = KJILIEOO (' A*rr)2 )

When instruments are group dummies and the groups have equal size, we showed that
P;; = K/n. Using this and Condition 2.3 (K/n — «), we have A* = (1 — o)A, Vh —
(1—a)?027’'Am, Vi — a(l — a)(020? + 02,), and V] — a(1 — a)(0202 — 02,). With these,

Virve = Vbasrs and Ve = Virmer.
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3 Robust Inference

In the previous section, I discussed the asymptotic biases and variances for IV estimators
under many instruments (Condition 2.3). Most of them are asymptotically unbiased under
homoskedastic errors, but only jackknife estimators (JIVE, RLML, and RFLL) remain
unbiased in the presence of heteroskedasticity in the error terms. Also, estimates of the
asymptotic variance are available for these estimators.

In practice, however, empirical researchers usually rely on standard fixed number of
instruments asymptotics to compute standard errors. This approach may be problematic
when the number of instruments is large. For example, consider the 2SLS estimator with
homoskedastic errors. Under many instruments, the estimator is asymptotically biased.
Moreover, using the standard asymptotic variance, only the first argument of the asymptotic
robust variance will be computed using a biased estimator. In particular, if oe, > 0 then
the estimator of the parameter will be upward biased, while the estimated robust variance
will be downward biased, leading to upward biased t-statistics. In other words, the null will
be rejected more frequently than the nominal level for any critical value.

In this section, I compute the probability limit of the t-statistics for GE with White-
type robust standard errors based on a fixed number of instruments asymptotic variances.
Clearly, this t-test can be improved by considering unbiased estimators and using many-
instruments robust variance. The formulae can be used for cases where inference matters
more than the actual point estimate and unbiased estimators are not available, or for cases
where the bias is expected to be small (for example with few, but strong instruments) and

a further correction on inference is required.

3.1 Expansion for Robust Estimator of the Asymptotic Variance

Consider a expansion of the center of the sandwich of the asymptotic variance (or M). In

particular, since é7 = e — Qeia:i(ﬁ - B)+ xf(@ — )2, we have

12



M = *Zezz = Zezzz—Qﬁ B)— Zezxzzlz+ﬁ 3)? szz
= n;(ifzizé —2(3 - ﬂ)n;eixizizg +0, <711> '

The last term is small relative to the first two, even in the case where 3 is asymptotically
biased. For the argument (B — (), the standard asymptotics can be used. The following

theorem gives an approximation for the robust asymptotic variance.

Theorem 3.1. Based on Conditions 2.1 and 2.2 and fixed number of instruments, the

robust asymptotic variance can be approxrimated by

A 222w 1
V() = /Aﬂ' Ze ' 2z [ (TI'IAT('):| + 0, <n> ,
Proof. See Appendix A .4. O

However, if a jackknife estimator is used (JIVE, RLML or RFLL), the second argument

includes the factor R;;, which is zero by definition. This increases the asymptotic variance.

3.2 Expansion of {-statistics

The setup follows Ullah (2004) for the case of the GLS estimator. I consider the null
hypothesis as Hy : 3 = b, and the alternative as Hy : § # b. Also, let 3 be a consistent and
asymptotically unbiased estimator, and o*% its asymptotic variance evaluated at the true

error terms, then the robust 7),-statistic is

o ()
93

where B is the estimator of interest and 6% is an estimator of the robust variance under

standard asymptotics.

13



It should be noted that 3 can be JIVE, RLML or RLLF. As we showed in the previous
section, these jackknife estimators are asymptotically unbiased under heteroskedasticity and

many instruments.

Theorem 3.2. The T, -statistic can be approrimated as follows

A B 1
Tn = Zn+\/%+nn+0p<n>,

where Z, = (3 — b)/og ~ N(A 1) with A = (8 — b)/og, and expressions A, and By, are

asymptotic expansions of A and B up to order 1/n.

B_B Zn 5’%—0’%
O'B _? O'% ’

Proof. See Appendix A.4. O

In practice, (B - B) /03 is a measure of asymptotic bias of B, which is approximated by
Theorem 2.1. Also, (&E — 0%) / 0% is approximated using the expansion proposed in section
3.1. Theorem 3.2 can be used to construct an approximation of the finite-sample probability
distribution of 7T;,. In particular, under the null A = 0, the asymptotic distribution of T,
is standard normal. The expansion decomposes the distribution of T}, into the first order
asymptotic distribution (Z,) -which is normal- and additional terms of higher order. For
that reason, the proposed expansion is expected to be closer to the finite-sample distribu-

tion. Onme possible application of this is the following Edgeworth approximation for the

distribution function of T,

st = r{es- G- 2) oG] C)

where ®(x) is the normal probability function. The expectation can be approximated by

14



Taylor series around t using the Hermite polynomials (see, e.g., Ullah (2004)). For order

up to 1/n, it requires the first moments of A,, and B,, and the second moment of A,.

E[@(t_%_%ﬂ _ E|o@) +é0) <A”+B”>—;¢(t)t<A")2

N vn
where ¢(t) is the normal density function.

9

On alternative application for the expansion is to normalize T;, using the asymptotic

moments up to order 1/n. In that case, the statistic of interest is

T — E(TW) [1 + VM(A”)] o [Tn _ B E(B”)] + 0, (1> .

T = ———=—"=
Var(T,) vn n

We will use this formula to identify the size distortion of the inference based on a robust

t-statistics. The following Lemma summarizes the main results.

Theorem 3.3. The corrections for T, are

(502) - chomta] o)

S
() - () (-2) o 1)

where £ = E(3 — B)/ag (normalized bias), ¢ = (0202 — 02,) /(027" Ar), and k is the excess

SRS

kurtosis of the error term e.
Proof. See Appendix A.4. O

Note that ¢ > 0, then many instruments (o > 0) increases the distortion of the ¢-statistic
in the same direction as the asymptotic bias of the estimator. For that reason a biased

estimator should not be used for inference.
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4 Monte Carlo Experiment

In order to analyze the properties of the estimators presented in the previous section, I
consider 4 designs for the scalar model.?

The general setting follows Newey and Windmeijer (2005) and Hahn, Newey, Woutersen,
Chao, and Swanson (2007). The key parameters are (1) the correlation between the error
terms of the reduced form (p) as a measure of endogeneity, (2) the concentration parameter
(6?) measuring the quality of the instruments, and (3) the number of instruments (K).
Moreover, z; ~ N(0,Ig), where 1x is a K vector of ones, u; ~ N(0,1), v; ~ N(0,1),
and w; ~ N(O,z%i). The data generating process is y; = x;0 + €;, ©; = zim + v;, with
ei = pvi + /1 — p2(dw; + O0u;)/(¢? + 6?) and m = 1x6%/(Kn). Finally, I will focus on
62 =35 and n = 200, and I set B = 1 and # = 0.74. This implies a theoretical R? of the
first stage regression of 15%.

Design I is homoskedastic (¢ = 0) and follows Newey and Windmeijer (2005). Under
this setting we note that E(e;v;) = p and E(e?) = p*Var(v;) + (1 — p*)Var(u;) = 1, then
v, = p, which is constant across units. Design II follows the heteroskedastic design of
Hahn, Hausman, and Kuersteiner (2004), where E(e?|z;) = 2/2;/K and ¢ = 0. In this case
vi = p\/K /]2, then LIML is biased.

In previous designs the reduced-form is correctly specified. Following Hausman, Newey,
Woutersen, Chao, and Swanson (2007), I set m = \/m and 7y =0 for k=2,..., K.
However, the model is estimated with a set of redundant instruments, defined as zo; =
22, zsi = 23, 2 = 2%, and 2y = 21;Dgi, where Dy € {0,1}, Pr(Dgy = 0) = 0.5,
and ¢ = 5,...,K. 3 With these specifications two designs are generated: Design III is
homoskedastic (¢ = 0), and Design IV is heteroskedastic (¢ = 1). Note that E(e?|z;) =
p? 4+ (1 — p?)(0.64623; + 0.478), and E(e;v;) = p, then +; depends on z1; for which LIML is

no longer asymptotically unbiased.*

2 All the estimators were computed along with the constant, although I set its true value at zero.

3The authors note that this design follows the asymptotics presented in Donald and Newey (2001), where
the set of instruments includes approximating functions for the optimal set of instruments.

“For all these four designs, the parameter sequences are K = {5,10,15}, and p = {0.3,0.5,0.7}, with
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4.1 Distribution of Estimators

Table 2 shows descriptive statistics of the bias of § under Design I (homoskedastic errors).
As expected, the 2SLS estimator is biased, and GMM2 based on initial 2SLS is also biased.
The bias increases with the number of instruments and also with the degree of endogeneity
of the model (p). All other estimators are median unbiased with no particular effect of the
number of instruments and p. Also, the Interquartile Range (IQR) is higher for B2SLS and
JIVE relative to LIML and RLML, respectively. It should be noted that the dispersion in
terms of the difference between 90th and 10th percentiles (Pyg — P1o) is considerably higher
in the cases of B2SLS and JIVE. Finally, RLML behaves similarly to LIML with slightly
more dispersion in the tails. Table 3 shows the distribution of the bias of § under Design
IT (heteroskedastic errors). Only the second moment of e; is different under this design;
therefore, it is expected that B2SLS remains unbiased (note that F(e;v;) = p). For the case
of LIML, the bias originates in the fact that the minimum eigenvalue does not converge
at the usual rate (K/n). As was expected by the theory, RLML is unbiased. In terms of
dispersion, the conclusion is similar to the homoskedastic case.

In Table 5, the results for Design III (homoskedastic errors) is presented. Relative to
Design I, the following conclusions remain valid: (1) 2SLS and GMM are biased, and (2)
LIML and RLML are unbiased. However, a big difference arises in terms of the bias of
B2SLS, which is increasing in the number of redundant instruments. Finally, Table 4 shows
the results for Design IV (heteroskedastic errors). Relative to Design II, the conclusions
remain for almost all estimators. RLML remains unbiased with the smallest dispersion
among unbiased estimators.

In conclusion, RLML seems to be unbiased regardless of the structure of error terms,
the number of instruments, the degree of endogeneity of the model, and the specification of
the reduced form. Its dispersion is not bigger than LIML, which implies that RLML is a
good alternative to LIML. These conclusions agree with the findings reported by Hausman,

Newey, Woutersen, Chao, and Swanson (2007).

10000 replications.
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Table 2: Distribution of the Bias(3): Design I

A~

K 2SS GMM LIML LIMLF B2SLS RLML RFLL JIVE
p=0.3
5 0.032 0.032 0.001 0.010 0.001 0.001 0.011  -0.018
(0.209) (0.214) (0.241) (0.232) (0.242) (0.241) (0.232) (0.261)
[0.406] [0.413] [0.467] [0.448] [0.472] [0.466] [0.446] [0.516]
10 0.064 0.066 0.003 0.011 0.002 0.003 0.012  -0.016
(0.195) (0.203) (0.253) (0.243) (0.254) (0.254) (0.244) (0.276)
[0.377] [0.396] [0.508] [0.486] [0.515] [0.509] [0.482] [0.573]
15 0.088 0.090 0.000 0.008 0.002 0.000 0.010  -0.020
(0.180) (0.197) (0.273) (0.264) (0.272) (0.273) (0.262) (0.298)
[0.359] [0.380] [0.543] [0.522] [0.548] [0.552] [0.523] [0.610]
p=0.5
5 0.051 0.061  -0.003 0.012  -0.002 -0.002 0.013 -0.033
(0.210) (0.213) (0.247) (0.235) (0.246) (0.247) (0.233) (0.275)
[0.406] [0.409] [0.475] [0.449] [0.489] [0.474] [0.449] [0.550]
10 0.103 0.104  -0.004  0.011 -0.003  -0.003  0.014  -0.034
(0.195) (0.202) (0.263) (0.251) (0.269) (0.263) (0.250) (0.301)
[0.378] [0.388] [0.512] [0.487] [0.549] [0.511] [0.482] [0.617]
15 0.144 0.145  -0.005 0.010 0.000  -0.005 0.011 -0.036
(0.183) (0.191) (0.278) (0.263) (0.293) (0.278) (0.262) (0.328)
[0.344] [0.369] [0.540] [0.510] [0.578] [0.542] [0.504] [0.660]
p=0.7
5 0.072 0.071  -0.002 0.018  -0.002 -0.001  0.020 -0.045
(0.200) (0.203) (0.237) (0.223) (0.247) (0.237) (0.222) (0.278)
[0.392] [0.401] [0.465] [0.436] [0.500] [0.467] [0.435] [0.576]
10 0.148 0.149 0.001 0.021 0.006 0.002 0.025  -0.040
(0.176) (0.185) (0.248) (0.234) (0.263) (0.248) (0.232) (0.302)
[0.341] [0.354] [0.482] [0.451] [0.533] [0.485] [0.448] [0.621]
15 0.206 0.203 0.003 0.023 0.009 0.002 0.025  -0.038
(0.162) (0.168) (0.255) (0.241) (0.291) (0.259) (0.238) (0.328)
[0.311] [0.330] [0.513] [0.478] [0.603] [0.517] [0.474] [0.697]

Median, IQR (in parentheses) and Pyy — Pio (in brackets).
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Table 3: Distribution of the Bias(3): Design II

K 2SS GMM LIML LIMLF B2SLS RLML RFLL JIVE
p=0.3
5 0.036 0.037  -0.006 0.003 0.008 0.002 0.010  -0.019
(0.252) (0.256) (0.301) (0.290) (0.287) (0.282) (0.272) (0.308)
[0.480] [0.486] [0.586] [0.563] [0.555] [0.548] [0.525] [0.607]
10 0.069 0.069  -0.003 0.005 0.010 0.003 0.012  -0.018
(0.210) (0.218) (0.289) (0.278) (0.278) (0.271) (0.261) (0.301)
[0.416] [0.427] [0.587] [0.562] [0.559] [0.550] [0.526] [0.614]
15 0.094 0.094  -0.003 0.005 0.011 0.004 0.013  -0.017
(0.195) (0.206) (0.308) (0.296) (0.287) (0.286) (0.274) (0.314)
[0.382] [0.399] [0.622] [0.590] [0.574] [0.577] [0.546] [0.638]
p=0.5
5  0.057 0.056  -0.015 0.000 0.009 -0.002 0.012 -0.034
(0.250) (0.247) (0.308) (0.294) (0.287) (0.284) (0.272) (0.319)
[0.484] [0.482] [0.589] [0.559] [0.573] [0.550] [0.523] [0.641]
10 0.110 0.106  -0.016 0.000 0.011  -0.003  0.014  -0.035
(0.213) (0.217) (0.304) (0.289) (0.293) (0.282) (0.268) (0.328)
[0.418] [0.423] [0.595] [0.565] [0.592] [0.557] [0.527] [0.670]
15 0.151 0.149  -0.020  -0.005 0.012  -0.006 0.012 -0.038
(0.194) (0.200) (0.315) (0.296) (0.307) (0.292) (0.275) (0.342)
[0.368] [0.389] [0.626] [0.585] [0.603] [0.573] [0.538] [0.689]
p=0.7
5 0.083 0.083  -0.019 0.001 0.015 0.000 0.020  -0.046
(0.235) (0.238) (0.300) (0.283) (0.283) (0.283) (0.265) (0.324)
[0.470] [0.470] [0.584] [0.550] [0.575] [0.549] [0.513] [0.664]
10 0.158 0.155  -0.017  0.004 0.025 0.003 0.025  -0.040
(0.198) (0.203) (0.288) (0.272) (0.289) (0.270) (0.253) (0.332)
[0.380] [0.384] [0.572] [0.528] [0.578] [0.530] [0.492] [0.673]
15 0.214 0.209  -0.017  0.005 0.027 0.004 0.026  -0.037
(0.174) (0.178) (0.291) (0.272) (0.301) (0.271) (0.252) (0.348)
[0.334] [0.341] [0.579] [0.537] [0.621] [0.543] [0.499] [0.733]

Median, IQR (in parentheses) and Pyy — Pio (in brackets).
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Table 4: Distribution of the Bias(3): Design III

K  2SLS GMM LIML LIMLF B2SLS RLML RFLL JIVE
p=0.3

5 0.048 0.040 0.013 0.022 0.016 0.013 0.025  -0.011

(0.276) (0.292) (0.315) (0.301) (0.312) (0.317) (0.302) (0.351)

0.504] [0.580] [0.580] [0.556] [0.574] [0.594] [0.562] [0.656]

10 0.081  0.069 0.016 0.022 0.018 0.012 0.023 -0.005

(0.272) (0.285) (0.350) (0.335) (0.349) (0.351) (0.333) (0.389)

[0.487] [0.550] [0.644] [0.623] [0.650] [0.659] [0.634] [0.744]

15 0.104 0.099 0.024 0.032 0.031 0.026 0.042 0.005

(0.264) (0.278) (0.360) (0.346) (0.375) (0.369) (0.354) (0.430)

0.470] [0.505] [0.686] [0.662] [0.718] [0.734] [0.696] [0.832]
p=0.5

5 0.064 0.062 0.012 0.027 0.015 0.008 0.024 -0.022

(0.247)  (0.258) (0.280) (0.272) (0.285) (0.283) (0.268) (0.316)

[0.455] [0.478] [0.531] [0.506] [0.522] [0.539] [0.515] [0.635]

10  0.118 0.114 0.008 0.024 0.018 0.008 0.025  -0.016

(0.230) (0.245) (0.309) (0.297) (0.316) (0.309) (0.290) (0.358)

0.420] [0.463] [0.549] [0.530] [0.594] [0.564] [0.532] [0.694]

15 0.159  0.160  0.009  0.022  0.024 0.017 0.033 -0.003

(0.216)  (0.240) (0.312) (0.303) (0.335) (0.307) (0.287) (0.405)

0.420] [0.424] [0.602] [0.564] [0.640] [0.643] [0.602] [0.787]
p=0.7

5 0.081 0.081 0.003 0.023 0.009 -0.002 0.021  -0.039

(0.202) (0.216) (0.236) (0.227) (0.259) (0.236) (0.222) (0.291)

0.380] [0.391] [0.442] [0.415] [0.472] [0.458] [0.430] [0.594]

10 0.156  0.148  0.003  0.022  0.016 0.003  0.028 -0.033

(0.180) (0.192) (0.245) (0.230) (0.269) (0.249) (0.239) (0.318)

[0.343] [0.365] [0.473] [0.446] [0.534] [0.489] [0.450] [0.683]

15 0.214 0.210 0.007 0.026 0.023  -0.001 0.025  -0.025

(0.163) (0.186) (0.245) (0.231) (0.305) (0.259) (0.235) (0.360)

0.310] [0.342] [0.484] [0.458] [0.572] [0.498] [0.456] [0.758]

Median, IQR (in parentheses) and Pyy — Pio (in brackets).
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A~

Table 5: Distribution of the Bias((3): Design IV

K  2SLS GMM LIML LIMLF B2SLS RLML RFLL JIVE
p=0.3

5 0.044 0.028  -0.052  -0.040 0.015 0.016 0.025 0.001

(0.244) (0.222) (0.366) (0.348) (0.286) (0.258) (0.246) (0.281)

0.464] [0.421] [0.768] [0.696] [0.536] [0.508] [0.490] [0.552]

10 0.083 0.073 -0.127 -0.104  0.028  0.022  0.033  0.000

(0.232)  (0.205) (0.442) (0.424) (0.313) (0.282) (0.267) (0.309)

[0.431] [0.395] [0.973] [0.863] [0.578] [0.555] [0.526] [0.602]

15  0.109 0.101  -0.206  -0.180 0.029 0.024 0.036 0.007

(0.216) (0.194) (0.597) (0.553) (0.304) (0.315) (0.292) (0.313)

(0.418] [0.390] [1.285] [1.100] [0.615] [0.599] [0.564] [0.660]
p=0.5

5  0.068 0.061  -0.074  -0.052 0.021 0.012 0.027  -0.020

(0.229) (0.202) (0.313) (0.294) (0.266) (0.237) (0.221) (0.271)

[0.413] [0.387] [0.579] [0.536] [0.487] [0.460] [0.430] [0.532]

10  0.122 0.110 -0.138  -0.114 0.021 0.007 0.024 -0.014

(0.209) (0.183) (0.365) (0.341) (0.290) (0.265) (0.242) (0.308)

0.372] [0.345] [0.708] [0.645] [0.528] [0.490] [0.463] [0.575]

15 0.160  0.159 -0.212 -0.187  0.021  0.003  0.022 -0.011

(0.185) (0.172) (0.425) (0.384) (0.286) (0.285) (0.269) (0.306)

0.350] [0.339] [0.816] [0.744] [0.566] [0.560] [0.505] [0.634]
p=0.7

5 0.085 0.077  -0.042 -0.019 0.014 0.006 0.027  -0.038

(0.196) (0.188) (0.237) (0.217) (0.240) (0.209) (0.197) (0.267)

0.362] [0.347] [0.484] [0.444] [0.467] [0.437] [0.395] [0.526]

10 0.158  0.156 -0.079 -0.0564  0.022  0.001  0.027 -0.033

(0.180) (0.176) (0.258) (0.238) (0.266) (0.230) (0.210) (0.302)

[0.309] [0.314] [0.513] [0.470] [0.497] [0.445] [0.409] [0.588]

15 0.212 0.212  -0.115  -0.090 0.017  -0.008  0.020 -0.029

(0.151)  (0.154) (0.282) (0.258) (0.256) (0.235) (0.209) (0.304)

0.271] [0.287] [0.565] [0.506] [0.544] [0.483] [0.433] [0.639]

Median, IQR (in parentheses) and Pyy — Pio (in brackets).
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4.2 Robust Inference

In the previous discussion, I checked that 2SLS and GMM (based on 2SLS) are biased, re-
gardless of the structure of the error terms. For the case of homoskedastic errors, alternative
estimators such as LIML, LIMLF, B2SLS, RLML, RFLL and JIVE are unbiased but more
disperse. Under heteroskedastic errors, only RLML and RFLL remain unbiased. Here, I
analyze inference procecures based on two-sided t-test, using these estimators.

Table 6 presents the results for homoskedastic errors and known reduced form (Design
I). The first three columns show the rejection frequencies for 25LS, GMM (based on 2SLS)
and GMM3 (GMM2 but using Windmeijer’s (2005) corrected standard errors). It should
be noted that the rejection frequencies are close to the nominal size only when both the
degree of endogeneity (p = 0.3) and the number of instruments (K = 5) are small. Other
combinations lead to over-rejection of the null. The result was expected because the bias
of 2SLS (same for GMM2 and GMM3) should be positive (oe, = p > 0); then T, will
be upward biased. For example, under p = 0.7 with 10 instruments, the null would be
rejected 20 times out of 100 in cases where it should be only rejected only 5 times out
of 100. Unbiased estimators have rejection frequencies closer to the nominal size, as was
expected. It is interesting to note that Fuller’s corrections to LIML (LIMLF), and RLML
(RFLL) estimators improve the inference under high degree of endogeneity.

Table 7 shows the results for heteroskedastic errors and known reduced form (Design II).
Here the conclusions are similar to Design I. It seems that the main source of size distortion
is due to the bias of the estimator. In other words, the biases for LIML, LIMLF and B2SLS
are small in this design then the size distortion is also small if the reduced-form is known.

In Table 8 the rejection frequencies for homoskedastic and unknown reduced-form are
presented. The conclusions are similar to Design I, but with higher rejection frequencies for
all the estimators. Finally, in Table 9 rejection frequencies are presented for heteroskedastic
errors and unknown reduced form. Thus, LIML and LIMLF have size distortion; whereas,

B2SLS, RLML and RFLL have rejection frequencies closer to the nominal sizes.®

°It is important to remark that the t-statistics are computed using the standard asymptotics (fixed-
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Table 6: Rejection Frequencies: Design I

K 2SLS GMM GMM3 LIML LIMLF B2SLS RLML RFLL JIVE

p=0.3

5 0.009 0.011 0.007 0.005  0.005 0.005  0.005 0.005 0.003
0.051 0.062 0.055 0.044 0.043 0.043 0.042 0.045 0.034
0.111 0.127  0.108  0.089  0.092 0.088  0.086 0.088 0.083

10 0.027 0.036 0.029 0.014 0.016 0.013  0.014 0.018 0.011
0.074 0.090 0.078 0.046  0.049 0.042  0.044 0.048 0.038
0.121 0.154  0.126  0.080  0.080 0.084 0.078 0.084 0.078

15 0.040 0.0567 0.039 0.015 0.015 0.011 0.014 0.015 0.008
0.099 0.147  0.103  0.051  0.054 0.0564  0.050 0.057 0.042
0.182 0.223 0.168 0.086  0.089 0.085  0.083 0.087 0.082

p=0.5

5 0.026 0.032 0.025 0.014 0.018 0.014  0.012  0.017 0.009
0.080 0.086  0.076  0.041  0.044 0.044  0.042 0.047 0.038
0.139 0.150 0.137 0.083  0.088 0.091 0.075 0.092 0.077

10 0.065 0.084 0.064 0.015 0.019 0.018 0.014 0.018 0.011
0.144 0.168 0.140  0.055  0.060 0.057  0.054 0.058 0.043
0.213 0.238 0.195 0.094 0.098 0.093  0.093 0.096 0.077

15 0.097 0.136 0.099 0.019 0.019 0.023  0.016 0.022 0.016
0.217 0.260 0.190 0.049 0.051 0.049  0.047 0.050 0.034
0.291 0.341  0.295 0.072  0.083 0.091 0.070  0.080 0.081

p=07

5 0.038 0.047 0.042 0.016 0.019 0.018  0.017 0.020 0.012
0.088 0.099 0.085 0.037  0.047 0.039  0.037 0.047 0.030
0.140 0.158 0.142  0.065  0.087 0.078  0.065 0.086 0.054

10 0.1056 0.138 0.098 0.016  0.019 0.018 0.018 0.022 0.012
0.227 0.250 0.204 0.043  0.054 0.0564 0.044 0.052 0.030
0.313 0.334 0.296 0.075  0.089 0.084  0.075  0.088 0.063

15 0.218 0.281 0.199 0.016 0.020 0.019 0.014 0.019 0.010
0.388 0.422  0.347  0.053  0.060 0.064  0.054 0.062 0.039
0.505 0.522  0.445 0.078  0.093 0.099 0.076  0.095 0.075

Rejection Frequencies associated to nominal sizes of 1%, 5%, and 10%.
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Table 7: Rejection Frequencies: Design IT

K 2SLS GMM GMM3 LIML LIMLF B2SLS RLML RFLL JIVE

p=0.3

5 0.015 0.015 0.013 0.008  0.009 0.009  0.008 0.008 0.006
0.051 0.061  0.054 0.039  0.042 0.038  0.041 0.044 0.036
0.113 0.126  0.105 0.088  0.087 0.094 0.091 0.092 0.086

10 0.025 0.034 0.027 0.010 0.012 0.013  0.012 0.013 0.009
0.080 0.095 0.079  0.044  0.047 0.044 0.046 0.050 0.039
0.121 0.154  0.130  0.075  0.080 0.087  0.078 0.083 0.077

15 0.042 0.068 0.036 0.015 0.017 0.016 0.015 0.017 0.011
0.104 0.144 0.102 0.048  0.050 0.063  0.048  0.050 0.047
0.180 0.226  0.169  0.085  0.085 0.093  0.082 0.084 0.083

p=0.5

5 0.027r 0.032 0.025 0.012 0.015 0.014 0.012 0.016 0.010
0.083 0.095 0.078 0.039  0.045 0.047  0.044 0.052 0.041
0.132 0.155 0.143 0.076  0.082 0.098  0.087 0.095 0.078

10 0.068 0.082  0.059 0.013  0.015 0.015 0.016 0.019 0.007
0.145 0.168 0.138  0.050  0.056 0.063  0.056  0.064 0.049
0.214 0.238 0.203 0.081  0.084 0.097  0.085 0.097 0.083

15 0.094 0.141 0.093 0.015 0.017 0.023  0.016 0.017 0.015
0.211 0.252  0.199 0.045  0.050 0.055 0.048 0.053 0.042
0.294 0.340 0.280 0.071  0.076 0.092  0.068 0.077 0.075

p=07

5 0.036 0.046 0.042 0.013 0.014 0.020  0.014 0.019 0.009
0.091 0.105 0.090 0.033  0.041 0.047  0.040 0.053 0.032
0.147 0.167  0.157  0.069  0.078 0.084  0.079  0.090 0.063

10 0.109 0.128 0.093 0.012  0.019 0.023  0.016 0.022 0.011
0.237 0.259 0.203 0.036  0.039 0.061 0.040 0.049 0.034
0.318 0.351  0.295 0.0564 0.068 0.098  0.070 0.090 0.072

15 0.222 0264 0.199 0.015 0.019 0.025  0.020 0.022 0.011
0.389 0.429 0.353 0.045  0.052 0.070  0.056  0.060 0.042
0.495 0.524 0.446 0.070  0.075 0.111 0.077  0.086 0.078

Rejection Frequencies associated to nominal sizes of 1%, 5%, and 10%.
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Table 8: Rejection Frequencies: Design I11

K 2SLS GMM GMM3 LIML LIMLF B2SLS RLML RFLL JIVE

p=0.3

5 0.010 0.030 0.022 0.008  0.008 0.007  0.003 0.003 0.003
0.048 0.095 0.077  0.038  0.037 0.043  0.033 0.035 0.030
0.115 0.170  0.128  0.098  0.097 0.093  0.092 0.098 0.073

10 0.022 0.058 0.037  0.008  0.008 0.007  0.003 0.005 0.003
0.067 0.143  0.105  0.040  0.045 0.042  0.035 0.035 0.027
0.132 0.227  0.157  0.085  0.085 0.087  0.080 0.085 0.073

15 0.023 0.095 0.050 0.012  0.013 0.010  0.008 0.010 0.008
0.108 0.205 0.113  0.052  0.053 0.048  0.035 0.043 0.032
0.160 0.282 0.173  0.098  0.105 0.093  0.082 0.088 0.073

p=0.5

5 0.020 0.045 0.032 0.010 0.010 0.013  0.007  0.007 0.005
0.080 0.125  0.095 0.043  0.047 0.048  0.042 0.045 0.035
0.143 0.183 0.148 0.087  0.097 0.098  0.088 0.103 0.073

10 0.053 0.113 0.070 0.018 0.018 0.018 0.012 0.015 0.007
0.143 0.228 0.148 0.053  0.055 0.063  0.042 0.048 0.032
0.227 0.302  0.218 0.082  0.092 0.095 0.088 0.103 0.087

15 0.093 0.195 0.098 0.015 0.018 0.022  0.013 0.013 0.012
0.218 0.340 0.220 0.052  0.057 0.062  0.043 0.057 0.038
0.318 0.415 0.295 0.092  0.093 0.093  0.087 0.098 0.073

p=07

5 0.063 0.087 0.060 0.020 0.025 0.022  0.018 0.023 0.008
0.142 0.168 0.132  0.067  0.072 0.067  0.062 0.082 0.043
0.210 0.250 0.195 0.098  0.118 0.107  0.100  0.123 0.080

10 0.157 0.215 0.143  0.022  0.027 0.022  0.022 0.032 0.015
0.280 0.368  0.252  0.062  0.082 0.077  0.068  0.085 0.057
0.370 0.430 0.335 0.102  0.117 0.105  0.103  0.125 0.098

15 0.295 0400 0.242 0.025  0.030 0.032  0.020 0.030 0.025
0.475 0.547  0.423  0.058  0.067 0.075  0.058  0.075 0.055
0.558 0.610 0.523  0.082  0.097 0.102  0.097 0.110 0.082

Rejection Frequencies associated to nominal sizes of 1%, 5%, and 10%.
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Table 9: Rejection Frequencies: Design IV

K 2SLS GMM GMM3 LIML LIMLF B2SLS RLML RFLL JIVE

p=0.3

5 0.018 0.037r 0.028 0.007  0.007 0.012  0.008 0.013 0.005
0.065 0.083 0.060 0.038  0.042 0.048  0.050 0.052 0.037
0.107 0.142  0.108  0.067  0.070 0.095 0.088 0.095 0.082

10 0.023 0.058 0.038 0.003  0.005 0.010  0.008 0.012 0.000
0.093 0.133 0.082 0.018 0.022 0.047  0.047 0.045 0.037
0.145 0.202  0.137  0.087  0.058 0.093  0.083 0.093 0.080

15 0.042 0.125 0.053  0.005  0.005 0.008  0.013 0.017 0.005
0.132 0.223 0.128 0.015  0.015 0.040  0.045 0.050 0.033
0.200 0.282 0.187  0.045  0.050 0.100  0.088  0.097 0.075

p=0.5

5 0.030 0.068 0.037  0.007  0.007 0.013  0.01v  0.020 0.007
0.083 0.113  0.093 0.023  0.025 0.053  0.052 0.070 0.037
0.152 0.178  0.147  0.058  0.067 0.090 0.105 0.112 0.085

10 0.065 0.120 0.078  0.003  0.003 0.008 0.015 0.018 0.008
0.167 0.225 0.155  0.012  0.012 0.043  0.053 0.065 0.033
0.247 0.308 0.223  0.038  0.047 0.103  0.090 0.110 0.082

15 0.128 0.248 0.143  0.002  0.003 0.013  0.020 0.028 0.015
0.277 0.385 0.260  0.008  0.008 0.048  0.048 0.062 0.040
0.365 0.480 0.360  0.020  0.022 0.095  0.098 0.113 0.080

p=07

5 0.068 0.088 0.063 0.013 0.018 0.017  0.023 0.035 0.017
0.137 0.170 0.148 0.037  0.045 0.062  0.062 0.088 0.037
0.202 0.237 0.192  0.055  0.073 0.100  0.100  0.120 0.057

10 0.172 0.240 0.168 0.010  0.012 0.027  0.022  0.027 0.023
0.313 0.390 0.305 0.022  0.025 0.055  0.053 0.063 0.045
0.413 0.462 0.390 0.033  0.045 0.107  0.078 0.110 0.065

15 0332 0462 0.325 0.003  0.003 0.025  0.023  0.028 0.030
0.508 0.595 0.468 0.008  0.012 0.073  0.048 0.063 0.053
0.597 0.668  0.578 0.023  0.028 0.105  0.073  0.100 0.082

Rejection Frequencies associated to nominal sizes of 1%, 5%, and 10%.
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5 Conclusion

I have reviewed the bias of Instrumental Variables estimators under homoskedastic and
heteroskedastic errors. Using Bekker’s (1994) alternative sequence, the asymptotic variances
for these estimators were also computed. However, the focus of the discussion was based
on inference using the standard asymptotics, and robust standard errors, following White
(1980).

I derived an Edgeworth expansion of the robust ¢-statistics that can be used for fur-
ther correction on the inference obtained by the standard asymptotics. In particular, the
expansion shows that the distortion of the statistics is given by the normalized bias of the
estimator and the missing arguments in the asymptotic variance. If the estimator is asymp-
totically biased, then the t-statistics are biased in the same direction as the estimator. In
particular, inference using 2SLS, GMM2 or GMM3 should not be reliable.

Monte Carlo simulations show that asymptotic results are reasonable approximations
for the behavior of the estimators in finite samples. In particular, LIML and B2SLS are
biased under heteroskedastic errors, whereas RLML and RFLL are not. These biases imply
a size distortion on the t-statistics. In contrast, asymptotically unbiased estimators such
as RLML or RFLL have the lowest size distortion. In particular, RFLL has the closest
rejection frequency to the nominal size.

JIVE exhibits finite-sample bias under homoskedastic and heteroskedastic errors, even
when it is theoretically unbiased. Also, its dispersion (measured in terms of IQR and
Pyy — Ppp) is the largest among all the estimators in the analysis.

It is recommended to correct the inference obtained by 2SLS or GMM based on 2SLS
computing the adjustment proposed in Section 3. In particular, the technique proposed
there can be extended to non-linear models for which other unbiased estimators are not

available or are difficult to compute (such as the Continuous Updating Estimator).

instruments). However, under many-instruments standard errors, Hausman, Newey, Woutersen, Chao, and
Swanson (2007) report size distortion for LIML and LIMLF, but not for RLML and RFLL (B2SLS is not
included in the analysis).
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A Appendix

A.1 Lemmas

Lemma A.1. Consider 3% 8, e=y— Bz, P = Z(Z'Z)71Z" and Py; the (i,j) element of
P or Pj = 2/(2'Z)"12;, then

- 1 /5 1 ! 1 —
Lk CNTEE), BN Be), S LaAn+ =3 B
n n n

=1 =1 =1
¢ Pe 'Pe p 1« z'Px
- ZP“E - 2, - ;P E(vie;), and - ' Am+ — z; P, E(v )
1= 3

Proof. In the first row, the first argument follows by the Law of Large Numbers, for the
second term in the same row E(x;¢;) = E[(7'z;+v;)e;] = E(v;e;), the last equality is justified
by the fact that Z is a valid instrument. With a similar argument and using Condition 2.1
the third argument in that row can be proved.

For the first argument in the second row, the expression E(e;P;je;) = P;;E(e?) when
i = j and zero otherwise. For the second term in that row, note that E(z;Pije;) = E[(n'z; +
vi)Pije;| = m'E(ziPje;) + E(Pijvie;) = PijE(vie;), which can be reduced to E(z;Pie;) =
P;iE(vie;) and zero when ¢ # j. Finally for the last term, E(z; P;jz;) = E[(?T/Zi—FUi)PZ‘j(Z;-W-F
v;)| = 'z Pij2im+ B 2 Pyjvg) + E(vi Pij2im) + E(vi Pijvg) = 7' 2 Pyjzim+ Py E(viv;), which
yields E(x?Py;) = 7’2 Pyzim + Py E(v?) when i = j and W’ziPijzé-ﬂ for ¢ # 7. Adding both

terms,

n n

' Px », 1 1 &
nZZﬂ' 2 P;j jﬂ'-i- ZP”E —7T/A7T+nz;P¢¢E(Ui2)
1=

i=1 j=1

O

Lemma A.2. Under the same conditions as in Lemma A.1, the following relations hold
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x' Py 1 « y' Py 1 «
2, Br'Ar+ - > PiE(ui) , and — 2, Br' A+ - > PiE(uf)

i=1 i=1

n

Proof. Using the previous results I have E(x;P;;y;) = Elz;Pij(fz; + )] = BE(z Pjxj) +
E(x;iP;jej) = B’ zZPZ]z 7+ P;; E(vivj)] + Pij E(viej), which is ﬁw'ziPijz;W when ¢ # j, and
E(z:iPuy;) = B[r'zi Puzim + Py E(v?)] + Py E(vie;) when i = j. Adding both terms,

Py L p= ZZ?TZP 2hm 4 = ZP [BE(v?) + E(vie;)]
n 1+ 1) 9 11 -1

11]1

= Br'Am+ = ZPM BE(v?) + E(e;v;)]

Note that e; = u; — Bv; then E(e;v;) = E(uv;) — BE(v?) or E(uv;) = E(e;v;) + BE(v).

For the second expression, E(y;Pijy;) = E[(ziB + e;)Pij(z;iB + ¢;)] = BE(x;Pyjz;) +
BlE(z;Pje;) + E(z;Pije;)] + E(eiPijej) = B[’ zszz 7 + Py E(vivj)] + B[P E(viej) +
Pj;E(vje;)|+ PijE(eiej), which yields E(y?Py;) = B%[n' 2 Pyizim + Py E(v2)] 4+ 28P; E(vie;) +
P;;E(e?) and ,3271',2’13]2]7[' when i # j, then

'P 1
yTy Pog2Z Z;X;m 2T = ZPN [B2E(?) + 2BE(vie;) + E(€2)]
i=1j
= Br'Ar+ - ZP,, [B2E(v}) + 2BE(vie;) + E(2)]
Finally, note that u? = e? + 28e;v; + %v?. O

Lemma A.3 (Wishart Distribution). If U ~ N(0,Q) and Z = U'PU then Z ~ W (Q, K)
(Wishart) where K is the rank of P. Define w;; the (i,7) element of Q. Then the first
two moments are defined as follows: E(zij) = Kwij, Var(zj) = K(w + wiiwj;j) and

Cov(zij, 2km) = K(witwjm + wimwiik)-

Proof. See Becker (1994) or Poirier (1995). O
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Lemma A.4 (Optimal Linear Combination). Let by and by two zero mean estimators with

variances a% and 0'% and covariance 012, then the variance of b= aby + (1 — a)bs is

14 Var(b) = a*Var(by) + 2a(1 — a)Cov(by, by) + (1 — a)*Var(by)

= d%0? +2a(1 —a)oyp + (1 —a)’o3
It is minimized when a = (05 — 012)/(0? — 2012 + 03) then at the minimum value
V. = (d{03 —012)/(0] — 2012 + 03)
Proof. The First Order Condition (FOC) is

((;Z = 2a07 + (2 — 4a)o12 — 2(1 — a)os =0

using that it is easy to get the optimal a. Now I will check the Second Order Condition
(SOCQ). First, consider p = 012//0305 or 012 = po102, then the SOC is

0*V
W = 20’% — 4019 + 20% = 2(0’% — 2012 + O’%) = 2(0% — 2poi09 + G%)

By Cauchy-Schwarz inequality —1 < p < 1, then the minimum value of the right expression
occurs when p = 1, which implies that 92V /da? > 2(0? — 20109 + 03) = 2(01 — 02)% > 0,

then a obtained from the FOC is a maximum.

Taking the optimal value for a into V
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o3 -0\ , 05 — o012 o} — o1
Vo= 2 5] o1 +2| = 2 2 2 | 012
oy — 2012 + 05 0y — 2012 + 05 o1 — 2012 + 03

ol —0o 2
1 — 912 2
01 — 2012 + 05
4 2 2\ 2 2 2 2 2 2
(09 = 20120% + 075)07 + 2012(070% — 07012 — 05012 + 07)
(02 — 2013 + 03)2
4 2 2\ 2
(07 — 201201 + 079)0
(02 — 2013 + 03)?
2 4 4 2 2 2 2 2 2 2 3
2 2
(of — 2012 + 03)?
2 2/ 9 2 2 (.2 2
0105(05 + 07 — 2012) — 079(05 + 0] — 2012)
(02 — 2012 + 03)2

2 2 2
0103 — 0719

+

O’% — 2019 + a%

A.2 B2SLS and LIML: Homoscedastic Errors

In this section consistency and asymptotic normality are proved for B2SLS and LIML
under normal homoscedastic errors and Condition 2.3. With the same set of assumptions
it is proved that LIML has the minimum variance relative to a linear combination between

the forward and reverse B2SLS estimators as it is suggested in Hahn and Hausman (2002).

Consistency

In this section consistency will prove for B2SLS and LIML under the assumption of ho-
moscedastic errors. Based on Lemma A.3: E(u'Pu/n) = (K/n)o?, E(v'Pu/n) = E(u'Pv/n),
which is (K/n)ow and E(v'Pv/n) = (K/n)o?. Therefore E(e'Pe/n) = (K/n)o? and

E(z'Pe/n) = E(v'Pe/n) = (K/n)oe,. Using probability limit (plim) to stand K,n — oo

and K/n — « it is clear that
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n

) w2 zm . v' Pv
= plim + plim
n n

= 7An+ ao?

/ /] /
plim <$Pa:> ~ plim [(Trz +v)P(z7r+v)}
n

lim <x/Py> _ Llim |:(7T/Z/+’U/)P</BZ7T+U):|
n n

!.! /P
— Gplim <7T z zw) 4 plim (’U u>
n n

= Br'Arm + aoy,

plim <y/:y> = plim <<ﬁﬁ/z/+ul)P(527+U))

n

1! /P
— #%plim <7r : Z”) 4 plim <“ “>
n n

2
= [r'An+ ac?

Also, plim(z'z/n) = 7' Ar + o2, plim(z'y/n) = Br' A + 0wy and plim(y'y/n) = 27’ An +
o2. Then 2SLS is inconsistent for any o # 0, but consistent for o = 0 which is the traditional
asymptotics.

@(qu - 6012;)

' AT + ao?

:ﬁ_|_

plim(Basrs) plim <x’py/n> _ B! AT + oy

' Px/n ' Am + ao?

For LIML the minimized objective function (minimum eigenvalue) ¢ ~ K/n 2 « and

LIMLF is asymptotically equivalent to LIML. For B2SLS the correction factor is K /n, then

) z' Px x'x . x' Px . x'x
plim —q— plim —aplim | —
n n

n n
= 7'A7n+ao? — a(n' A + 0?)

= (1-a)r’Arm
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x' Py x'y

(20012

: (y’Py
plim ( —= —
n

y/y)
q¢—
n

. (2 Py . ([ 2y
plim —aplim | —
n n

(B’ AT + aow) — a(Br’ AT + ouy)

(1 —a)Br'Ar
vy

o (12) ()

B’ Ar + ac? — o(f%7' At + 02)

y' Py
n

(1—a)f%r'An

Using these results is clear that the forward and reverse B2SLS as well as LIML and LIMLF

are consistent estimators.

Asymptotic Distribution for B2SLS

If the error terms are assumed to be jointly normal distributed then the properties of

Wishart distribution (see Lemma A.3) can be used to get the asymptotic variance of the

B2SLS estimator.

'P

nVar(u u) =

n

!
nVar(UPU> =

n

/
nVar<UPU> =

n

! !
nCOU<qu7uPu> _

n n

'P 'p
nCov(u v7v ’u) =

n n

Using these results and the fact that e =

2K(03)2
n

2K(012)2
n

K (o4, +0403)

UJU

— 2a(0?

)2

— 2a(0?

)2

£90) o (o2, + ota?)

2K0w0i2
n

2K 2
Ouv0;

n

— 20401“,012

— 20«7%0?

u — v and M =1 — P it is possible to compute
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/ /P /P /P /P
nVar (U Pe> = nVar <U u) —28nCov (U u’ v v) + (*nVar (U v)
n n n n n
— o2, +020%) — 4aBoyu,0 + 2032 (02)?
'P
AVar <U e)
n

nVar <v,i\l/[6> — (1- O‘)(U?w + ‘7505) —4(1 - a)ﬁauvag +2(1 - O‘)62(Ug)2

It is clear to see that Var(v'Pe/n) = [a/(1 — a)]Var(v'Me/n). Defining oe, = 0y — B2,

the asymptotic variance AVar(v'Pe/n) can be written as

AVar(v'Pe/n) = alo?, +0202) — 4afBoyu,02 + 2032 (c2)?
= alo2(0s — 200y + B%03) + 0oy — 28040 + 57(07)?]
= alolo? + (0w — Bol)?]

2 _2

= « (O’UUe + crgv)

Applying some algebra the B2SLS, LIML or LIMLF estimator can be decomposed as follows

. _ #'Py—qa'y _ fr'Px+a'Pe—q(fr'z + a'e)
g = ' Px — qx'x ' Px — qr'x
_ B('Px —qx'x) + 2'Pe — qz'e 5 x'Pe — qgx'e
' Px — qx'x ' Px — qx'x

Define N = (2’ Pe—qa'e)/n = [7'Z' Pe+v'Pe—q(n'Z'e+v'e)]/n = (1—q)n' Z'e/n+ (v Pe—
qu'e)/n, then nVar(N) =nVar[(1—q)n'Z'e/n+v'Pe/n—qv'e/n] = nVar[(1—q)n'Z'e/n+
(1—q)v'Pe/n—qu'Me/n) = n|[(1—q)*Var(x'Z'e/n)+(1—q)?Var(v' Pe/n)+¢*Var(v' Me/n)]

(given that M P = 0 and the third moment is zero). With this
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2
nVar(N) = (1-q)? [nVar(w'Z’e/n) +nVar(v'Pe/n) + { E q)2nVar(v'Me/n)}
' Z' Zm 2(1 — «
= (1—gq)* [ zZ o2 +nVar(v' Pe/n) + WnVar(v’Pe/n)]
2, (1-a)?|o?n'Ar + AVar(v'Pe/n) + Of(_l;)SO)éAVar(v’Pe/n)]

= (1-a)?|o*7Ar+ AVar(v' Pe/n) + fAVar(v’Pe/n)]
-«

= (1-a)|o?r'An + fAVar(v’Pe/n)}
-«

[ «
= (1-a)?|c?rdAr+ 7 (0303 + agv)]

From the previous results (z/Px/n — gz'z/n)?> L [(1 — a)7’Ax]?, then the asymptotic

variance for B2SLS will be

Uz o Ugag + agv
VBasLs =

“AT  1—a (! Ar)?
Finally, the asymptotic distribution for B2SLS will be /ﬁ(@BQSLS —B) ~ N (0,Vpasrs)-

In a similar way, the variance for the reverse B2SLS (R2SLS) is

v _ Ug n o 0302 + Ugu
R2SLS = 2iAr T 1—a B2(m Am)?

and the covariance between these estimators is®

2 2
O¢ + « |:O'uv0€ + Ueuo'ev:|

mAr 11—« B(m! Ar)?

Cr=

Asymptotic Distribution for LIML

Following Newey (2004), Theorem 2, it is possible to get the asymptotic distribution of
LIML under homoscedastic error using the sandwich variance.

First, consider the FOC for LIML which is 2/ Pe(e’e) — 2’e(¢/ Pe) = 0, where e = y — B

5See Hahn and Hausman (2002) for details.
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Defining D = 2/ Pe/n—(¢/ Pe/e'e)x’e/n it is clear that under optimal 3, D is zero. Moreover

0D /03 can be computed as follows

aiD__x’Px_i_:c’ix e’ Pe _L’G 9 e'Pe
B n n ee n |08 \ fe

The derivative in brackets is the FOC for LIML which is zero under ﬁ, then

8- Ta

oD  a'Px 2z (e’Pe>

ee

Using the previous results

glﬁ) 2 —(#'An 4+ ac?) + a(n' A 4+ 02) = (a — 1)’ Ax

For valid instruments plim(z’e/n) = plim(v'e/n) = e, then 4 = 2'e/e'e L 0ey /02 = 7.

Taking the fact that e/Pe/e’e ¥ a and defining w = v — e, then

. ¢’ Pe (2'e — 'ey) €' Pe
VY =) —— = NCT

e'Pe (x — ve)'e
e'e N4
(zm4+w)e

NG

=

These results can be used to compute the distribution of D as follows

(x —ve)'Pe —a ¢’ Pe
— vy =) —

4 (zm+w) Pe (zm +w)'e

I
(zm+w) (P —al)e

NLD

J/nD

Using the expression above, it is possible to compute the variance for /nD as follows
o2[(1 — a)*7’'Ar + a(1 — a)E(w?)], where E(w?) = o2 — 02,/02. Using the sandwich

v

theorem, the variance for LIML is

38



-2
Viimr = (Zg) or [(1 —a)’n’'Ar + a(l - a) (‘7121 - Z%)]
(1—a)*r'Aro? + a(l — a) (o202 — 02)
- [(1— )’ An]?
o; a [oy0e -0,
- A Tisa [ (! Amr)? ]

Finally, the asymptotic distribution for LIML is \/E(BLIML —B) ~ N (0,Virmr).

Optimality

In this section, I will show that asymptotic variance for LIML (Virasr) is the minimum
variance that can be obtained from a linear combination between the B2SLS and R2SLS

(reverse B2SLS). Define

b= abpasrs + (1 — a)bRQSLS

and its asymptotic variance V' = Var(b). Using the result obtained in Lemma A.4 the

optimal weight for a is

B Vrosts — CB R
VBasrs — 2CB.r + Vrasrs

a

Using the results obtained for B2LS, the denominator for the minimum variance (V') is

2 2.2 2
o) Q 0,0 +0
Vv —920C Vv —_ e v-e ev
B2SLS B,R T VR2SLS Ar "1 4 [ (7 A2 }
_9 Ug n e} Uwag + OecuOev
TAr  1-—« B(m! Ar)?
+ Jg « Uiag + agu
mAr 1 —a | B3 (7' Ar)?
_ e} 012)02 + agv _ auvag + OeuOen 0302 + Ugu
1—a| (7Am)? B(m! Ar)? B2(m Ar)?

and the numerator for V is
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2
O¢

0 —l—o

VBQSLSVR2SLS—0123,V = { ’A7r l—a[ ( /Aﬂ') ]}
» O' —I—a
/ATI' 11—« (! Am)?

2 2
Oc qua + OeulOen
7T’A7T 1 — (! Amr)?
2 2 2 2 2
— a |: vTe 2+ Oev 20'1“;0'8 + Oculev | 0,0 + Ueu:| (o

1—a| (7’Am)? B(w! Ar)? B2 (m'Am)? | «'Ax
N < a >2 [0303 + agv} [agag + Jgu]

1-—« (! Am)? B2 (! Amr)?
B < a )2 B [auvag + Ueuaev] 2

11—« B(m! Ar)?

then the minimum variance is

o 2 030’2-1—0’621, Uiag_"o'gu _ quU§+Uqueu 2
o2 N 1-a (m! Am)? B2(m' Amr)? B(n’ Ar)?
Ay o [U 02402, 9OuwOi+oeuder | 0302 +a§u}

T-a | («/An)? B(r' Ar)? EECOE

e
Ug + [O‘/(l - 04)] [ (agag + Uev)(guae + Ueu) - (qugg + Ueugev)Q ]
' Am (n' Amr)? [32(0303 + Ugv) - QB(quUg + Oeulen) + (U%Jg + Ugu)

Note that gy = oy — 603 and o, = O‘Z — Boyy, then ogyy — BOey = O‘Z — 200y —|—ﬁ203 = Ug.
Also, 0202, — 2000y + 0202, = 02(02, — 280,02 + 3202) — 204, (020yy — Bo20? —
Bon, + Bowoy) + op(oy — 2B0woy + B203,) = ou0) + Bojoy — 2805000 + 2501% -
3 = 0a)(on — 280wy + B207).

The denominator of the last expression in brackets is 3?(c202 + 02,) — 28(0uwo? +

el
u uv 62 Oy uv_(ago—

Teulev) + (02‘7 + Jgu) = Ug(ag — 2804 + ﬂzag) + (Ugu — 2f0eu0er + 2 gv) = U:zl +

(Oeuw — Boew)? = 202, and its numerator (0202 + 02,)(0202 + 02,) — (Cuw0? + TeuOer)? =

od(0202 — 02,) + 02(0202, — 2040 euTey + 0202,) = 202(0202 — 02,), then the expression

2

is just (0202 — 02,). With that the minimum variance is




Finally, note that 0202 — 02, = 02(02 — 2P0y, + 3°02) — (0uy — B02)? = 0202 — 02, then

V' is exactly the same as the asymptotic variance obtained for LIML (Vzrarz).

A.3 JIVE and RLML

In this section, I show the asymptotic distribution for JIVEs (forward and reverse) and
RLML under general errors.

The robustness to heteroskedasticity of RLML is obtained modifying the numerator of
the objective function for LIML. Define R = P — diag(P), the new objective function for
RLML is e, Re./ele.. In the similar way as LIML the value which minimizes this function
(r) is the smallest eigenvalue of (W'W)~'W’'RW, then the estimator can be written as
'Ry — ra'y

BrRLML =
o' Rx — ra'x

As the same as LIML and LIMLF, a finite sample modification can be applied to RLML.
The modified RLML (called RFLL by Hausman, Newey, Woutersen, Chao, and Swanson
(2007)) can be defined as

'Ry — sx'y

BRFLL = ——5———
o' Rx — sx'x

where s = [(n+ 1)r — 1]/[(n — 1) 4+ r]. In addition, the JIVE proposed by Angrist, Imbens
and Krueger (1999) is defined as’

) _ 2'Ry

JIVE = o

It is clear that RLML is similar to JIVE when r = 0. I will show next that » 2 0, then
the relationship between RLML and JIVE is similar to the one between LIML and B2SLS
under homoscedastic errors and BAA (many instruments).

For the purpose of efficiency I will consider as well the reverse JIVE, which is defined as

1/Brsrve = v Ry/2'Ry. Also the regular JIVE will be called forward JIVE following the

"Here I am using JIVE2 in nomenclature of Angrist, Imbens and Krueger (1999).
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nomenclature of Hahn and Hausman (2002).
In the following, I will consider the model (1), the number of instruments (K) grows

along with the sample size (n) but K/n — a (BAA) and Condition 2.1.

Consistency of JIVE and RLML

Using Lemma A.1 it is easy to prove that & Re/é’e 2, 0. Moreover, adding the results

proved in Lemma A.2 it is clear that

. ' Ry ) 1 e e
plim - = plim ﬁZinRijyj

i=1 j=1

1y
= phm EZZﬁT{'/ZZPUZQﬂ'
i=1 j#i
= pr'A*n

. 2’ Rx . 1 e
plim - = plim - E E riRijxj
) 1
= phm g E E ﬂ/ZiPijz;ﬂ'

= 7'A*r

) ley ) 1 n n
plim - = plim EZZ%RU%

i=1 j=1

1y 2
= plim EZZﬁ W’ziﬂjz}ﬂ
i=1 j#i
— 627T/A*7T

Theorem A.1. Under BAA and general errors, JIVE (reverse and forward), and RLML
are consistent estimators for 8 in model 1.

Proof. For JIVEs the proof is trivial taking the results presented above. For RLML the
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consistency holds given that r Zo. O

Now, I will compute the Asymptotic Distribution for the forward and reverse JIVEs and
for RLML. It will be clear that the asymptotic variances for these estimator are very close
to the ones obtained for B2SLS and LIML under homoscedastic errors, then the estimators

are not losing efficiency in that case.

Asymptotic Distribution for JIVE

For the asymptotic distribution, consider the following relations

. L 2'Re 1 L/ Re
\/ﬁ(ﬁJIVE_ﬁ):\{E and \/ﬁ< _ﬁ>:\{ﬁ

/
o' Rx BrITVE

By Lemma A.1 and Lemma A.2, it is clear that the numerators of the expressions above
are zero, then Var(z'Re/\/n) = E[(x'Re/\/n)?, Var(y'Re/\/n) = E[(y'Re//n)? and
Cov(a' Re/ /i,y Re/ /i) = El(a'Re/\/i)(y/ Re/ /).

Lemma A.5. Consider R = P — diag(P).
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n n

E(x/Re;/Rm> = F ;ZZ;Z Rl]ejkaklel

n
= Z Z 7'z, P P E(e )
JF kEj
1 n
+ Z Y PAEW])E(E) + E(vie) E(vje;)]
i=1 j#i
/ / n n n n
y' Ree’ Ry 1
G I 5 9) 39 9) s e v
i=1 j=1k=1I=1

- ﬁ2lzZZ7TZle7T P;jrE(e )
JF#L k#j

=1

+% Z Z Pz% [E(Uf)E(ei) + E(uie;) E(ujey))

i=1 jti

y' Ree’ Rx I o= = = e
E <n ) = F g Z : Z Z yiRijejackRklel
i=1 j=1 k=1 [l=1

= pB-= > w'ziz Py Pk E(e})
i k#j
+

Z
by

i=1

Z E(uv)E ) + E(uie;) E(vjej)]

J#i
Proof. For the first expression, note that E(x;R;jejxiRie;) = n'zizmRijRipE(ejer) +
R;j R E(viejevy) (under normality Rij Rz, mE (vieje) = RijRipzimE(ejevy) = 0). Also,
note that F(eje;) is not zero when [ = j, which yields E(e?). Moreover, E(viejevy) =
E(vf)E(e?) when k£ = i and [ = j, but also E(viejevr) = E(vie;)E(ejvj) when | = i and
k = j, then E(x;R;jejxpRye;) = W’ziz,’ﬂPiijjE(ejz) + PlZJ[E(vZQ)E(e?) + E(vie;)E(ejvj)]
when ¢ # j and k # j.

For the second expression, E(y;Rije;yrRrie;) = Rinlk[ﬁ2E(:ciejelxk) + BE(ejejeixy) +
BE(ziejeer) + E(eejere;). The first argument is exactly the same as the previous expres-
2

sion, then the new terms are R;; R, E(xiejeier) = Rij Ry E(viejeer) = R?jE(viei)E(ej) (us-

ing the normality assumption) and R;;j R, E(e;ejere;) = R?jE (e2)E (e?) (the fourth moment
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is multiplied by zero). Then E(y;RijejyrRuer) = n'ziz,m Py P E(e3) + PLE(e)E(e3) +
QBE(vieZ-)E(ejz) + B*E(v? )E(ej) + B2E(vie;)E(vje;)]. The latter expression can be writ-
ten using the w error instead of v as follow E(y;RijejyrRrie;) = ﬂ,ZiZ’,CFRijkE(E?) +
Pl-zj [E(u?)E(e?) + E(uie;) E(ujej)], using e; = u; — [v;.

For the last term note that E(y;RijejxrRie;) = RijRik[BE (xiejeixy) + E(xiejerer)] =
' 22,7 Pij P E(e; )+P2[ (viei)E(e?)+ﬁE(v~2)E(ez)—i—ﬂE(viei)E(vjej)}. This is also equiv-
alent to E(y;RijejxiRue;) = ' 2z, mP;; PiL E(e )—|—P2 [E(ulvl)E(eg) + E(uje;)E(vjej)]. O

Theorem A.2. Under BAA and general errors, the asymptotic variance covariance matriz

for JIVEs (reverse and forward) is composed by

. Vo+ G*Vo + Vo
nVar(Bsve) = AT nVar(l/Brirve) = B2 (' Avrr)2 and
R . BVo + V3
1 = A2
nCov(Brve,1/BrIIVE) B(x' Ar)?
where
Vo =i { DR RELIICE
1 j#i k#j
N ERS
Moo= Jm {n " PAIE(DE(E) + Blvie) E(vye,)
i=1 j#i
: RS 2 2\ (02
Va = K,lér—r}oo {n Z P E(ui) E(e7) + E(uies) E(uje;)]
i=1 j#i
. 1 - 2 2
Vs = K,lﬁllloo n Z Z BB (uiv) E(ej) + E(uie;) E(vje;)]
i=1 j#i
Proof. The proof is based on the results presented in Lemma A.5. O

Asymptotic Distribution for RLML

Following Newey (2004), the asymptotic distribution for RLML can be obtained using the

First Order Condition
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0 = —.%'/Réd(ézléd)-i-(éleéd):E/éd
0 - _@Rea <égRéd> veq _

VI
n €,€d n

Note that by construction H is zero under the optimal choice of . In addition,

(97H B _m’Rx_F:U’ix e’ Re _:ie 2 e'Re
o n n ee n |08 \ €e
Rx 'z (e’Re)
- _ + 2= .
n n e'e

LN
Last line is obtained using the facts that ¢’Re/e’e 2> 0 and

élfl.T p / 1 1 ( 2)
— > T AT+ — E E(v; .
o nlm n 2 v;
i

For the asymptotic variance consider

JiH = z'Re B e'Re :ie _ 2'Re B L% ¢/Re  a'Re B €' Re
~ Vn \ee )V i \de) Va vn m
' Re e'Re x —ve)' Re ' Re
— =+ 0,(1) = (o= ye) Re +0p(1) = +Op(1)

ViV a NG

For the variance of v/nH consider that &; = x; —ye; = 2w + w;, where w; = v; —ye;. From

the results obtained for JIVEs the asymptotic variance for RLML is

Vo ol e [ 350 350 PRE G E(E) + Euien) Euyey)]
(! A*r)?

Veomr =

The main difference between this result and the one obtained for JIVE is the error w.
Note that under homoscedastic errors E(w;e;) = E[(v; — vei)ei] = Oey — 702 = Oy —
(0ep/02)o? = 0 and E(w?) = 02 — 02,/02, then the second expression in the numerator

reduces to (0202 — 02,)[(K/n — (1/n) Y7, P2
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A.4 Proofs
Proof of Theorem 2.1

Note that 3 — 3 = (2/Se)/(2/Sz), then

x'Se I 1o~
— 72233151]@]_77 EZZZZ'SU(E]' —|—EZZSijviej

i=1 j=1 i=1 j=1 i=1 j=1
and
1 i n n -1
'Sz~ 1
() = PSS
| i=1 =1
- -1
S 4 £ 0 3T EEED 3) o RORE S ) pEe
L n =1 j=1 n =1 j5=1 n =1 j=1
-1
 rar s 2 Srn 4 L3S S0, +0< )
z—l 7=1 =1 j=1
122005 D Sz + 200l Do Sigviv
' Am n(w’ Ar)?

with the previous results and Condition 2.2

'S -1 g 1 1M Lo
(xn:C) (xn€> = o A 7T, ;ZZZZSUB] +EZZSZ]U181

i=1 j=1 i=1 j=1

1 9 n n 1 n n 1
—m EZZSijw’zivj EZZS”&Z;W +Op <n>

i=1 j=1 i=1 j=1

Taking expectation

R 1 - 1
EB-p) = M;SﬁE(ewi) - ’Aﬂ' ZZ%SZJZJE eivj) | ™+ O <n>

i=1 j=1

Under Condition 2.3, only the first term in the expression does not converge to zero.
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Proof of Theorem 3.1

Using the Edgeworth expansion for M presented in the chapter, and the standard asymp-

totic approximation for 2SLS estimator, which is:

We can approximate the robust asymptotic variance as follows:

v = [P (St [ 2252

i=1

_ {(m’Z/n)(Z’Z/n)_l] (1 Z”:éQ | ,) [(Z’Z/n)_l(Z’x/n)]

(z'Px/n) n e (x'Px/n)

i=1
PAAT (1 5, ) [A'Ar 1
B [ ' AT ] (nzeizizi [ ' A ]+Op (n)
= ! 7’ lZegz'z{—2(3—ﬁ)lie-wzzf T
(7! Am)? n L n B
R SR PSS B o BT 1
+(7T’A7r)27r [(ﬂ B) n;xizzzi T+ Op "
B 1 1 5 5 T (I V1
= (W/Aﬂ-)z [nZeiTi 27T,A7T <ngzz€z> n gezszi
1 29 o L 2 4 1
- €5 QnZ(W'AW);eiTi + 0, -
11 9 9 272 1
S 22| T -
(W’Aw)Qn;e’T [ TL(7T/A7T):| +Op <n>’
2

where 77 = 7'z 2]

Lo, (;)

n n

_ 1
 (n'Am)?

Proof of Theorem 3.2

By Taylor expansion around zg = 0 it is clear that
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1+2 VIitzo 2/(1+ 2)3 0

— (2 — 2)? 2 —20)?

3 (1+%P( 0)?+ O (( 0)%)
1 3

1—§z+§z2+0(22)

where the last equality is obtained under zy = 0. Applying this argument to T,

~2 2

g% — o=

1+< £ 5)
%5

r o~ [B-v+6-5)

—-1/2

X
N
+
=
Q11
|
=
_ 1
—_
|
N | =
VR
Q>
N
R |
| o
Q
™[N
N——
+
| w
7 N
Q»
N
|
Q
SIS

2 2
<)
oz (%8 sz (T8 L (5-F\ 1(8-F\ (%%
= Zn 2 o2 * 8 o2 + =

B8 8

_ 2
03 2 o3 O'B
where higher order terms were discarded. Finally, the result is obtained replacing A and B

Proof of Theorem 3.3

First, we consider the case of biased estimators

In particular the moments of V(3) for
2SLS under homoskedastic and symmetric errors are

N 277 1
BV = G 2P 1] <o ()
e (i)
2 202 1\ o2 1
T PAr  nr'An +0 <n> - m'An +0 <>

n

1 n
R

(m'Am) n P

1
2

49



EVOP) = x| S ECr +23 S B | +0(+)

4

_ __ hoe ~ LN 2.2 1

- n2(7T/A7T)4 ;TZ—FZZTZTJ +O(n>
Koo ] 1

- <7r'A7r>2+O<n)

where k represents the excess of kurtosis of the error terms. For the case of errors normally

distributed k£ = 3. From previous results B2SLS, LIML and LIMLF are asymptotically un-
biased under homoscedastic errors and many instruments. However, LIML is asymptotically

more efficient than B2SLS with asymptotic variance

® Do

e

7r’A7r+1—a

Virvr =

~

o? « [Uga
(

— o2
7l Arr)? }

Using previous results, the following relations hold

O )

~

A A ; — :
EV(3) = Vi) = —— [U@f m;w] o (i) =0

<

- Kot o2 2 1
Valv(3)] = e || +0(3)
k—1)ot 1
= T +o(n)

The first relation shows that the robust variance is expected to be lower than the asymptotic
variance with many instruments. Only for large n and a fixed number of instruments (o = 0)
the inequality holds. In terms of inference a lower standard error implies that the null will
be rejected more often than the true nominal size, regardless of the bias of the estimator.

The second relation implies that the effect in the standard error only affects the first

moment of the estimated variance. In this case F(A,/\/n) represents the normalized bias

obtained in Theorem 2.1, then the following expression can be computed
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Let £ = E(B — B)/o be the normalized bias, then

() - ARl (=)

2
78,%
[S—
_l_
[\ 3
_
| | R
2
AN

Var (A,) = 1+i[var<52_02>]

For the cases of unbiased estimators, B can be used as 3, then only the adjustment to the
variance of T}, must be computed. The original T;, uses a different standard error, that could
be higher or lower depending on the combination of the parameter of the model: number
of instruments over sample size («), concentration parameter (7’Ar), and the correlation

between error terms (o¢,). However, the size distortion is small under homoskedastic errors.
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