
Banco Central de Chile 
Documentos de Trabajo  

 
 

Central Bank of Chile 
Working Papers 

 
 

N° 459 
 

Febrero 2008 
 

 
 
 
 
 

COMBINING TESTS OF PREDICTIVE ABILITY: 
 THEORY AND EVIDENCE FOR CHILEAN AND 

CANADIAN EXCHANGE RATES 
 

Pablo Pincheira 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                 
 La serie de Documentos de Trabajo en versión PDF puede obtenerse gratis en la dirección electrónica:  
http://www.bcentral.cl/esp/estpub/estudios/dtbc. Existe la posibilidad de solicitar una copia 
impresa con un costo de $500 si es dentro de Chile y US$12 si es para fuera de Chile. Las solicitudes se 
pueden hacer por fax: (56-2) 6702231 o a través de correo electrónico: bcch@bcentral.cl. 
 
Working Papers in PDF format can be downloaded free of charge from: 
http://www.bcentral.cl/eng/stdpub/studies/workingpaper. Printed versions can be ordered 
individually for US$12 per copy (for orders inside Chile the charge is Ch$500.) Orders can be placed by 
fax: (56-2) 6702231 or e-mail: bcch@bcentral.cl. 



 
BANCO CENTRAL DE CHILE 

 
CENTRAL BANK OF CHILE 

 
 
 

La serie Documentos de Trabajo es una publicación del Banco Central de Chile que 
divulga los trabajos de investigación económica realizados por profesionales de esta 
institución o encargados por ella a terceros. El objetivo de la serie es aportar al debate 
temas relevantes y presentar nuevos enfoques en el análisis de los mismos. La difusión 
de los Documentos de Trabajo sólo intenta facilitar el intercambio de ideas y dar a 
conocer investigaciones, con carácter preliminar, para su discusión y comentarios. 
 
La publicación de los Documentos de Trabajo no está sujeta a la aprobación previa de 
los miembros del Consejo del Banco Central de Chile. Tanto el contenido de los 
Documentos de Trabajo como también los análisis y conclusiones que de ellos se 
deriven, son de exclusiva responsabilidad de su o sus autores y no reflejan 
necesariamente la opinión del Banco Central de Chile o de sus Consejeros. 
 
 
 
The Working Papers series of the Central Bank of Chile disseminates economic 
research conducted by Central Bank staff or third parties under the sponsorship of the 
Bank. The purpose of the series is to contribute to the discussion of relevant issues and 
develop new analytical or empirical approaches in their analyses. The only aim of the 
Working Papers is to disseminate preliminary research for its discussion and comments. 
 
Publication of Working Papers is not subject to previous approval by the members of 
the Board of the Central Bank. The views and conclusions presented in the papers are 
exclusively those of the author(s) and do not necessarily reflect the position of the 
Central Bank of Chile or of the Board members. 
 
 
 
 

Documentos de Trabajo del Banco Central de Chile 
Working Papers of the Central Bank of Chile 

Agustinas 1180 
Teléfono: (56-2) 6702475; Fax: (56-2) 6702231 

 
 
 



Documento de Trabajo Working Paper 
N° 459 N° 459 

 
COMBINING TESTS OF PREDICTIVE ABILITY: 
 THEORY AND EVIDENCE FOR CHILEAN AND 

CANADIAN EXCHANGE RATES 
 

Pablo Pincheira 
Gerencia de Investigación Económica 

Banco Central de Chile 
 
 
 
Resumen  
 
En este trabajo nos concentramos en combinar estadísticos fuera de muestra para la Hipótesis de 
una Martingala en Diferencias, de modo de explorar si un nuevo estadístico combinado puede 
generar un test con mayor potencia asintótica. El supuesto de normalidad asintótica implica que 
se puede obtener mayor potencia al encontrar la ponderación óptima en un cuociente del tipo t. 
Desafortunadamente, esta ponderación óptima es degenerada cuando la hipótesis nula de no 
predictibilidad es verdadera. Para superar este problema se introduce una función de 
penalización que atrae la ponderación óptima al interior del conjunto factible de combinaciones. 
La nueva ponderación asociada a este problema de penalización está bien definida bajo la 
hipótesis nula, asegurando normalidad asintótica del test combinado resultante. Demostramos, 
por medio de simulaciones, que nuestra propuesta de combinación de tests muestra importantes 
ganancias en poder y un correcto tamaño empírico. De hecho, el nuevo test supera en 
desempeño a sus componentes individuales mostrando ganancias en poder de hasta 45%. 
Finalmente ilustramos el uso de nuestro test con una aplicación empírica que  examina la 
predictibilidad de los retornos de tipo de cambio chileno y canadiense. 
 
 
Abstract  
 
In this paper we focus on combining out-of-sample test statistics of the Martingale Difference 
Hypothesis (MDH) to explore whether a new combined statistic may induce a test with higher 
asymptotic power. Asymptotic normality implies that more power can be achieved by finding 
the optimal weight in a combined t-ratio. Unfortunately, this optimal weight is degenerated 
under the null of no predictability. To overcome this problem we introduce a penalization 
function that attracts the optimal weight to the interior of the feasible combination set. The new 
optimal weight associated with the penalization problem is well defined under the null, ensuring 
asymptotic normality of the resulting combined test. We show, via simulations, that our 
proposed combined test displays important gains in power and good empirical size. In fact, the 
new test outperforms its single components displaying gains in power up to 45%. Finally, we 
illustrate our approach with an empirical application aimed at testing predictability of Chilean 
and Canadian exchange rate returns. 
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1 Introduction

A vast literature has usually used a martingale model as a benchmark to test for predictability.

In the context of asset prices, for instance, the martingale model posits that the best forecast

of tomorrow�s price is today�s price. This condition is known as the Martingale Di¤erence

Hypothesis (MDH) and it is closely related to the e¢ cient market hypothesis.

While the simple MDH is generally rejected when the econometrician engages in conven-

tional in-sample analysis, it is indeed a di¢ cult benchmark to beat when an out-of-sample

approach is followed. The seminal paper of Meese and Rogo¤ (1983) is a classical example of

this problem in the context of the exchange rate literature. This is sometimes interpreted as

an indication that in-sample analysis is a¤ected by over�tting or data mining problems and

therefore should be disregarded. While the con�icting results from the in-sample and out-

of-sample approaches are not entirely clear, Inoue and Kilian (2003) argue that this con�ict

relies upon the higher power of in-sample over out-of-sample strategies. According to this

argument, out-of-sample tests of the MDH would fail to reject the null of no predictability

mainly due to the low power of these tests. It seems advisable then to move into the direction

of constructing new out-of-sample tests of the MDH displaying power improvements with re-

spect to their competitors. Several authors have recently engaged in this endeavour1. Despite

their e¤orts, simulations shown by Clark and West (2006) indicates that there is still plenty

of room for improvement in this ground.

Another branch of the literature has entirely focused in predictive accuracy, sometimes

without even conducting inference about predictive ability. Generally speaking, this litera-

1See for instance the papers by Clark and West (2006, 2007), Pincheira (2006), Anatolyev and Gerko(2005)
and Clark and McCracken (2001), among others.
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ture looks for improvement in forecast accuracy under a given loss function. One of the most

striking results in this regard is related to the combination of forecasts. A number of papers

show empirically how the combination of forecasts from di¤erent sources is useful to gener-

ate a combined forecast with improved predictive properties, see Bates and Granger (1969),

Clemen (1989) and Wright (2003). In general it is possible to build a new forecast as a linear

combination of a set of given forecasts, so that this new forecast displays lower out-of-sample

mean square prediction error than any of its components. While the success of combination

of forecasts is widely known in the forecasting literature, a thorough and satisfactory explana-

tion for this result is yet to come. Interesting attempts are provided by Clements and Hendry

(2004) Timmermann (2006) and Smith and Wallis (2005) for example.

Inspired by this literature, we focus here on combining statistics used for out-of-sample

tests of the MDH to explore whether a �combined test� may yield power improvements.

This question seems to be unexplored yet and particularly relevant for the application we are

interested here, application in which a number of tests are available and power gains are still

required.

The rest of the paper is organized as follows: Section 2 explains in some detail the problem

we are addressing here and the econometric context that we use. In section 3 we develop the

combination strategy we present in this paper. Section 4 describes the experimental design.

Section 5 delivers the simulation results when deterministic weights are used for combination.

Section 6 show results when quasi-optimal weights are used for combination. In section 7

we implement our combination strategy in an empirical application within the exchange rate

literature. Section 8 concludes.
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2 Econometric Context

We will use an environment similar to that in Clark and West (2006). Consider two simple

models for a scalar stationary time series yt+1 :

Model 1 (null) : yt+1 = et+1 (1)

Model 2 (alternative) : yt+1 = X
T
t+1� + et+1 (2)

where Xt+1 is a vector of stationary and exogenous random variables and et+1 is a zero mean

martingale di¤erence, meaning that E(et+1jFt) = 0, where fFtg represents a �ltration such

that Ft is the sigma-�eld generated by current and past X�s and e�s.

Notice that we are using the index t + 1 to denote exogenous variables known at time t:

Thus Xt+1 is a vector containing known variables at time t: The alternative model posits that

the conditional expectation of yt+1 with respect to the �ltration Ft only depends in the vector

Xt+1 and an unknown parameter � :

E(yt+1jFt) = XT
t+1� (3)

For simplicity we will refer to the conditional expectation in (3) by eyt+1. We will also impose
the condition

m(et+1jFt) = 0 (4)

when needed. This condition says that the perturbations are also a zero median martingale

process.
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We are interested in testing the null hypothesis H0 : � = 0 against a local alternative

HA : � = �0 6= 0: Let us consider a test statistic Ts assumed to be useful for this purpose.

We will focus in two properties of the test: size and power.

2.1 Size

The size of a test is the probability of rejecting the null when the null is the true model.

Therefore, it asses the probability of making a mistake. This mistake is called the type I

error. In other words, it is said that the size of a test is � if

Pr(Ts 2 R(�)jH0) = �

where R(�) is called the �rejection region of level ��.

The econometrician usually does not know the exact distribution of the test statistic Ts:

This distribution has to be estimated in some way. In this paper we will use as an estimate,

the asymptotic distribution of the test statistic Ts:

An important distinction has to be made: the di¤erence between the nominal size and the

empirical size of a test. The nominal size is given by the approximation of the distribution of

the test statistic Ts. In case the approximation is standard normal, for instance, a rejection

region given by

R = (�1; 1:96) [ (1:96;1)

will be associated to a nominal size of 5%.

In empirical applications, however, and assuming that the null model is the true model,
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the number of times that the test statistic Ts would fall inside the rejection region would

be typically di¤erent from the nominal size. The empirical size of the test results from the

empirical distribution of the test statistic under the null model. In other words, when the

distribution of the test statistic Ts is approximated by the empirical distribution, the rejection

region given by

R = (�1; 1:96) [ (1:96;1)

will be associated to an empirical size given by.

cPr(Ts 2 RjH0) = �E 6= �
where the hat is used to emphasize that the probability is estimated according to the empirical

distribution.

Ideally the nominal and empirical size of a test will coincide. As long as the empirical size

is lower than the nominal size, the test will be called �undersized�. As long as the empirical

size is higher than the nominal size, the test will be called �oversized�. The econometrician

is always looking for a test with correct size, that is to say, a test for which both empirical

and nominal size are the same.

2.2 Power

The power of a test is the probability of rejecting the null when the alternative is the true

model. Therefore, it is a measure of the probability of succeeding in the detection of the

alternative model. In other words, the power of a test against a local alternative HA is given
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by

Pr(Ts 2 R(�)jHA) = Power

where R(�) is called the �rejection region of level ��.

In most cases a test may have high power against a particular alternative, but will have low

power against other alternatives. To be precise in these respects the econometrician usually

refers to the local power of a test.

The ideal test would have power equal 1, and in general a test with high power will be

preferable against another test with lower power, everything else being the same.

Power is an important property. It is possible to think that the low success in beating the

random walk benchmark in the exchange rate literature, might be in part explained by the

low of power of out-of-sample tests of predictive ability.

When comparing the power of two di¤erent tests, attention should also be placed on the

empirical size of the tests. If one of the tests under evaluation is undersized and the other is

correctly sized, for instance, the former test might mistakenly look like having lower power

simply because the comparison being made is not at all fair. In other words we would be

comparing power of two tests at di¤erent signi�cance levels, 10% and 5% for instance, clearly

leading to an unfair comparison. Sometimes researchers deal with this problem evaluating

both �raw power� and �size-adjusted-power�. While �raw power� refers to an empirical

measure of the power of a test, �size- adjusted- power �refers to a measure of power when the

size of a test is arti�cially �xed to a desired level. While �size-adjusted-power�is a measure

of power ensuring a fair comparison, it is only available through simulations and distant from
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real empirical applications.

3 Test Combination

Combination of forecasts has been proven useful in the forecasting literature to outperform

the random walk model in forecasting comparisons under quadratic loss (see Clemen (1989)).

Combining strategies have been reported as having excellent predictive behavior by several

authors including Wright (2003) and Avramov (2002), who independently showed the predic-

tive power of Bayesian Model Averaging as a combining tool. The basic idea of combination

is well articulated by Timmermann (2006) and di¤erent explanations of the bene�ts of com-

bined forecasts are found in Clements and Hendry (2004), Timmermann (2006) and Smith

and Wallis (2005) for example.

In this section we give arguments in favor of the construction of a combined test. Under

asymptotic normality we claim that our combination approach may create a new test with

higher asymptotic power.

We will assume that we have available two test statistics that are sample analogs of a

moment that may be written according to the general form:

E(g1(yt) g2(byt)) (5)

where g1 and g2 are real functions and byt is the forecast of the variable yt:We will also assume
that under the null of no predictability (5) is zero, whereas under the alternative is positive.

Di¤erent choices of g1 and g2 will de�ne di¤erent test statistics. Having this in mind, let us

now present the construction of our combined test.
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3.1 Construction of the Combined Test

Let us assume that we have a bidimensional ergodic and stationary stochastic process given

by

Ut =

0BB@ Ht

Zt

1CCA
t=1

t=�1

such that

E(Ut) = � =

0BB@ �1

�2

1CCA ; V (Ut) = V =

0BB@ �21 �12

�12 �22

1CCA ;�1; �2 > 0

Let us also assume that fUt � �gt=1t=�1 is a zero mean martingale di¤erence sequence.

We are interested in the following statistics

T1 =
1

P

PX
t=1

Ht ; T2 =
1

P

PX
t=1

Zt (6)

The connection between (6) and (5) is given by

Ht = g1(yt) g2(byt)
Zt = eg1(yt) eg2(byt)

so that T1 and T2 are sample analogs of (5).

Using traditional central limit results for martingales, see Hamilton (1994) or White
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(2001), we have that under some regularity conditions

P�
1
2

PX
t=1

(Ut � �)
A�! N(0; V )

and therefore the marginal random variables satisfy

p
P (T1 � �1) = P�

1
2

PX
t=1

(Ht � �1)
A�! N(0; �21)

p
P (T2 � �2) = P�

1
2

PX
t=1

(Zt � �2)
A�! N(0; �22)

We are interested in testing the null hypothesis of no predictability. Under this null, we expect

�1 = �2 = 0; therefore, under the null

p
PT1 = P�

1
2

PX
t=1

Ht
A�! N(0; �21)

p
PT2 = P�

1
2

PX
t=1

Zt
A�! N(0; �22)

Under the alternative of predictability we expect �1 > 0 and �2 > 0 and therefore we could

use the following approximation

1

P

PX
t=1

Ht  N(�1;
�21
P
)

1

P

PX
t=1

Zt  N(�2;
�22
P
)

Consider now the following combination Yt(!) = !Ht + (1 � !)Zt with ! 2 (0; 1); and the
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following combined statistic:

TC(!) =
1

P

PX
t=1

Yt(!) = !T1 + (1� !)T2

Then we have that fYt(!)� �(!)gt=1t=�1 is a zero mean martingale di¤erence sequence as well,

with �(!) = !�1 + (1� !)�2 = !(�1 � �2) + �2. Besides

�2(!) � V ar(Yt(!)� �(!)) = !2�21 + (1� !)2�22 + 2!(1� !)�1;2

�1;2 = Cov(Ht; Zt)

Therefore we have

p
P (TC(!)� �(!)) = P�

1
2

PX
t=1

(Yt(!)� �(!))
A�! N(0; �2(!))

Under the null hypothesis of no predictability we have �1 = �2 = 0; and then �(!) = 0 for

all ! 2 (0; 1): Therefore, under the null

p
PTC(!) = P�

1
2

PX
t=1

Yt(!)
A�! N(0; �2(!)) for all ! 2 (0; 1)

Under the alternative of predictability we expect �1 > 0 and �2 > 0 and therefore �(!) > 0

for all ! 2 (0; 1): Under the alternative we could use the following approximation

p
PTC(!) = P�

1
2

PX
t=1

Yt(!) N(
p
P�(!); �2(!))
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which is equivalent to

1

P

PX
t=1

Yt(!) N(�(!);
�2(!)

P
)

In summary we have that

H0 : TCN (!) =
p
P
Y t(!)

�(!)

A�! N(0; 1)

HA : TCN (!) =
p
P
Y t(!)

�(!)
� N(�AN (!); 1)

�AN (!) =
p
P
�(!)

�(!)

At this stage we have said nothing about the selection of the combination weight. One could

use a random number ! 2 (0; 1) or one could try to pick an optimal weight according to some

criteria. In the next subsection we will look for an optimal combination weight in a very

speci�c sense.

3.2 Asymptotic Power Maximization

The idea is now to choose ! to maximize the asymptotic power of the combined test. This

asymptotic power is given by the following expression:

P�(�AN (!)jHA) = Pr(TCN (!) > t�jHA) (7)

where � is the nominal size of the test and t� the corresponding �-quantile.

The next proposition shows that under asymptotic normality our maximization problem

is simple.

Proposition 1 Under asymptotic normality, maximization of power in (7) is equivalent to
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maximize the following combined t-type statistic

�AN (!) =
�(!)

�(!)
(8)

! 2 [0; 1]

Proof. See the appendix.

The next proposition gives the solution to our maximization problem.

Proposition 2 Let us assume that we have a bidimensional ergodic and stationary stochastic

process given by

Ut =

0BB@ Ht

Zt

1CCA
t=1

t=�1

such that

E(Ut) = � =

0BB@ �1

�2

1CCA � 0; V (Ut) = V =

0BB@ �21 �12

�12 �22

1CCA ; �1; �2 > 0

Let us also assume that fUt � �gt=1t=�1 is a zero mean martingale di¤erence sequence. Fur-

thermore, assume that

�2 =

�
�12
�1�2

�2
< 1

and that

�1(�12 � �22) + �2(�12 � �21) 6= 0
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Then, the solution to the maximization problem is given by

! = argmax
!2	

�(!)

�(!)

	 = f1; 0g [ �

� =

2664 f!�g if !� 2 [0; 1]

� if !� =2 [0; 1]

3775
with

!� =
�2�1;2 � �1�22

�1(�1;2 � �22) + �2(�1;2 � �21)
(9)

Proof. See the appendix

Proposition 2 is giving us simple mathematical conditions to ensure the existence of a

combination scheme that maximizes power of the combined test. It is also not hard to �nd

conditions under which !� is the unique solution for the maximization problem. As we can

see from (9), the optimal weight is a function of unknown parameters and hence its value is

also unknown. Nevertheless, a consistent estimate of the optimal weight is readily available by

replacing populations moments by sample consistent moments. Let b! be a consistent estimate
of !�: We could consider the following statistic

p
P (b!; 1� b!) �

0BB@ T1t � �1

T2t � �2

1CCA A�! N(0;

0BB@ !�

1� !�

1CCA
T

V

0BB@ !�

1� !�

1CCA) (10)

For the result in (10) to apply we need convergence in probability of b! towards !�: Notice,
however, that for an interior solution !� to exist we have assumed that at least one of the
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parameters �1 and �2 is di¤erent from zero. This assumption is clearly violated under the

null hypothesis which imposes the restriction that both �1 and �2 are zero. Therefore, under

the null !� is not de�ned and the asymptotic distribution of the statistic in (10) may not

exist, or, in case of existence, may not be normal. In fact, numerical simulations show that

the asymptotic distribution exists but it is not standard.

In the next subsection we develop our strategy to deal with the fact that the optimal

weight is not de�ned under the null hypothesis. Our approach introduces a penalization

function and a new and di¤erent objective function to maximize. This di¤erent objective

function is supposed to be a good approximation of (8). For this purpose we recall that we

have assumed �1 � 0 and �2 � 0: Under these conditions we have that

�AN (!) =
�(!)

�(!)
� 0

so the maximization of �AN (!) is equivalent to the maximization of (�AN (!))
2.

Details of our strategy to deal with the fact that the optimal weight is not de�ned under

the null hypothesis follow next.

3.3 Quasi-Maximization of the Asymptotic Power

Instead of engaging in the calculation of the correct asymptotic distribution in (10) we propose

to maximize an objective function that is slightly di¤erent from the square of (8) and then to

check the appropriateness of the approximation. In order to do so we introduce the following
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penalization function Pf :

Pf(w) =
1� (w2 + (1� w)2)

�2(!)

=
2(w � w2)
�2(!)

which is depicted in �gure 1. We notice that this penalization function is continuous and

concave. Furthermore Pf is positive in the open set (0,1), it is equal to zero in the bound-

aries of the open set (0,1) and negative elsewhere. As we will see, these are important and

useful properties. To see the importance of these properties we need to brie�y revisit the

theory behind the introduction of penalization functions. Let us assume that we are trying to

maximize an objective function h over a feasible set F . This problem can be simply written

as follows

max
x2F

h(x) (11)

In general, solving an optimization problem with restrictions is harder than solving an opti-

mization problem without restrictions. It would be desirable then to transform a restricted

problem into a problem without restrictions. Unfortunately, this is in general not possible. It

is possible, however, to approximate the solution of a restricted problem by a sequence of so-

lutions of unrestricted problems. These unrestricted problems need to �punish�the objective

function h when taking on values outside the feasible set F , otherwise there is no guarantee

that the sequence of solutions of the unrestricted problems will converge to a point inside the

feasible region F . We �punish�h by adding a penalization function which is typically positive

within the boundaries of the feasible region and negative outside. Let us call, for expositional

purposes only, this penalization function by Ph. Instead of solving the �di¢ cult� problem
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(11) we could solve the following sequence of �easy�problems:

maxh(x) + �nPh(x) (12)

where �n is a sequence of positive numbers converging to zero. Problem (12) is simpler than

(11) in the sense that it has no restrictions whatsoever. Besides, if �n > 0 is small enough we

could use the corresponding solution of (12) to approximate the solution of (11).

Inspired by this interesting approach we propose to approximate the solution of our prob-

lem

max
!2[0;1]

(�PAN (!))
2 =

�2(!)

�2(!)
(13)

by the solution of

max
!2R

�2(!)

�2(!)
+ �Pf(w) (14)

When � = 0 the objective functions of (13) and (14) are exactly the same. When � is small,

the problem in (14) is �close� to (13) and the penalization function makes costly for the

solution in (14) to take values outside the feasible region in (13) by adding an extra negative

burden. Figure 2 displays, for a given set of parameters including � = 0:05; the proximity

of the objective functions in (13) and (14). Notice that under the null �2(!) = 0; therefore

problem (14) would be solving the maximization of a non zero function, whereas the objective

function in (13) would be exactly zero. This fact would allow the solution of (14) to be well

de�ned even under the null. On the contrary, as we emphasized previously, the solution of

(13) is not de�ned under the null. We will evaluate via simulations the usefulness of our

approach.
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Figure 1
Penalization Function
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Figure 2
Objective Functions
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The next proposition shows that only a mild assumption is required for all possible solu-

tions of (14) to be well de�ned even when the null is true. This means that they are useful

to construct an asymptotically normal combined test.
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Proposition 3 The critical points of

�PAN (!) =
�2(!)

�2(!)
+ �Pf(w)

� > 0

are given by

!1;2 =

[(c2 � 2�)�22 � �2T�22] +�

q
[(c2 � 2�)�22 � �2T�22]2 � 4d(�)

2
��
(�1�2 � �22 + �)�2T

�
� (c2 � 2�)[�12 � �22]

� (15)

where

d(�) =
�
(�1�2 � �22 + �)�2T � (c2 � 2�)[�12 � �22]

� �
�22�12 � [�1�2 + �]�22

�
c = �1��2

�2T = �21 + �
2
2 � 2�12

In particular, and provided that �21 6= �22 , under the null these solutions reduce to

!1

!2

=

2664 �2
�1+�2

�2
�2��1

3775
Proof. Straightforward.

It is simple to check, under the null, that among all possible solutions of (14), !1 is the
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unique solution. This can be seen by noticing that

0 < !1 =
�2

�1 + �2
< 1

!2 =
�2

�2 � �1
> 1

therefore

�PAN (!2) = �PAN (
�2

�2 � �1
) = �Pf(

�2
�2 � �1

) < 0

�PAN (!1) = �PAN (
�2

�1 + �2
) = �Pf(

�2
�1 + �2

) > 0

These last inequalities are obtained from the fact that the penalization function Pf is negative

outside the interval [0,1] and it is positive within this interval.

Expression (15) shows us that !1 and !2 are continuous functions of (�1; �2): Given that

!1 is the solution of (14) when (�1; �2) = (0; 0); we expect !1 to be also the solution of (14)

in a neighborhood around (�1; �2) = (0; 0): We will use !1 as our proxy for the solution of

the original problem (8). We will call this solution the quasi-optimal weight.

In empirical applications the econometrician may proceed in two di¤erent directions. As

proposition 3 suggests, the econometrician may prefer to estimate the quasi-optimal weight

and then to test the null using the estimated combined test. A di¤erent direction might be

taken as well. Instead of looking for the quasi-optimal combination, the researcher might

be interested in using a set of deterministic weights to construct a combined test to test

the null. In case of rejection, the econometrician may well argue that these combined tests

are particularly powerful in the direction of the relevant alternative hypothesis. The next
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proposition shows that this approach will not hurt.

Proposition 4 Consider a bidimensional ergodic and stationary stochastic process given by

Ut =

0BB@ Ht

Zt

1CCA
t=1

t=�1

de�ned as in proposition (2). Then

�AN (!) � min

�
�(1)

�(1)
;
�(0)

�(0)

�
! 2 (0; 1)

Proof. See the appendix

This last proposition is telling us that by using a set of weights that are not optimal we

cannot do worse than just looking at the worst single test. In this sense combining is relatively

costless.

As a �nal comment we see no further di¢ culty in extending the present analysis to a more

general context. For instance, although it seem tedious, the extension to a general expression

for the combination of an arbitrary �nite number of tests seems theoretically straightforward.

3.4 A Couple of Caveats

Empirical size of the combined and single tests may di¤er. This di¤erence should not be an

important problem due to the fact that a combination of close-to-zero terms should remain

close to zero. In other words, we should not expect important size distortions induced by

combination. Nevertheless, it is important to remark that size properties may be di¤erent
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depending on the combination strategy. For instance, a combination strategy based upon

the solution of an optimization problem like (14) could in principle induce higher size on

the combined test compared to a combination scheme based upon the random choice of a

deterministic weight. In fact, optimal weights, like those derived in previous sections, would

tend to increase the objective function in (13) for both the null and alternative models. On

the contrary, a random choice of a deterministic weight is expected to boost the objective

function of (13) either for the null or for the alternative, but not necessarily for both models.

In any case, simulations reported below, indicate that the size of the combined test is, in

general, adequate.

For simplicity we made the assumption of a martingale di¤erence sequence. This as-

sumption is not strictly necessary, and our results may be extended to more general ergodic

and stationary processes provided that the correct long run variances of the processes are

considered.

4 Experimental Design

Following Clark and West (2006) we use Monte Carlo simulations based upon variations of

a multivariate Data-Generating-Process (DGP) to compare small sample properties of our

combined tests with those of their components. We consider three individual tests: the

MSPE-Adjusted test proposed by Clark and West (2006), a Direction of Change (DC) test

originally proposed by Diebold and Timmermannn (1992) and an Excess Pro�tability test

(EP) proposed by Anatolyev and Gerko (2005). The combined tests we consider are the three

possible pairwise combinations. Combination 1 is a convex linear combination of MSPE-
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Adjusted and DC, Combination 2 is a convex linear combination of MSPE-Adjusted and EP,

whereas Combination 3 is a convex linear combination of DC and EP. A brief overview of the

three individual tests used for the combined tests follows next.

4.1 The Tests

� MSPE-Adjusted

The MSPE-Adjusted test was proposed by Clark and West (2006). They derive this test

from typical comparisons of MSPE between a linear model and the null of a martingale dif-

ference sequence. Clark and West claim that the MSPE-Adjusted test has better size than

traditional tests of MSPE comparisons when the models under evaluation are nested. Intu-

itively this test shows good size because it does not take into account a term that introduces

noise into its forecasts by estimating a parameter vector that under the null should be zero.

To see this we notice that the sample analog of the di¤erence in MSPE between the two

models considered in (1) and (2) is given by

\�MSPE = \MSPE1 � \MSPE2

=
1

P

TP
t=R

(yt+1)
2 � 1

P

TP
t=R

(yt+1 �XT
t+1
b�t)2

=
2

P

TP
t=R

yt+1X
T
t+1
b�t � 1

P

TP
t=R

(XT
t+1
b�t)2

Clark and West notice that the second term in the right hand side introduces a bias that does

not vanish as P goes to 1: They propose to build a test based upon the �rst term in the

22



right hand side. Their test is given by

MSPE �Adjusted : P 1=2
2
P

TP
t=R

yt+1X
T
t+1
b�tq

4bV (yt+1XT
t+1
b�t)

� Direction of Change Test

This test was originally proposed by Diebold and Timmermannn (1992). It is a sign test

aimed at evaluating the direction of change in the price of an asset. Following Pincheira

(2006) we will use an adaptation of this test based upon the following statistic:

sign(yt+1X
0
t+1
b�t) =

8>>>>>><>>>>>>:

1 if yt+1X
0
t+1
b�t > 0

0 if yt+1X
0
t+1
b�t = 0

�1 if yt+1X 0
t+1
b�t < 0

9>>>>>>=>>>>>>;
The test is given by

DC : P 1=2

1
P

TP
t=R

sign(yt+1X
T
t+1
b�t)qbV (sign(yt+1XT

t+1
b�t))

� The Excess Pro�tability Test

This test was originally introduced by Anatolyev and Gerco (2005) as follows

EP � AT �BTqbV (AT �BT ) (16)

AT =
1

P

T+1X
t=R+1

rt (17)

BT =

 
1

P

T+1X
t=R+1

sign(byt)! 1
P

T+1X
t=R+1

yt

!
(18)
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where

rt = sign(byt)yt (19)

The intuition behind the de�nition of the EP test relies on the fact that under the null of

no predictability both AT and BT converge in probability to the same value, so they are

asymptotically equal. rt represents returns of the following trading rule: if the forecast is that

the price of the asset will go up, then a buy signal is issued. If the forecasts is that the price

of the asset will go down, then a sell signal is issued.

Under mild conditions, all three tests previously presented are asymptotically normal.

4.2 Data Generating Process

We use a DGP following Clark and West (2006). This DGP is calibrated to match common

features of exchange rate series for which the martingale di¤erence is a sensible null hypothesis.

The DGP can be described as follows:

yt+1 = �xt + et+1

xt = 0:95xt�1 + ut;

et+1 = t(�); ut+1 = N(0; �
2
u)

with E(et+1jFt) = 0, E(ut+1jFt) = 0 and var(et+1) = 1:

Our DGP is calibrated to match exchange rate features based on interest parity so we will

have var(ut) = �2u (with �u = 0:025) and corr(et; ut) = 0: We set � = �2 in experiments

evaluating power2 and � = 0 in experiments evaluating size. We assume that et+1 has a t(�)

2We are aware that � = 1 is the theoretical implication. Empirical estimations for a number of industrial
countries, however, provide estimates around -2. See Clark and West (2006) for further details and Obstfeld
and Rogo¤ (2002) for a thorough coverage of the forward premium puzzle.
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distribution (t-student with � degrees of freedom). Our central scenario sets � = 6 to simulate

shocks with fat tails like those displayed by exchange rate returns. We also consider lower

values of � to asses the behavior of our tests as tails get thicker. We assume data generated

from homoskedastic draws from their distributions.

We focus, for simplicity, only on one step ahead forecasts. One has a total of T + 1

= P + R observations. The last P observations are used for predictions and R are used for

the initial estimation of the vector of parameters. �t denotes a generic estimate of � with

information available until time t. In general the estimation scheme may be either �xed,

rolling or recursive. The �xed scheme is one in which �t is estimated only once using the �rst

R observations. The rolling scheme updates the estimate of �t using the last R observations.

The recursive scheme also updates the estimate of �t but using all available information until

time t: That is to say, in the recursive scheme the estimation sample increases with t: Following

Clark and West (2006) we will work with the rolling scheme which is particularly appropriate

when one work with series that may have experienced breaks.

Estimation always includes a constant term in each regression. We explore the performance

of our tests for a number of sample sizes (T + 1) and decompositions of the sample into the

estimation window (size R) and the prediction window (size P ): We run simulations for the

following sample sizes: R = 100 and 200; P = 100; 150; 200 and 250.

4.3 Experiments

We consider two major exercises. First we take a grid of possible deterministic combination

weights (! 2 [0; 1]). For every single weight ! in the grid we construct the three combined tests

described previously. Then we compare, via Monte Carlo simulations, power and size adjusted
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power of the combined tests to power and size adjusted power of their components. We also

pay attention to the empirical size of the combined tests. Results for the best combinations

on average are displayed in tables in the following section.

Second, we evaluate the performance of the 3 combinations using 3 di¤erent speci�c

weights: the quasi-optimal weight for the problem with a penalty function (! = !1), the

remaining root for the problem with a penalty function (! = !2) and the simple mean

(!3 = 0:5): Results for all three combinations and all three weights are analyzed in terms of

power, size adjusted power and empirical size.

5 Results with Deterministic Weights

In this section we discuss the main results of our experiments with deterministic weights. To

motivate this section we �rst show three graphs displaying results on power, size-adjusted-

power and empirical size for the MSPE-Adjusted test, the Direction of Change test and the

combination of them using a number of deterministic weights. In the horizontal axis we have

all the di¤erent weights used for combination. For each possible combination weight we run

1000 replications of the DGP to calculate empirical power, size-adjusted-power and empirical

size of the tests. A weight ! = 0 means that the combined test equals the MSPE-Adjusted

test. On the contrary, ! = 1 means that the combined test equals the Direction of Change

test.

Figure 3 displays results on power, �gure 4 displays results on size-adjusted-power and

�gure 5 on empirical size. Graphs correspond to simulation results obtained for a nominal

size of 10%, an estimation window of size R = 100, a prediction window of size P = 250 and
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a parameter � set at � = 6:

Figure 3
Power (10%)
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Figure 4
Size-Adjusted-Power (10%)
(P=250, R=100, and t(nu=6))

0.32

0.37

0.42

0.47

0.52

0.57

0
0.0

6
0.1

2
0.1

8
0.2

4 0.3 0.3
6

0.4
2

0.4
8

0.5
4 0.6 0.6

6
0.7

2
0.7

8
0.8

4 0.9 0.9
6

Weight

Si
ze

 a
dj

us
te

d 
po

w
er

Clark­West Direction of Change Combined Test

27



Figure 5
Empirical Size (10%)

(P=250, R=100, and t(nu=6))
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From �gures 3-4 we notice that the MSPE-Adjusted test has higher power and size-

adjusted-power than the direction of change test, at least for the alternative model we are

interested here. In terms of empirical size, the direction of change test is, in general, better

sized than the MSPE-Adjusted test which is a little undersized.

Figure 3 shows a wide range of weights for which the combined test displays higher empiri-

cal power than both single tests. Actually, it is possible to obtain power gains for weights lower

than 0.8. For higher weights the combined test is outperformed by the MSPE-Adjusted test.

Figure 4 reveals that for a smaller region, the combined test displays higher size-adjusted-

power as well. Finally, �gure 5 shows that the empirical size of the combined test is adequate.

General results, for all the experiments, are shown in tables in the next subsection.
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5.1 Results on Power

In this subsection we show tables summarizing percentage gains in power and size-adjusted-

power for a number of di¤erent parameter values. In the left panel of the tables we report

gains associated to a nominal size of 5% whereas in the right panel we show gains associated

to a nominal size of 10%. We see that power gains are far from negligible. Table 1 shows that

percentage power gains range from 0% to 26.8%. On average, the combination of the MSPE-

Adjusted and the Direction of Change tests outperforms other combinations. Interestingly,

on average percentage gains are higher at the 5% rather than at the 10% signi�cance level.

In only two cases there are no gains whatsoever, that is to say, in most cases combination is

fruitful.

Table 1
Percentage Power Gains

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Combination 1 Combination 2 Combination 3 Combination 1 Combination 2 Combination 3
R P df (MSPE­Adj/DC) (MSPE­Adj/EP) (DC/EP) (MSPE­Adj/DC) (MSPE­Adj/EP) (DC/EP)

100 100 6 26.8% 7.5% 6.0% 12.2% 6.8% 8.7%
100 150 6 12.9% 6.0% 8.8% 10.6% 6.6% 7.1%
100 200 6 12.9% 7.2% 8.4% 10.1% 6.4% 7.8%
100 250 6 10.3% 8.0% 9.0% 8.3% 4.3% 4.8%
100 100 5 18.9% 7.8% 15.2% 14.3% 5.6% 10.2%
100 150 5 16.3% 7.0% 10.5% 11.2% 5.9% 6.5%
100 200 5 12.3% 7.4% 13.5% 12.0% 7.5% 6.1%
100 250 5 14.2% 7.3% 8.0% 11.2% 5.1% 8.9%
100 100 2 17.6% 9.6% 12.0% 4.5% 3.0% 6.2%
100 150 2 17.5% 10.0% 13.7% 0.0% 6.9% 0.0%
100 200 2 4.9% 6.2% 0.0% 13.1% 7.0% 10.1%
100 250 2 18.1% 11.5% 12.6% 10.3% 5.9% 5.3%
200 100 6 14.1% 7.6% 10.4% 9.0% 5.1% 4.7%
200 150 6 13.7% 8.5% 8.7% 8.9% 6.5% 3.9%
200 200 6 9.7% 4.3% 9.2% 8.8% 3.7% 6.3%
200 250 6 8.0% 3.9% 7.1% 7.6% 3.6% 6.7%

14.3% 7.5% 9.6% 9.5% 5.6% 6.4%averages

Size 5% Size 10%Parameters

Notes:

1. R is the size of the estimation window.

2. P is the size of the prediction window.

3. df means degrees of freedom.
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5.2 Results on Size-Adjusted-Power

Table 2 below shows that combination yields even more important gains in terms of size-

adjusted-power. Gains range from 0% to 37.1%. On average, the combination of the Excess

Pro�tability test and the Direction of Change test outperforms other combinations with an

average gain of 17.7% and 12.6% at the 5% and 10% signi�cance levels, respectively. Again,

percentage gains are higher at the 5% rather than at the 10% signi�cance level. Now, in only

one case there is no gain whatsoever, that is to say, in most cases combination is fruitful.

Table 2
Percentage Size-Adjusted-Power Gains

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Combination 1 Combination 2 Combination 3 Combination 1 Combination 2 Combination 3
R P df (MSPE­Adj/DC) (MSPE­Adj/EP) (DC/EP) (MSPE­Adj/DC) (MSPE­Adj/EP) (DC/EP)

100 100 6 14.0% 3.6% 20.5% 9.4% 2.4% 7.2%
100 150 6 11.7% 3.4% 16.2% 6.2% 4.2% 8.3%
100 200 6 11.6% 3.8% 21.7% 7.6% 4.0% 12.0%
100 250 6 5.9% 2.6% 17.2% 7.3% 4.0% 7.1%
100 100 5 15.1% 3.4% 16.7% 8.4% 3.7% 11.1%
100 150 5 10.0% 5.1% 18.7% 11.9% 7.5% 10.3%
100 200 5 19.1% 9.7% 12.0% 8.2% 3.5% 15.9%
100 250 5 8.1% 5.4% 13.6% 11.2% 1.9% 11.5%
100 100 2 37.1% 6.8% 32.7% 22.6% 7.5% 30.1%
100 150 2 28.2% 19.5% 17.9% 22.3% 4.9% 19.8%
100 200 2 32.3% 8.0% 18.7% 20.1% 7.5% 19.4%
100 250 2 23.1% 5.2% 12.8% 16.8% 5.6% 11.5%
200 100 6 8.3% 4.4% 14.2% 4.5% 0.0% 12.7%
200 150 6 4.4% 2.4% 19.0% 4.9% 0.4% 8.7%
200 200 6 6.2% 4.5% 14.3% 5.2% 2.3% 8.8%
200 250 6 3.6% 0.0% 16.8% 4.3% 2.3% 7.9%

14.9% 5.5% 17.7% 10.7% 3.9% 12.6%averages

Size 5% Size 10%Parameters

Notes: See table 1.

5.3 Results on Size

Table 3 displays the empirical size of all three combined tests when combined at speci�c

weights. We choose weights such that gains in power are maximized on average. In other
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words we pick the same weights used in table 1. The important feature of this table is to show

that power gains are obtained from a correctly sized test. As we can see from table 3 below,

all three combined tests display empirical sizes very close to the nominal size. On average,

combination 1 and 2 look a little undersized whereas combination 3 is roughly correctly

sized. Therefore we see that our combination strategy allows for gains in power that are not

associated to size distortions.

Table 3
Empirical Size at Combinations

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Combination 1 Combination 2 Combination 3 Combination 1 Combination 2 Combination 3
R P df (MSPE­Adj/DC) (MSPE­Adj/EP) (DC/EP) (MSPE­Adj/DC) (MSPE­Adj/EP) (DC/EP)

100 100 6 3.50% 4.50% 5.60% 10.10% 8.20% 10.40%
100 150 6 3.30% 3.30% 5.50% 7.90% 6.70% 9.90%
100 200 6 5.10% 3.00% 5.10% 6.60% 7.70% 8.70%
100 250 6 3.70% 4.70% 4.40% 9.90% 9.60% 9.60%
100 100 5 3.90% 4.20% 5.20% 8.20% 7.80% 10.30%
100 150 5 3.80% 4.70% 4.70% 8.60% 8.30% 9.40%
100 200 5 2.50% 3.60% 4.20% 7.30% 8.80% 12.00%
100 250 5 4.10% 4.50% 4.70% 7.80% 8.20% 10.10%
100 100 2 5.80% 4.20% 5.60% 9.40% 10.30% 9.70%
100 150 2 4.70% 3.90% 5.00% 9.80% 11.50% 9.80%
100 200 2 3.40% 3.80% 4.10% 9.70% 9.70% 9.70%
100 250 2 5.10% 3.80% 5.20% 6.90% 8.60% 10.40%
200 100 6 3.80% 5.30% 5.10% 8.70% 9.20% 10.20%
200 150 6 3.80% 4.60% 4.40% 6.80% 7.40% 10.60%
200 200 6 4.40% 3.10% 4.80% 9.50% 7.90% 9.50%
200 250 6 4.30% 3.20% 6.00% 7.10% 9.00% 10.50%

4.08% 4.03% 4.98% 8.39% 8.68% 10.05%averages

Size 5% Size 10%Parameters

Notes: See table 1.

6 Results with Quasi-Optimal Weights

In this subsection we show tables summarizing the performance of combined tests built with

three di¤erent combination weights: the optimal weight for the problem with a penalization

function (denoted by w1 and called quasi-optimal weight), the remaining root for the problem
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with a penalization function (denoted by w2) and the simple mean3 (denoted in tables by

w3). We run 5.000 simulations for R = 100 and 200; P = 100; 150; 200 and 250 and for

� = 6; 5 and 2. We compute empirical size, percentage gains in power and percentage gains in

size-adjusted-power for all three combinations and all three weights. In tables 4-5 we report

averages and extreme values across all the exercises. Table 4 displays results for a nominal

size of 5% whereas table 5 displays the results for a nominal size of 10%.

In terms of power, we see that the quasi-optimal weight (w1), displays the highest average

gain for all combinations. Average gains are always positive and far from negligible ranging

from 5.8% to 13.4%. We also would like to emphasize the highest gain of 45.2% obtained for

this weight. The second best weight on average corresponds to the simple average (w3). The

worst case is given by the remaining critical point of (14) which clearly shows that it does not

correspond to a local maximum.

Results are less impressive in terms of size-adjusted-power. The best combination weight

is, again, the quasi-optimal weight (w1). We further notice that positive gains on average are

only obtained for Combinations 1 and 2, and they are below 5%. Highest gains, however, are

in general important, peaking at 25.5%. The worst outcome on average is again displayed by

the remaining critical point of (14).

In terms of empirical size, we notice that the quasi-optimal weight and the simple average

induce tests with adequate size. In particular we notice that the quasi-optimal weight induces

a correctly sized test for most of the simulations. Only for Combination 3 we detect a mild

tendency to have an oversized test. Finally, the remaining critical point of (14) induces

3We worked with a penalty factor � = 0:05:
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important size distortions for some combinations. For instance, we see in table 5 that instead

of the nominal size of 10%, Combination 2 with weight w2 displays an average empirical size

of only 4.6%.

In summary we see that the quasi-optimal combination (w1) induces a test displaying

important gains in power and adequate size, which proofs this type of combination fruitful.

Table 4
Small Sample Properties of Combined Tests with Quasi-Optimal Weights

w1 w2 w3 w1 w2 w3 w1 w2 w3

10.0% ­79.7% 0.8% 13.4% ­82.1% 0.9% 9.9% ­77.9% ­1.3%
27.0% ­51.0% 14.9% 45.2% ­77.5% 6.6% 30.1% ­56.7% 6.5%
2.4% ­92.1% ­17.0% 1.5% ­86.0% ­3.6% 3.7% ­90.4% ­21.3%

1.5% ­76.9% ­2.3% ­6.0% ­64.5% ­10.0% 2.9% ­74.7% ­0.7%
25.5% ­54.5% 6.6% ­1.9% ­43.4% 5.8% 16.4% ­47.3% 7.4%
­9.8% ­87.5% ­12.5% ­7.5% ­73.9% ­14.9% ­4.8% ­89.1% ­23.5%

4.3% 3.5% 4.0% 4.8% 1.9% 4.4% 5.6% 4.5% 5.0%
5.1% 6.3% 4.5% 6.5% 2.4% 4.9% 5.9% 5.0% 5.4%
3.9% 2.3% 3.4% 3.9% 1.1% 3.8% 5.3% 3.7% 4.0%

Nominal Size is 5%
Properties
of the Tests

Average Size

Results on Size Adjusted Power

Highest Size
Lowest Size

Results on Size

Average Gains
Highest Gain
Lowest Gain

Highest Gain
Lowest Gains

Average Gains
Results on Power

Combination 1 Combination 2
(MSPE­Adj/DC) (MSPE­Adj/EP) (DC/EP)

Combination 3

Table 5
Small Sample Properties of Combined Tests with Quasi-Optimal Weights

w1 w2 w3 w1 w2 w3 w1 w2 w3

5.8% ­72.2% 0.6% 9.0% ­74.3% 1.4% 5.9% ­69.2% ­1.2%
14.3% ­37.9% 10.0% 27.5% ­69.1% 5.6% 19.6% ­40.4% 4.9%
­7.0% ­86.7% ­26.5% 1.7% ­77.4% ­1.8% ­4.9% ­84.6% ­23.2%

1.1% ­68.4% ­1.7% ­3.7% ­55.6% ­7.2% 2.9% ­66.2% ­0.5%
16.4% ­45.8% 6.6% 0.3% ­35.8% 1.4% 7.9% ­33.1% 6.4%
­6.0% ­79.2% ­7.7% ­8.7% ­63.4% ­15.1% ­4.1% ­84.3% ­17.7%

8.7% 7.4% 8.4% 9.3% 4.6% 9.0% 10.7% 9.4% 10.1%
10.3% 12.1% 9.1% 12.6% 5.4% 9.7% 11.8% 10.3% 10.6%
7.7% 4.7% 7.7% 7.8% 3.8% 8.2% 10.0% 8.5% 9.6%

Nominal Size is 10%
Properties

Average Size
Highest Size

Results on Size Adjusted Power

of the Tests

Lowest Size

Results on Size

Average Gains
Highest Gain
Lowest Gain

Highest Gain
Lowest Gains

Average Gains
Results on Power

Combination 1 Combination 2
(MSPE­Adj/DC) (MSPE­Adj/EP) (DC/EP)

Combination 3

33



7 Empirical Application

In this section we study the behavior of our combining strategies using monthly forecasts for a

couple of US dollar bilateral exchange rates. We analyze the cases of Canada and Chile. While

the null model corresponds to a zero mean martingale di¤erence for the percentage change in

exchange rates, the alternative model posits that this percentage change is explained by two

regressors: a constant and the one-month interest di¤erential. The data from Canada was

generously provided by Todd Clark and correspond to the same database used in Clark and

West4 (2006). We obtained the data for Chile from the International Financial Statistics. In

this case we use the discount rates as measures of interest rates.

Using rolling regressions estimated by OLS we engage in the following empirical exercise:

we assume that the number of observations used for the �rst estimation (R) as well as the

number of predictions (P ) are �xed. We follow Clark and West (2006) to choose R relatively

small with respect to P , so we choose R � P=3: For Canada we set R = 95 and P = 191. For

Chile we set R = 48 and P = 96: Then we compute the MSPE-Adjusted test, the Direction

of Change test and three di¤erent weights to combine these two test statistics. We use the

same three weights denoted by w1�w3 in previous sections. We then analyze whether these

tests are able to reject the null of a MDH.

Table 6
Forecasts of Monthly Changes in U.S. Dollar Exchange Rates

Standardized Statistics

4 Interest rates correspond to 1-month eurocurrency deposit rates, taking an average of bid and ask rates at
London close. Monthly time series are formed as the last daily rate of each month. Data was obtained from
Global Insight�s FACS database.
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(1) (2) (3) (4) (5) (6) (7)

Country Sample MSPE Direction  Quasi­optimal Α Remaining w3= 1/2
Size Adjusted of Change weight (w1) Root (w2)

Canada R=95,  P=191 1.53* 1.52*    1.73**    1.73** ­0.02 1.68**

Chile R=48,  P=96 1.23 1.22    1.35*    1.35* 0.01 1.23

Combinations

Notes:

1. Rejections at 5% (**) and 10% (*) level of signi�cance.

2. Data range: 1980:01-2003:10 for Canada and 1993:4-2005:4 for Chile.

3. R is the size of the estimation window, P is the size of the prediction window.

4. Table display standardized statistics to be compare with critical values from a standard normal distri-

bution.

Results are displayed in table 6. We clearly see how some combinations provide higher

standardized statistics. Whereas in the case of Canada both the MSPE-Adjusted test and

the Direction of Change test rejects the null of no predictability only at the 10% signi�cance

level, combinations with w1 and w3 allow rejection at the 5% signi�cance level. In the case

of Chile combination is even more helpful. In fact, none of the single tests, nor the simple

average of them, are able to reject the null of no predictability at the 10% signi�cance level,

yet the quasi-optimal weight induces a test that does reject the null at a 10% signi�cance

level, providing evidence of predictability for the Chilean monthly exchange rate returns.

8 Conclusion

We have shown that the popular combination principle, which is used extensively in the

forecasting literature, can be successfully extended to boost power in asymptotically normal

tests of predictive ability.

Asymptotic normality implies that more power can be achieved simply by �nding a com-

bination that maximizes a combined t-ratio. This allows us to de�ne an optimal combination

35



weight. Unfortunately, this optimal weight is degenerated under the null of no predictabil-

ity. To overcome this problem we introduce a penalization function that attracts the optimal

weight to the interior of the feasible combination set. The new optimal weight associated with

the penalization problem, that we call quasi-optimal weight, is well de�ned under the null,

ensuring asymptotic normality of the resulting combined test

Using a simple data generating process of exchange rate returns based upon a model of

interest parity, we show via simulations that the proposed quasi-optimal weight induces a test

with adequate size and improved power. In fact, the new combined test may outperform its

single components displaying gains in power up to 45%. We also show that this combination

strategy, in general outperforms the simple average.

Finally, we illustrate how the combined tests may help to detect predictability in exchange

rate returns for the cases of Chile and Canada. We see that our quasi-optimal weight, along

with the simple average, induces a combined test that allows detection of predictability for

Canadian exchange returns at the 5% signi�cance level. This is important because individual

tests only detect predictability at the 10% signi�cance level. For Chile our combination

strategy is even more fruitful. In this case the single tests and their simple average cannot

reject the null of no predictability at the 10% level. When these single tests are combined

with our proposed quasi-optimal weight, however, evidence of predictability is detected.
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9 Appendix

9.1 Proof of Proposition 1

Proof. Under asymptotic normality we have

P�(�AN (!)) = Pr(T
CN (!) > t�) =

1p
2�

1Z
t�

e�
1
2
(x��AN (!))2dx

using the usual change of variables
z = x� �AN (!)

we have that

P�(�AN (!)) =
1p
2�

1Z
t���AN (!)

e�
1
2
z2dz

= 1� �(t� � �AN (!))

where � denotes the distribution of a standard normal random variable. It is straightforward to check
that

@P�(�AN (!))

@�AN (!)
> 0

Therefore the maximization of (7) is equivalent to the maximization of the following objective function

�AN (!) =
p
P
�(!)

�(!)

! 2 [0; 1]

which is also equivalent to maximize

�AN (!) =
�(!)

�(!)

! 2 [0; 1]

9.2 Proof of Proposition 2

Proof. First of all we will check the continuity of �AN for ! 2 [0; 1]:In order to do that we recall
that �AN (!) is given by the following expression:

�AN (!) =
p
P
�(!)

�(!)
=
p
P
!�1 + (1� !)�2

�(!)
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where

�2(!) � !2�21 + (1� !)2�22 + 2!(1� !)�1;2 � 0
for ! 2 [0; 1]

In the �rst place we will show that :�1; �2 > 0 and �2 < 1 =) �2(w) > 0:
We have that

�2(!) � !2�21 + (1� !)2�22 + 2!(1� !)�1;2
= !2(�21 + �

2
2 � 2�1;2) + 2!(�1;2 � �22) + �22

suppose

�21 + �
2
2 � 2�1;2 = 0

�21 + �
2
2 = 2�1;2

�21 + �
2
2 =

2�1;2
�1�2

�1�2

�21 + �
2
2 = 2��1�2

we notice that � = �1;2
�1�2

> 0 because 0 < �21 + �
2
2 = 2�1;2: Therefore

�21 + �
2
2 = 2��1�2 < 2�1�2

so

�21 + �
2
2 < 2�1�2

�21 + �
2
2 � 2�1�2 < 0

(�1 � �2)2 < 0

which is a clear contradiction. Therefore we must have

�21 + �
2
2 � 2�1;2 6= 0

In case �1;2 = 0 then � =
�1;2
�1�2

= 0 so

�21 + �
2
2 � 2�1;2 = �21 + �22 > 0

if �1;2 6= 0 then � = �1;2
�1�2

6= 0 and we have

(�1 � �2)2 � 0

�21 + �
2
2 � 2�1�2 � 0

�21 + �
2
2 � 2�1�2 =

2�1;2
�

> 2�1;2

this last step due to the assumption �2 < 1:
Therefore

�21 + �
2
2 > 2�1;2
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and �nally
�21 + �

2
2 � 2�1;2 > 0

This result implies that

�2(!) � !2(�21 + �22 � 2�1;2) + 2!(�1;2 � �22) + �22

is a strictly convex quadratic function. As such �2(!) admits a unique global minimum. To make
sure this function is always positive we need to �nd its roots and check whether they are complex or
real. Therefore we need the following discriminant to be negative

b2 � 4ac < 0

b = 2(�1;2 � �22)
a = (�21 + �

2
2 � 2�1;2)

c = �22

We have that

b2 � 4ac = 4(�1;2 � �22)2 � 4(�21 + �22 � 2�1;2)�22
= 4(�21;2 + �

4
2 � 2�1;2�22)� 4(�21�22 + �42 � 2�1;2�22)

= 4(�21;2 � 2�1;2�22)� 4(�21�22 � 2�1;2�22)
= 4(�21;2 � �21�22)
= 4(�2�21�

2
2 � �21�22)

= 4�21�
2
2(�

2 � 1) < 0

therefore the quadratic form only admits complex roots. As a consequence �2(!) is strictly positive
and the ratio

�AN (!) =
p
P
�(!)

�(!)

is a well de�ned ratio of two continuous functions, with a positive function in the denominator. There-
fore �AN (!) is continuous over the compact set [0; 1]. By Weierstrass�theorem we can �nd ! 2 [0; 1]
such that

! = argmax
!2[0;1]

�AN (!) (20)

Step 2. If ! is a solution of (20) then either ! 2 f0; 1g or ! is interior. An interior solution for
the maximization problem may be found in the set C of critical points of �AN (!) :

C =

�
! 2 R such that d�AN (!)

d!
= 0

�
C =

�
! 2 R such that

p
P

�
��(!)�(!)� �(!)��(!)

�2(!)

�
= 0

�
therefore, critical points satisfy

��(!�)�(!�)� �(!�)��(!�)
�2(!�)

= 0
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or simply
��(!�)�(!�) = �(!�)��(!�)

Now, we have

��(!) = �1 � �2 � c
�(!) =

p
f(!)

f(!) = �2(!)

= !2(�21 + �
2
2 � 2�1;2) + 2!(�1;2 � �22) + �22

f 0(!) = 2(�21 + �
2
2 � 2�1;2)! + 2(�1;2 � �22)

�0(!) =
1

2
f(!)�

1
2 f 0(!)

so

��(!�)�(!�) = �(!�)��(!�)

c�(!�) = �(!�)
1

2
f(!�)�

1
2 f 0(!�)

2cf(!�)
1
2 = �(!�)f(!�)�

1
2 f 0(!�)

2cf(!�) = �(!�)f 0(!�)

Notice that f(!) and �(!)f 0(!) are quadratic forms:

2cf(!) = 2c!2(�21 + �
2
2 � 2�1;2) + 4c!(�1;2 � �22) + 2c�22

= A1!
2 +A2! +A3

A1 = 2c(�21 + �
2
2 � 2�1;2)

A2 = 4c(�1;2 � �22)
A3 = 2c�22

on the other hand

�(!)f 0(!) =
�
2(�21 + �

2
2 � 2�1;2)! + 2(�1;2 � �22)

	
f�1! + �2(1� !)g

=
�
2(�21 + �

2
2 � 2�1;2)! + 2(�1;2 � �22)

	
fc! + �2g

= B1!
2 +B2! +B3

B1 = 2c(�21 + �
2
2 � 2�1;2)

B2 = 2(�21 + �
2
2 � 2�1;2)�2 + 2c(�1;2 � �22)

B3 = 2(�1;2 � �22)�2

Therefore, any critical point !� must satisfy

(A1 �B1)!2 + (A2 �B2)! +A3 �B3 = 0

But
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(A1 �B1) = 2c(�21 + �22 � 2�1;2)� 2c(�21 + �22 � 2�1;2) = 0

Furthermore

(A2 �B2) = 4c(�1;2 � �22)�
�
2(�21 + �

2
2 � 2�1;2)�2 + 2c(�1;2 � �22)

	
= 2c(�1;2 � �22)� 2(�21 + �22 � 2�1;2)�2
= 2�1(�1;2 � �22)�

�
2�2(�1;2 � �22) + 2(�21 + �22 � 2�1;2)�2

	
= 2�1(�1;2 � �22)�

�
2�2�1;2 + 2(�

2
1 � 2�1;2)�2

	
= 2�1(�1;2 � �22) + 2�2(�1;2 � �21)

this last expression is di¤erent from zero by assumption. Besides we have

(A3 �B3) = 2c�22 � 2(�1;2 � �22)�2
= 2(�1 � �2)�22 � 2(�1;2 � �22)�2
= 2

�
�1�

2
2 � �2(�22 + �1;2 � �22)

	
= 2

�
�1�

2
2 � �2�1;2

	
therefore we have that the unique critical point !� satis�es

!� =
�2�1;2 � �1�22

�1(�1;2 � �22) + �2(�1;2 � �21)

Therefore, the solution to the maximization problem is given by

! = argmax
!2	

�(!)

�(!)

	 = f1; 0g [ �

� =

�
f!�g if !� 2 [0; 1]
� if !� =2 [0; 1]

�

9.3 Proof of Proposition 4

Proof. Let us suppose that ! 2 (0; 1) is such that�p
P
��1

�AN (!) =
�(!)

�(!)
< min

�
�(0)

�(0)
;
�(1)

�(1)

�
we will also assume, without loss of generality, that

�1
�1
=
�(0)

�(0)
� �2
�2
=
�(1)

�(1)

so
�2 �

�1
�1
�2
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Therefore we have�
�(!)

�(!)

�2
� !2�21 + (1� !)2�22 + 2!(1� !)�1�2

!2�21 + (1� !)2�22 + 2!(1� !)�1;2

�
!2�21 + (1� !)2

�
�1
�1
�2

�2
+ 2!(1� !)�

2
1
�1
�2

!2�21 + (1� !)2�22 + 2!(1� !)�1;2

� �21
�21

�
!2�21 + (1� !)2�22 + 2!(1� !)�2�1
!2�21 + (1� !)2�22 + 2!(1� !)�1;2

�
� �21

�21

�
!2�21 + (1� !)2�22 + 2!(1� !)�2�1
!2�21 + (1� !)2�22 + 2!(1� !)�2�1�

�
� �21

�21

�
!2�21 + (1� !)2�22 + 2!(1� !)�2�1
!2�21 + (1� !)2�22 + 2!(1� !)�2�1

�
� �21

�21
= min

(�
�(0)

�(0)

�2
;

�
�(1)

�(1)

�2)
>

�
�(!)

�(!)

�2
which is a contradiction. Therefore combining will at least yield the minimum single outcome.
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