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Resumen  
En este documento evaluamos la predictibilidad de algunos tipos de cambio usando un nuevo 
enfoque desarrollado por Giacomini y White (2004). Lo novedoso de este  enfoque es la 
realización de tests de predictibilidad condicionales y ya no sólo incondicionales como había 
sido la regla hasta ahora. Usando varias técnicas predictivas de reducción de parámetros, 
incluyendo algunos nuevos métodos presentados en este documento, se evalúa la 
predictibilidad condicional de cinco tipos de cambio bilaterales con respecto al dólar, 
considerando distintos horizontes de predicción. Nuestros resultados indican que, para la 
mayoría de las monedas el camino aleatorio no sería el mejor predictor en un ejercicio de 
predicción a tiempo real, al menos para ciertos horizontes. También mostramos que, en 
general,  los métodos de reducción de parámetros propuestos en este documento son tan 
buenos predictores como los métodos de reducción de parámetros tradicionales, y a veces 
incluso mejores. 
 
 
Abstract  
In this paper we evaluate exchange rate predictability using a new framework developed by 
Giacomini and White (2004). In this new framework we test for conditional predictive ability 
rather than for unconditional predictive ability, which has been the usual approach thus far. 
Using several shrinkage based forecasting methods, including new methods proposed here, 
we evaluate conditional predictability of five bilateral exchange rates at differing horizons. 
Our results indicate that for most currencies a random walk would not be the best forecasting 
method in a real time forecasting exercise, at least for some predictive horizons. We also 
show that our proposed shrinkage methods in general perform on par with Bayesian shrinkage 
and ridge regressions, and sometimes they even perform better. 
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1 Introduction

One of the most striking contributions in the exchange rate literature is the well known
result of Meese and Rogoff (1983a,b). Using a variety of linear exchange rate models, these
authors showed that no economic model was able to consistently display improved forecast
accuracy over a simple random walk model. This result was shown to be robust across
different exchange rates and predictive horizons.

Later on, improved methodological techniques showed some results that partially over-
turned this seminal work. Some evidence of predictability is shown in Chinn and Meese
(1995), Mark (1995), MacDonald and Marsh (1997), McCracken and Saap (2005), and
Clark and West (2004). Nevertheless, this evidence is still weak and no conclusive result
on exchange rate predictability has been shown.

These improved methodological techniques are partly based upon the development of
econometric strategies for forecast comparison under general loss functions. West (1996)
and Diebold and Mariano (1995) established the basic econometric framework under which
out-of-sample tests of predictive ability are carried out.

An important observation needs to be made. When engaging in tests of predictive
ability there are two major questions that might be addressed. One is a question about
theory. Namely, tests of predictive ability are used as instruments to test an economic
theory. The second question is an empirical question seeking to find a profitable forecasting
method irrespective of any theoretical implications about the underlying data generating
process. These two questions are not equivalent. In particular it is possible to show that
even when the null hypothesis of no predictability is rejected, it is likely that a forecasting
method based upon the rejected null model will outperform some forecasting methods
based upon the alternative model.

This distinction is analyzed in depth in Giacomini and White (2004). They argue that
the framework for out-of-sample predictive ability testing, developed by West (1996) and
Diebold and Mariano (1995), might not be useful or appropriate for an applied forecaster
trying to assess which of two competing forecasting methods will provide more accurate
forecasts in the future. They propose an alternative approach that claims to be more
relevant to economic forecasters.

The main distinction between the two approaches is twofold. First, Giacomini and
White (2004) focus their analysis on conditional expectations of forecasts, while West
(1996) and Diebold and Mariano (1995) focus on unconditional expectations. According
to this distinction we will call the Giacomini and White (2004) approach the conditional
approach, and that of West (1996) and Diebold and Mariano (1995) the unconditional
approach. This difference is relevant for a forecaster that is highly interested in finding the
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best forecast for the next relevant period instead of a forecast that is the best on average.
Second, the conditional approach is concerned with the whole “forecasting method” rather
than just with the theoretical model used to generate forecasts, which is the main object of
interest of the unconditional approach. The “forecasting method” is a much more general
notion than the forecasting model because it includes the model, its estimation technique,
the size of estimation and forecasting windows, and in general all the elements of the
forecasting method that could possible affect its future predictive ability performance.

The recent literature that has partially overturned the result of Meese and Rogoff
(1983a,b) has built on the unconditional approach to draw inference about exchange rate
predictability. In consequence, it may be totally feasible that even for those currencies,
models and horizons for which predictability is found, forecasts from these models may be
outperformed by a simple random walk strategy in a real-time forecasting exercise. Little
or no research has addressed the evaluation of conditional predictive ability for exchange
rates.

To fill this gap, in this paper we perform tests of conditional predictive ability for sev-
eral exchange rates, using a variety of shrinkage based forecasting methods based upon
models of interest parity. Besides this contribution, we also introduce a new shrinkage esti-
mation approach aimed at improving forecast accuracy under quadratic loss. One possible
advantage of this shrinkage estimator is that it might replace the troublesome choice of the
optimal ridge factor with a more standard choice of an autoregressive forecasting model
for the exogenous variables.

The rest of the paper is organized as follows: Section 21 further develops the condi-
tional predictive ability approach and its differences with the unconditional approach. The
relevant econometric environment is presented in Section 3. Section 4 displays a descrip-
tion of the model and different estimation techniques that are used to build the different
“forecasting methods”. Empirical results are reported for five bilateral exchange rates in
Section 5. Section 6 concludes.

2 Conditional Versus Unconditional Testing Framework

To correctly illustrate the main differences between the conditional and unconditional ap-
proaches, we consider two competing parametric forecasting models for the conditional
expectation of a scalar time series yt+1. We denote the forecasts from these two models as
y1t+1(β1) and y2t+1(β2), where β1 and β2 denotes population parameters of the two com-
peting models. For a given loss function L = L(yt+1, y

i
t+1(βi)), i = 1, 2 the unconditional

1Sections 2 and 3 are based upon Giacomini and White (2004).
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approach suggests a test of equal forecast accuracy as follows

H0 : E[L(yt+1, y
1
t+1(β1))− L(yt+1, y

2
t+1(β2))] = 0 (1)

whereas the conditional approach suggests the following testing strategy

H0 : E[L(yt+1, y
1
t+1(

bβt1))− L(yt+1, y
2
t+1(

bβt2))|Ft] = 0 a.s. for all t ≥ 0 (2)

where bβt1 and bβt2 denote parameter estimates of β1 and β2 with information up until time
t. The implementation of the conditional approach relies on the fact that (2) is equivalent
to

E[ht(L(yt+1, y
1
t+1(

bβt1))− L(yt+1, y
2
t+1(

bβt2)))] = 0
for all Ft−measurable function ht.

Some of the differences between the two approaches are evident. First, the unconditional
approach asks a question directly involving the true unknown parameters of the competing
models, whereas the conditional approach asks a direct question involving only estimates
of those parameters2. When focusing on the true population parameters, the unconditional
approach is implicitly testing the appropriateness of a model to correctly approximate the
true data generating process. However, it is clear that even the true model might yield
poor forecasts in the presence of parameter uncertainty, and clearly some “false” models
have the chance to outperform the correct model in this context. In this regard, the use of
known parameter estimates in the conditional approach might be more useful to determine
which model will provide more accurate forecasts in a real time forecasting application.
This is because in the conditional approach testing and future forecast accuracy now both
depend upon the same magnitudes ( bβt1 and bβt2), whereas in the unconditional approach
testing focuses on the true population parameters but forecast accuracy is measured usingbβt1 and bβt2. Second, Giacomini and White (2004) argue that a null hypothesis established
as (1) can be interpreted as saying that, on average, the two models provide equal forecast
accuracy. This information might not be very useful for a forecaster that needs to know
which model provides the best forecast for tomorrow given information available today.
The conditional null hypothesis seems a better choice for this scenario.

Some other differences are subtle. In particular we want to emphasize that when
the conditional null hypothesis is stated in terms of the estimates of the true population
parameters, this null is implicitly imposing restrictions on those population parameters,
on the size of the estimation window and also on the ridge or shrinkage factors that may

2We should point out that depending on the estimation method, a direct question involving only esti-
mates of the population parameters defining the underlying data generating process will also impose some
restrictions over these parameters. The main difference between the unconditional and conditional approach
reduces to the fact that restrictions on the population parameters are in general different.
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be used for estimation3. In other words, whereas the unconditional null only imposes a
typically simple restriction on the parameters of the models, the conditional null imposes a
restriction involving these parameters, the estimation sample size and the shrinkage factor
used for estimation. This is important because the choice of estimation sample size and
shrinkage factor may have an impact on the size of the conditional test4. As there is no
empirical guide about how to choose these two magnitudes, we recommend caution when
interpreting the results using conditional tests.

Further differences are also worth mentioning. For instance, the unconditional approach
relies on stationarity assumptions, whether the unconditional approach relies on a more
general assumption of heterogeneity. Besides, the conditional approach applies for both
nested and non-nested models. On the contrary, the unconditional approach, originally
established only for non-nested models, needs to make significant adjustments when models
are nested, McCracken (2004). Further differences are described in detail in Giacomini and
White (2004).

3 Econometric Environment

Consider a scalar time series process with general term denoted by yt and the set of infor-
mation available until time t denoted by Ft. We want to build τ step ahead forecasts for
this scalar time series based upon information available until time t.We have two different
methods to build τ step ahead forecasts for the relevant time series yt. These methods
provide two different forecasts denoted by fR,t and gR,t.We will further assume that these
forecasts are built from estimates of parametric models, so we can express

fR,t = fR,t(bγR,t)
gR,t = gR,t(bθR,t)

The R subscript means that the forecasts are constructed using at most the last R sample
observations available until time t. This strategy is well known as a rolling estimation
window of maximum size R.

We will be using two models to build our forecasts:

Model 1 : yt+1 = et+1 (3)

Model 2 : yt+1 = X 0
t+1β + et+1 (4)

3We are extremely grateful to Professor West for making this point.
4 In some cases there is a unique choice of sample size and shrinkage factor for which the conditional test

is correctly sized.
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where X 0
t+1 is a vector of exogenous random variables and et+1 is a zero mean martingale

difference series meaning that E(et+1|Ft) = 0. The optimal forecast under quadratic loss
is 0 for Model 1 and X 0

t+1β for Model 2. Therefore we propose the following forecasting
methods

fR,t = 0

gR,t = X 0
t+1
bβiR,t

where bβiR,t represents a rolling estimate of the unknown parameter β using rolling window
size R, information available up to time t and estimation method i.

Forecast evaluation is carried out simulating an out-of-sample exercise. One has T + 1
observations of yt+1 and X 0

t+1. The first R observations are used for the first estimation.
Therefore the first τ step ahead forecast is built at timeR and compared with the realization
yR+τ . The second forecast is obtained using the last R observations available for estimation.
This forecast is compared with the realization yR+1+τ . We iterate like this until the T +
2 − τ − R forecast is built again using the last R observations available for estimation.
This forecast is compared with the realization yT+1. We generate a total of Pn forecasts,
with Pn satisfying R+ (Pn − 1) + τ = T + 1. So

Pn = T + 2− τ −R

These forecasts are evaluated using a loss function Lt+τ (yt+τ , gR,t) depending on both
the forecasts and the realization of the data. We will focus our analysis in a quadratic loss
function. Then we test the following null hypothesis

H0 : E[Lt+τ (yt+τ , fR,t)− Lt+τ (yt+τ , gR,t)|Ft] = 0 a.s. for all t ≥ 0

The implementation of the conditional approach relies on the fact that the null hypothesis
is equivalent to

H0 : E[ht(Lt+τ (yt+τ , fR,t)− Lt+τ (yt+τ , gR,t))] = 0
.
= E[ht∆LR,t+τ ] = 0 a.s. for all t ≥ 0

for all Ft−measurable function ht.

We first select our preferred choice of a qx1 test function ht to construct the relevant
statistics that are described next.
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3.1 One-Step Ahead Conditional Test

When τ = 1, the sequence ht∆LR,t+τ is a martingale difference sequence if the null is true.
Giacomini and White (2004) propose the following statistic for the test of equal conditional
predictive ability

T h
Pn,R = Pn(Z 0Pn,R bΩ−1PnZPn,R) (5)

where

ZPn,R =
1

Pn

TX
t=R

ZR,t+1

ZR,t+1 = ht∆LR,t+1

bΩPn =
1

Pn

TX
t=R

ZR,t+1Z
0
R,t+1

Giacomini and White (2004) give conditions5 under which the asymptotic distribution of
T h
Pn,R

|H0 is Chi-square.

T h
Pn,R|H0

D→ χ2q as Pn →∞

3.2 Multi-Step Conditional Test

When τ > 1 Giacomini and White (2004) propose the following statistic for the test of
equal conditional predictive ability

Th
Pn,R,τ = Pn(Z 0Pn,R eΩ−1PnZPn,R) (6)

where

ZPn,R =
1

Pn

T−τX
t=R

ZR,t+τ+1

ZR,t+τ+1 = ht∆LR,t+τ

and eΩPn is a HAC estimate of the variance of ZR,t+τ+1 computed according to Newey and
West (1987).

Giacomini and White (2004) give conditions6 under which the asymptotic distribution
of T h

Pn,R,τ
|H0 is Chi-square.

Th
Pn,R,τ |H0

D→ χ2q as Pn →∞
5These conditiones are summarized in the appendix.
6These conditiones are summarized in the appendix.
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3.3 A Forecasting Decision Rule

Assume that we carry out a conditional predictive ability test and we are able to reject the
null hypothesis. We need to decide how to build a forecast for time T +2. Rejection of the
null hypothesis gives statistical evidence indicating that one forecasting method is more
accurate than the other, and that the test function hT+1 contains useful information for
the determination of the best forecasting method. Giacomini and White (2004) propose
the following decision rule:

1. Pick a threshold level c.
2. Regress ∆LR,t+τ on ht over the out-of-sample period to obtain the regression

coefficient bα.
3. Pick the forecast gR,T+1 if h0tbα > c and choose f otherwise.

Giacomini and White (2004) also propose an indicator to evaluate the number of times
this decision rule would have chosen forecast method g over f or the other way around.

Ic,Pn =
1

Pn

T+1−τX
t=R

1{h0tbα > 0} (7)

where

1{h0tbα > 0} =
½
1 if h0tbα > 0
0 if h0tbα ≤ 0

¾
We will implement this same indicator in our empirical application.

4 Forecasting Methods and Models

4.1 Derivation of a Forecasting Shrinkage Estimator

In this subsection we derive a new shrinkage estimator for the parameter of a linear re-
gression model. We argue that this shrinkage estimator replaces the troublesome need to
choose an optimal ridge factor with the less troublesome (at least for us) model selection
task via a traditional information criteria. Besides, this new shrinkage estimator provides
a natural interpretation for the matrix of perturbations typically used in ridge regressions.

Let us assume that {yt,Xt, et}∞t=1 is a sequence satisfying the following expression

yt+1 = X 0
t+1β0 + et+1 (8)

where now β0 is the true value of the parameter of the model and

E[et+1|Ft] = 0
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where {Ft} represents a filtration such that Ft is the sigma-field generated by current and
past X’s and e’s.

Ft = σ {Xt+1, et,Xt,et−1,Xt−1, et−2...}

A traditional OLS and ridge estimators for β0 are given by the following expression:

bβOLS =

"
R−1X
t=0

(Xt+1X
0
t+1)

#−1 R−1X
t=0

(yt+1Xt+1)

bβRidge =

"
R−1X
t=0

(Xt+1X
0
t+1) + λIkxk

#−1 R−1X
t=0

(yt+1Xt+1)

where λ is called the ridge factor. In principle there is no standard method to choose
the right or optimal ridge factor. We propose a more natural approach to this problem:
an approach that uses the context of out-of-sample model evaluation and has the same
variance reduction advantages of traditional ridge regressions.

We will assume that the number of observations available{yt+1,Xt+1}Tt=0 is T + 1 =
P + R, where R is the size of the estimation window and P is the size of the prediction
window. In this case we want to find an estimate of β0 by solving the following problem :

min
β
L(β;β0) = E(yt+1 −X 0

t+1β)
2 (9)

To build our first forecasts we only have R observations of our sample, and we want
to engage in a one-step-ahead prediction exercise that not only minimizes an in-sample
estimate of the loss function, but also a combination of an in-sample estimate and an
out-of-sample estimate of the loss function.

Notice that we could rewrite the problem (9) as

min
β
E[E[(yt+1X

0
t+1β)

2|FR]]

The expectation in (9) can be estimated as follows

E[E[(yt+1 −X 0
t+1β)

2|FR]] ≈
1

N

NX
t=0

E[(yt+1 −X 0
t+1β)

2|FR]

Let us consider now N >> R. We have that

NX
t=0

E[(yt+1 −X 0
t+1β)

2|FR] =
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=
R−1X
t=0

E[(yt+1 −X 0
t+1β)

2|FR] +
NX
t=R

E[(yt+1 −X 0
t+1β)

2|FR]

The terms inside the expectation in the first sum in the right side are a function of terms
belonging to the information set FR so we could write the previous expression as

NX
t=0

E[(yt+1−X 0
t+1β)

2|FR] =
R−1X
t=0

(yt+1−X 0
t+1β)

2+
NX
t=R

E[(yt+1−X 0
t+1β)

2|FR]

Furthermore

NX
t=R

E[(yt+1 −X 0
t+1β)

2|FR] =
NX
t=R

E[(X 0
t+1β0 + et+1 −X 0

t+1β)
2|FR]

=
NX
t=R

E[(X 0
t+1(β0 − β) + et+1)

2|FR]

=
NX
t=R

E[(β0 − β)0Xt+1X
0
t+1(β0 − β) + e2t+1 + 2X

0
t+1(β0 − β)et+1|FR]

Notice that
NX
t=R

E[2X 0
t+1(β0 − β)et+1|FR] = 0

because for all τ > 0

E[X 0
R+τ (β0 − β)eR+τ |FR] = E[E[X 0

R+τ (β0 − β)eR+τ |FR+τ−1]|FR]

= E[X 0
R+τ (β0 − β)E[eR+τ |FR+τ−1]|FR]

= 0 for all τ > 0

therefore

NX
t=R

E[(yt+1−X 0
t+1β)

2|FR] =
NX
t=R

E[(β0−β)
0Xt+1X

0
t+1(β0−β) + e2t+1|FR]

so finally
NX
t=0

E[(yt+1−X 0
t+1β)

2|FR] =

=
R−1X
t=0

(yt+1−X 0
t+1β)

2+
NX
t=R

E[(β0−β)
0Xt+1X

0
t+1(β0−β) + e2t+1|FR]

9



taking derivatives with respect to β we finally have that β satisfies

"
2
R−1X
t=0

(Xt+1X
0
t+1) + 2

NX
t=R

E[Xt+1X
0
t+1|FR]

#
β

= 2
R−1X
t=0

(yt+1Xt+1) + 2
NX
t=R

E[Xt+1X
0
t+1|FR]β0 −

NX
t=R

∂

∂β
E[e2t+1|FR]

We define our statistic eβ by replacing the unknowns in the expressions above by sample
estimates:

"
2
R−1X
t=0

(Xt+1X
0
t+1) + 2

NX
t=R

bE[Xt+1X
0
t+1|FR]

# eβ
= 2

R−1X
t=0

(yt+1Xt+1) + 2
NX
t=R

bE[Xt+1X
0
t+1|FR]bβ0 − NX

t=R

∂

∂β
bE[e2t+1|FR]

We will assume that the conditional expectation of the square of the perturbations is
independent of the parameter β. Furthermore, we are interested in a shrinkage estimator
to obtain benefits from variance reduction. This leads us to pick bβ0 = 0. Therefore, with
appropriate assumptions of identification, we propose the following estimator:

eβ = "R−1X
t=0

(Xt+1X
0
t+1) +

NX
t=R

bE[Xt+1X
0
t+1|FR]

#−1 R−1X
t=0

(yt+1Xt+1) (10)

This estimator is similar to the ridge estimator presented earlier. We need to be precise
about two elements of this new estimator: the choice of N , and the expectation formationbE[Xt+1X

0
t+1|FR].

For the later we propose to estimate a V AR(p) model on the regressors Xt+1. Usual
model selection criteria may be followed. For the choice of N we propose three strategies:

1. N = R. The idea here is to impose the fact that when forecasting with rolling OLS
regressions we are only imposing in-sample minimization of the loss function. However
the evaluation of the forecast accuracy involves comparing the forecast with the unknown
predicted value. We try to overcome this situation with this new estimator.
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2. N = T + 1. In this case we are imposing that our estimate will minimize a com-
bination of the in-sample loss function and an estimate of the future loss function that
will be used to evaluate forecast accuracy. The problem with this scheme is that noweβ = eβ(R,P ). For many applications this is not a problem, but for the application we are
interested in here, dependence from P may render a degenerate distribution for our loss
function comparisons.

3. N = λR, where λ > 1 gives us an approximation of the importance that the
forecaster gives to the out-of-sample minimization versus the in-sample minimization.

Finally, we want to present a particular case in which there is only one regressor and
this is a constant.

4.1.1 Example

Consider the original model in which X 0
t+1 is just a constant, and et+1 are i.i.d. ho-

moskedastik shocks with E(e2t+1|FT ) = σ2. We could rewrite our model as

yt+1 = β0 + et+1

In this particular case we have that

∂

∂β
bE[e2t+1|FT ] = 0 for all t > T

NX
t=R

bE[Xt+1X
0
t+1|FT ] = N −R+ 1

R−1X
t=0

(Xt+1X
0
t+1) = R

so, our estimate is

eβ = 1

N + 1

R−1X
t=0

yt+1 +
N −R+ 1

N + 1
bβ0

If we choose bβ0 = 0, then we get a shrunken OLS for an arbitrary N :

fβ1 = R

N + 1
bβOLS
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Furthermore, if we choose N = T , we have

eβ2 = R

P +R
bβOLS

Finally if we choose N = λR− 1, where λ > 1, then we have

fβ3 = 1

λ
bβOLS

In our empirical application we will implement three of these variations. First, we will use
(10) with a choice of N given by N = λR, where λ > 1. Second, we will implement the full
shrinkage approach given by fβ3 and finally, we will also implement fβ1.
4.2 Forecasting Methods

In this subsection we introduce the model and estimation strategies that are used for
the implementation of the conditional tests. Our target is to build forecasts of the log
difference of five US dollar bilateral exchange rates using monthly data. We analyze the
cases of Canada, Japan, Switzerland, U.K, and Chile7. We want to evaluate the conditional
predictive ability of six different forecasting methods based upon an interest parity model,
and compare their predictive ability with a forecasting method based upon a random walk
model. All of the six methods basically posit that exchange rate returns are predicted
by two regressors: a constant and the one-month interest differential. The forecasts are
constructed according to Mark (1995) using the following equation:

st+τ − st = ατ + xtγτ + et+τ,t

and we will denote

βτ = vec(ατ , γτ )

X ’
t+1 = (1, xt)

where st represents nominal exchange rate at time t and xt represents interest rate differ-
ential.

The only difference between these six forecasting methods is the way parameters are

estimated. We will denote bβit,τ the estimate of βτ using method i and information avail-
able up until time t. A description of the different estimation methods follows next. For
simplicity the analysis is written assuming τ = 1.

7The data from Canada, Japan, Switzerland, and U.K. were generously provided by Todd Clark and
correspond to the same database used in Clark and West (2004). Interest rates correspond to 1-month
eurocurrency deposit rates, taking an average of bid and ask rates at London close. Monthly time series
are formed as the last daily rate of each month. Data was obtained from Global Insight’s FACS database.
We obtained the data for Chile from the International Financial Statistics. This time we use the money
market rate as measures of interest rate.

12



The six different estimation approaches that we use have the following two features in
common. First, all of these estimation approaches are rolling with estimation window of
the same size R. Second, all six estimation techniques can be summarized by the following
general expression

bβit,τ=1 =
"

tX
s=t−R+1

(XsX
0
s) +Mi

#−1 tX
s=t−R+1

(ysXs); i = 1, ..., 6

where Mi is a real matrix that truly identifies each of the proposed methods. The choice
of Mi is described next:

1. Rolling OLS (OLS). The choice of M1 is given by:

M1 = 0

so the unknown parameter β is estimated via OLS using the last R available observations.

Therefore bβ1t,τ=1 satisfies:"
tX

s=t−R+1
(XsX

0
s)

# bβ1t,τ=1 = tX
s=t−R+1

(ysXs)

2. Rolling Bayesian Shrinkage (Bayesian): The choice of M2 is given by:

M2 = bσ2V −1
where bσ is the standard deviation of the residuals of a regression between yt+1 and yt. V
is the diagonal variance-covariance matrix for the prior distribution of β. We set

α Ã N(0, 108)

γ Ã N(0, ('λ(bσy/bσx))2)
where bσy represents the sample standard deviation of the dependent variable (exchange
rate returns) and bσx represents the sample variance of the interest rate differential variable.

We also need to provide a priori values for the hyperparameters λ and '. Following
Litterman (1986) we use λ = ' = 0.2.

3. Deterministic Rolling Out-of-Sample OLS (Det OOS-OLS): The choice of M3 is
given by:

M3 = (µ− 1)
tX

s=t−R+1
(XsX

0
s); µ ≥ 1

with a choice of µ given by
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µ =
R+N − t

R
, t = R,R+ 1, ..., T + 1; N = N(R) >> T + 1

4. Full Shrinkage Approach (Full): The choice of M4 is given by:

M4 = (µ− 1)
tX

s=t−R+1
(XsX

0
s); µ > 1

where the parameter µ−1 > 0 is arbitrarily big. In our empirical application we set µ = 20.
It is easy to see that

bβ4t,τ=1 = bβ1t,τ=1
µ

5. Rolling Out-of-Sample OLS (OOS-OLS): The choice of M5 is given by:

N(R)X
s=t+1

E(XsX
0
s|Ft+1)

where the expectation E(XsX
0
s|Ft+1) is estimated fitting a V AR(p) model over the vector

Xt+1, t = R, ..., R+Pn−1. In our empirical application we use prior information about the
process of the interest rate differential. Following Clark and West (2004) we fit an AR(1)
model.

6. Rolling Ridge Regression (Ridge): The choice of M6 is given by:

M6 = λIkxk

where the ridge parameter λ > 0 is set to λ = 20, and k is the number of variables in the
regression.

We will use these methods to evaluate conditional predictive ability of several bilateral
exchange rates in the next section.

5 Empirical Results

In this section we present results for a number of tests of conditional predictive ability
for five bilateral exchange rates. We analyze the cases of Canada, Japan, Switzerland,
U.K, and Chile. For these countries we take the series of 1-,2-,4-,6,-8-,12- and 16-month
ahead forecast errors to conduct tests of conditional predictive ability using a quadratic loss
function. For Canada, Japan, Switzerland, and U.K. we set R = 120 and P = T + 1−R,
where T + 1 is the total number of observations. For Chile we set R = 36, P = 108. Our
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main goal is to evaluate if any of our forecasting methods may outperform the random
walk. For each country we run a total of 126 tests of the following form

H0 : E[hit(y
2
t+τ − (yt+τ−, g

j,k
R,t)

2)] = 0; i = 1, ..., 3; j = 1, ..., 6; k ∈ Θ

Θ = {1, 2, 4, 6, 8, 12, 16}

where subscript i denotes the type of test function used in the analysis, j denotes the
estimation technique used to obtain parameter estimates of the model and k denotes the
7 horizons used in the analysis according to the following description:

h1t = 1

h2t = vec(1,∆LR,t)

h3t = vec(1, (x2t )
1/5,∆LR,t)

j = 1 means traditional OLS estimation, j = 2 means Bayesian shrinkage estimation, j = 3
means deterministic out-of-sample OLS, j = 4 means a full shrinkage procedure, j = 5
means Out-of-Sample OLS, and j = 6 means a ridge regression. All these methods are
described in the previous section. Finally k = 1, 2, 4, 6, 8, 12, 16 denotes the horizon of the
analysis.

In case of rejection of the null hypothesis we also implement the decision rule in (7)
to evaluate which method would have been selected. We also report the percentage gain
(loss) in Mean Square Prediction Error (MSPE) for all the predictions.

Tables 1-5 in the appendix show p-values of the tests of conditional predictive ability
for each of the five countries. Tables 6-10 in the appendix show the percentage gain (loss)
in MSPE of each forecasting method with respect to the random walk. We analyze our
results according to the following lines. First, we simply want to know whether it is
possible to beat the random walk in a real-time forecasting exercise under quadratic loss.
Second, in case evidence of predictability is found, we want to know how predictability
varies along different predictive horizons. Third, in case evidence of predictability is found,
we would like to know how the conditional tests help over the unconditional tests. Finally,
we would like to know the size of the improvement in predictability should any evidence of
predictability be found, and we would also like to identify the best estimation method to
carry out a real time exchange rate forecasting exercise.

5.1 Predictability

Tables 1-5 shows p-values for the null of equal predictive ability. A minus sign indicates
the decision rule in (7) suggests using the random walk as a forecasting method, while
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a plus sign indicates the decision rule points to the corresponding alternative approach.
Tables 1-4 show that evidence of predictability is found for Canada, Chile, Japan and
Switzerland, as some p-values are lower than the 10% significance level and (7) suggests
using the corresponding alternative model to build forecasts. No predictability evidence is
found for the U.K, as every time the null of equal predictability is rejected, the decision rule
in (7) suggests the use of the random walk over any other alternative approach considered.

5.2 Predictability Horizons

According to Tables 1-5, evidence of predictability is found for Canada at the 1-,2- and
4-month ahead forecast horizon. For Chile and Switzerland, evidence of predictability is
found at every single considered horizon. For Japan, evidence of predictability is only
found at the 4-,6- and 8-month ahead forecast horizon. For the U.K, however, there is no
evidence of predictability whatsoever.

Differing from Mark (1995), we do not see long-term predictability dominating over
short term predictability. In fact, we see that every time there is long time predictability
(Chile and Switzerland) there is also short term predictability. In this respect these results
are consistent with those of McCracken and Selmen (2005) and those of Kilian (1999).

5.3 Conditional and Unconditional Predictability

Tables 1-5 report three panels of p-values. Each panel corresponds to a different testing
function hit, i = 1, ..., 3. We remark here that the first testing function is h1t = 1. In this
case the conditional approach of Giacomini and White (2004) reduces to an unconditional
approach in which the true unknown value of the parameters is replaced by sample esti-
mates. We compare results from the first panel (h1t = 1) with results obtained using more
general testing functions. These results are showed in panels 2 and 3, labeled h2 and h3 in
tables 1-5. We compare whether rejection in panels 2 and 3 is encompassed by rejection in
panel 1. In case rejections in panel 2 and 3 provide new information, we attempt to check
for robustness of these rejections by comparing suggestions from the decision rule (7) and
the sign of the difference in MSPE.8

Table 1 shows that for Canada there is no new information from the truly conditional
panels 2 and 3, as any rejection of the null of equal predictive ability in panels 2 and 3
is also found in the “unconditional” panel 1. Quite the contrary happens with Chile. For
this country, the “unconditional” approach shows no rejection whatsoever. The “truly”

8We have three tests for each forecasting method and predictive horizon. We make a forecasting decision
if the number of rejections in favor of one method outnumber the number of rejections in favor of the
competing method.
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conditional panels, however, show a number of rejections that are consistent with table 7 in
terms of choosing the forecasting model displaying the lowest MSPE. Out of 28 rejections,
there is only 1 “mistake”9. For Japan the conditional panels add two new “correct” re-
jections in favor of the random walk forecasting method. For Switzerland, the conditional
panels add 11 new and “correct” rejections whereas for the U.K. the conditional panels
add two new and “correct” rejections.

Overall, we see that conditioning seems to help in getting statistically significant in-
formation about conditional predictive ability. Notice that with a simple unconditional
approach, (panel 1) fewer rejections of the null of equal conditional predictive ability would
have occurred.

5.4 Predictability Size and Best Method

Tables 6-10 show percentage gains (losses) in out-of-sample MSPE between the random
walk and the corresponding alternative forecasting method. A negative value means that
the random walk displays lower out-of-sample MSPE whereas a positive value means that
the corresponding alternative forecasting method is more accurate in terms of quadratic
loss.

Once the null of equal conditional predictive ability is rejected against the random walk,
we care about the size of the out-of-sample MSPE. We measure this as the percentage gain
in MSPE over the random walk. From tables 6-10 we see that MSPE percentage gains range
from 0% to 2.5% with an average gain of 0.76%. Even though gains are mild, statistical
rejection suggest that they are also systematic. Furthermore, in 77% of the predictive
excercises there is evidence of reductions in MSPE using the alternative model.

In terms of choosing a forecasting method we consider two variables: power and pre-
dictive accuracy. In other words, a forecasting method is good if in a testing environment
it yields a powerful test and, if used in a predictive exercise, its accuracy is high. For the
first point of view we see that the full shrinkage approach is the most powerful method as
it accounts for 43% of all the rejections in favor of the alternative. The rest of the shrink-
age procedures provide the following rejection percentage: 16.25% for Ridge and Bayesian
respectively, 13.75% for Det-OOS-OLS, 7.5% for OOS-OLS and 3.75% for OLS. It is worth
mentioning that excluding the case of Chile, the only three methods providing rejection
are the three proposed shrinkage methods: full shrinkage, Det OOS-OLS and OOS-OLS.

9For two month ahead forecasts and OOS-OLS forecasting method, the use of the testing function h3
jointly with the decision rule suggests chosing the OOS_OLS forecasting method over the Random Walk,
yet the MSPE of the random walk is lower than that of its competing forecasting method. We label this
situation as a mistake. It only happens once.
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In terms of forecast accuracy, the full shrinkage approach performs poorly as it provides
percentage MSPE positive gains ranging between 0% and 0.4%. Much higher MSPE gains
can be obtained with Det OOS-OLS and OOS-OLS, methods which give improvements up
to 1.9% and 2.5% respectively. Traditional Bayesian shrinkage, ridge regressions and OLS
give improvements up to 0.82%, 1.9% and 1.7% respectively. We notice that our shrinkage
methods give the highest gains in MSPE in 78% of the cases in which gains are positive.

In summary we confirm that shrinkage methods are more appropriate than simple OLS
estimation to provide both more powerful tests of conditional predictive ability and more
accurate forecasts. We also show that the three proposed shrinkage methods perform
well and sometimes much better than their considered competitors, especially in terms of
forecasting accuracy.

6 Discussion

This paper evaluates exchange rate predictability using a new conditional framework de-
veloped by Giacomini and White (2004). Instead of testing an economic theory, this frame-
work is more appropriate for an applied forecaster trying to assess which of two competing
forecasting methods will provide more accurate forecasts in the future.

We use six different forecasting methods, based upon a model of interest parity, to test
the null of equal conditional predictive ability when the benchmark forecasting method
is a random walk. We consider seven different predictive horizons to perform a total of
126 tests for each bilateral exchange rate corresponding to Canada, Chile, Japan, UK and
Switzerland.

Our results indicate that all bilateral exchange rates, with the exception of the British
pound, display statistically significant evidence of conditional predictability against the
random walk, at least for some small group of predictive horizons. Furthermore, our results
reveal that conditional predictive ability is more frequently found at shorter or medium
horizons rather than at longer horizons.

This is interesting because it coincides with results showed by McCracken and Selmen
(2005) and Kilian (1999). We emphasize again that our question and testing framework are
different than those in previous papers. We are trying to detect exchange rate predictability
from a forecaster point of view and we are not directly interested in testing economic theory.

We also provide evidence indicating that shrinkage methods are more appropriate than
simple OLS estimation to provide both more powerful tests of conditional predictive ability
and more accurate forecasts. Similarly, we show that the three proposed shrinkage methods
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perform well and sometimes much better than their considered competitors, especially in
terms of forecast accuracy.

We have made a number of assumptions to obtain our results. For instance, all of
our forecasting methods are based upon the simple interest parity model. We have also
chosen priors, testing functions, ridge factors, loss functions, and forecasting and estimation
windows size, among other variables. A natural extension of this paper should either change
or relax some of these assumptions. The consideration of more models, more estimation
techniques and the use of bootstrap critical values are also left for future research.

7 Appendix

7.1 Theoretical Appendix

Theorem 1 (Conditional Predictive Accuracy Test) For forecast horizon τ = 1, ZR,t+1 =
ht∆LR,t+1, maximum estimation window of size R < ∞ and qx1 test function sequence
{ht} suppose:

1. {yt,Xt}, {ht} are mixing sequences with φ of size −r/(2r − 1), r ≥ 1 or α of size
−r/(r − 1), r > 1

2. E|ZR,t+1,i|2(r+δ) < C for some δ > 0, i = 1, ..., q and for all t

3. ΩPn =
1
Pn

TX
t=R

E[ZR,t+1Z
0
R,t+1] is uniformly positive definite.

Then under the null of equal conditional predictive accuracy

T h
Pn,R|H0

D→ χ2q as Pn →∞

where Th
Pn,R

is given by (5)
Proof. See Giacomini and White (2004)

Theorem 2 (Multi-Step Conditional Predictive Accuracy Test) For given forecast horizon
τ > 1, ZR,t+τ = ht∆LR,t+τ , maximum estimation window of size R < ∞ and qx1 test
function sequence {ht} suppose:

1. {yt,Xt}, {ht} are mixing sequences with φ of size −r/(2r − 2), r ≥ 2 or α of size
−r/(r − 2), r > 2

2. E|ZR,t+1,i|(r+δ) < C <∞ for some δ > 0, i = 1, ..., q and for all t
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3. E eΩPn is uniformly positive definite, where eΩPn is a HAC estimate of the variance
of ZR,t+τ+1

Then under the null of equal conditional predictive accuracy

Th
Pn,R,τ |H0

D→ χ2q as Pn →∞

where T h
Pn,R,τ

is given by (6)
Proof. See Giacomini and White (2004)
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7.2 Tables

(1) (2) (3) (4) (5) (6) (7) (8)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 0.29 0.55 0.07+ 0.04+ 0.24 0.64
2 0.39 0.68 0.15 0.04+ 0.38 0.72
4 0.52 0.74 0.19 0.06+ 0.49 0.75

h1 6 0.79 0.78 0.52 0.26 0.70 0.77
8 0.92- 0.79 0.82 0.58 0.88 0.78
12 0.87 0.80 0.80 0.46 0.91- 0.77
16 0.99- 0.84 0.87 0.67 0.98- 0.80

1 0.68 0.62 0.16 0.09+ 0.53 0.71
2 0.61 0.50 0.38 0.10+ 0.80 0.51
4 0.70 0.49 0.68 0.20 0.95 0.50

h2 6 0.58 0.45 0.87 0.52 0.86 0.47
8 0.26 0.42 0.52 0.73 0.53 0.44
12 0.36 0.42 0.58 0.90 0.27 0.45

16 0.02- 0.32 0.51 0.73 0.06- 0.40

1 0.85 0.77 0.28 0.18 0.69 0.88
2 0.80 0.70 0.50 0.20 0.88 0.69
4 0.76 0.68 0.75 0.34 0.88 0.67

h3 6 0.76 0.63 0.93 0.72 0.92 0.63
8 0.40 0.57 0.66 0.79 0.71 0.59
12 0.52 0.58 0.68 0.90 0.40 0.61
16 0.04- 0.45 0.71 0.89 0.08- 0.53

Table 1
P-Values for Canadian Exchange Rate Conditional Predictive Ability Tests

Notes:
1. See Section 4.2 for a description of the six forecasting methods that are used, besides

the random walk. We have labeled these methods as OLS (meaning estimation is done via OLS),
Bayesian (meaning estimation is done via Bayesian Shrinkage) , Det OOS-OLS (meaning estimation
is done via a deterministic Out-of-Sample OLS), Full (meaning estimation is done by shrinking OLS
estimates by a big number), OOS-OLS (meaning estimation is done via Out-of-Sample OLS) and
Ridge (meaning estimation is done via a ridge regression).

2. A plus sign (+) is used to denote rejections at 10% in favor of the alternative method.
3. A minus sign (-) is used to denote rejections at 10% in favor of the random walk.
4. Rejection in favor of either method is determined using the decision rule described in Section

3.3.
5. First column shows the three different test functions used in the analysis. See beginning of

Section 5 for a description of these three testing functions.
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6. Second column shows the different horizons considered in the analysis in a monthly basis.
7. In each cell we report p-values for a null of equal conditional predictive ability.
8. Data range: 1980:01-2003:10 for Canada and Japan, 1975:01-2003:10 for Switzerland and

U.K. and 1993:4-2005:4 for Chile.
9. For Canada, Japan, Switzerland, and U.K. we set R = 120. For Chile we set R = 36.

(1) (2) (3) (4) (5) (6) (7) (8)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 0.66 0.46 0.48 0.19 0.28 0.30
2 0.70 0.47 0.69 0.24 0.52 0.31
4 0.59 0.46 0.71 0.24 0.36 0.31

h1 6 0.77 0.48 0.57 0.28 0.64 0.31
8 0.50 0.44 0.41 0.21 0.32 0.31

12 0.53 0.46 0.73 0.36 0.37 0.30
16 0.63 0.46 0.85 0.59 0.65 0.31

1 0.36 0.41 0.31 0.34 0.53 0.34
2 0.02- 0.01+ 0.14 0.02+ 0.11 0.01+
4 0.04- 0.01+ 0.05- 0.10+ 0.17 0.01+

h2 6 0.02- 0.01+ 0.09- 0.04+ 0.32 0.01+
8 0.10 0.01+ 0.24 0.09+ 0.26 0.01+

12 0.07- 0.03+ 0.08- 0.04+ 0.13 0.02+

16 0.09- 0.03+ 0.36 0.74 0.09- 0.02+

1 0.09- 0.09+ 0.05+ 0.04+ 0.10+ 0.09+
2 0.02+ 0.01+ 0.11 0.01+ 0.08+ 0.01+
4 0.04+ 0.01+ 0.04+ 0.04+ 0.07+ 0.01+

h3 6 0.04+ 0.01+ 0.18 0.08+ 0.33 0.01+
8 0.15 0.01+ 0.32 0.16 0.26 0.01+

12 0.05+ 0.02+ 0.13 0.09+ 0.10+ 0.02+
16 0.09+ 0.02+ 0.24 0.37 0.04+ 0.02+

Table 2
P-Values for Chilean Exchange Rate Conditional Predictive Ability Tests

1. See notes on table 1.
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(1) (2) (3) (4) (5) (6) (7) (8)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 0.70 0.62 0.20 0.13 0.60 0.59
2 0.65 0.58 0.43 0.16 0.34 0.55
4 0.47 0.47 0.36 0.09+ 0.13 0.43

h1 6 0.41 0.47 0.22 0.05+ 0.12 0.44
8 0.45 0.50 0.19 0.04+ 0.07+ 0.48

12 0.61 0.63 0.50 0.18 0.49 0.60
16 0.62 0.61 0.44 0.14 0.69 0.60

1 0.78 0.11 0.57 0.38 0.60 0.13
2 0.73 0.23 0.95 0.53 0.91 0.25
4 0.92 0.27 0.88 0.38 0.52 0.28

h2 6 0.97 0.27 0.66 0.22 0.42 0.29
8 0.97 0.29 0.65 0.21 0.27 0.30

12 0.80 0.33 1.00 0.62 0.70 0.34

16 0.58 0.32 0.47 0.27 0.41 0.33

1 0.65 0.06- 0.33 0.26 0.13 0.07-
2 0.64 0.21 0.57 0.38 0.28 0.21
4 0.78 0.20 0.38 0.16 0.23 0.19

h3 6 0.72 0.21 0.25 0.11 0.15 0.20
8 0.75 0.24 0.18 0.01+ 0.14 0.22

12 0.53 0.27 0.37 0.27 0.13 0.25
16 0.42 0.26 0.26 0.28 0.45 0.24

Table 3
P-Values for Japanese Exchange Rate Conditional Predictive Ability Tests

1. See notes on table 1
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(1) (2) (3) (4) (5) (6) (7) (8)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 0.55 0.34 0.08+ 0.04+ 0.22 0.29
2 0.53 0.42 0.29 0.10+ 0.14 0.38
4 0.55 0.39 0.40 0.13 0.22 0.37

h1 6 0.53 0.41 0.39 0.14 0.28 0.40
8 0.53 0.44 0.47 0.21 0.38 0.43

12 0.69 0.53 0.74 0.43 0.69 0.53
16 0.86 0.59 0.72 0.40 0.95- 0.64

1 0.60 0.49 0.15 0.10+ 0.30 0.30
2 0.25 0.37 0.09+ 0.04+ 0.44 0.26
4 0.22 0.33 0.08+ 0.03+ 0.38 0.22

h2 6 0.27 0.38 0.11 0.06+ 0.72 0.27
8 0.53 0.48 0.17 0.09+ 0.95 0.40

12 0.86 0.67 0.12 0.09+ 0.81 0.71

16 0.42 0.56 0.10- 0.12 0.25 0.59

1 0.67 0.25 0.10+ 0.07+ 0.36 0.16
2 0.17 0.21 0.09+ 0.07+ 0.31 0.15
4 0.24 0.22 0.10+ 0.06+ 0.31 0.16

h3 6 0.28 0.26 0.10+ 0.08+ 0.56 0.20
8 0.52 0.35 0.08+ 0.06+ 0.74 0.30

12 0.80 0.43 0.10 0.06+ 0.92 0.49
16 0.61 0.34 0.08- 0.04+ 0.40 0.48

Table 4
P-Values for Swiss Exchange Rate Conditional Predictive Ability Tests

1. See notes on table 1
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(1) (2) (3) (4) (5) (6) (7) (8)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 0.90 0.95- 0.66 0.51 0.68 0.84
2 0.88 0.96- 0.79 0.57 0.77 0.87
4 0.94- 0.99- 0.91- 0.76 0.87 0.97-

h1 6 0.92- 0.99- 0.85 0.68 0.85 0.98-
8 0.85 0.99- 0.74 0.51 0.75 0.94-

12 0.97- 0.97- 0.73 0.44 0.91- 0.96-
16 0.99- 0.98- 0.89 0.7 0.95- 0.99-

1 0.26 0.10 0.45 0.45 0.60 0.36
2 0.34 0.17 0.34 0.23 0.39 0.40
4 0.25 0.02- 0.22 0.24 0.24 0.17

h2 6 0.33 0.02- 0.43 0.39 0.32 0.11
8 0.38 0.04- 0.34 0.23 0.28 0.26

12 0.10- 0.09- 0.67 0.52 0.37 0.10

16 0.03- 0.06- 0.44 0.43 0.28 0.04-

1 0.42 0.17 0.62 0.66 0.80 0.53
2 0.28 0.31 0.23 0.35 0.47 0.58
4 0.04- 0.03- 0.01- 0.02- 0.12 0.29

h3 6 0.12 0.01- 0.10- 0.27 0.21 0.21
8 0.36 0.04- 0.26 0.36 0.36 0.41

12 0.16 0.10 0.73 0.72 0.58 0.11
16 0.05- 0.06- 0.26 0.42 0.46 0.05-

Table 5
P-Values for British Exchange Rate Conditional Predictive Ability Tests

1. See notes on table 1

(1) (2) (3) (4) (5) (6) (7)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 1.70 -0.21 1.20 0.28 1.40 -0.48
2 0.55 -0.61 1.80 0.22 0.47 -0.67
4 -0.10 -0.85 1.60 0.20 0.03 -0.76
6 -1.20 -1.00 -0.10 0.07 -0.65 -0.84
8 -2.30 -1.10 -1.50 -0.03 -1.40 -0.88
12 -2.10 -1.20 -1.50 0.01 -1.50 -0.88
16 -3.90 -1.30 -2.40 -0.07 -2.30 -0.97

Percentage Gain (Loss) in Mean Square Prediction Error for Canada
Table 6
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Notes:
1. See notes on table 1
2. Each number in each cell represents the percentage gain or loss in Mean Square Prediction

Error of each alternative forecasting model with respect to that of the random walk. For instance,
in column (2) and horizon 1 there is a 1.70 value. This means that the out-of-sample mean square
prediction error of the forecasting model estimated with OLS is 1.70% lower than the out-of-sample
mean square prediction error of the random walk model.

3. Light shaded cell: It means that the conditional approach with testing function h=1 correctly
rejected the null of equal conditional predictive ability. By “correct” we mean that the sign of the
Mean Square Prediction Error Percentage gain (loss) is consistent with our decision forecasting
rule.

4. Dark shaded cell: It means that the conditional approach with testing function h2 or h3
correctly rejected the null of equal conditional predictive ability. By "correct" we mean that the
sign of the Mean Square Prediction Error Percentage gain (loss) is consistent with our decision
forecasting rule.

(1) (2) (3) (4) (5) (6) (7)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 -2.70 0.57 0.14 0.28 2.50 1.80
2 -3.40 0.45 -1.70 0.20 -0.23 1.80
4 -1.50 0.57 -1.50 0.17 1.30 1.80
6 -6.10 0.35 -0.55 0.17 -1.60 1.80
8 0.08 0.82 0.95 0.29 2.20 1.80
12 -0.46 0.61 -2.30 0.11 1.40 1.90
16 -2.30 0.57 -3.40 -0.07 -1.70 1.90

Percentage Gain (Loss) in Mean Square Prediction Error for Chile
Table 7

1. See notes on table 6
2. In this only table the darker shaded cell represents the only inconsistent results between

our testing strategy and Mean Square Prediction error percentage gains. In this case we have that
the tests indicate that there is rejection of the null of equal conditional predictive ability in favor
of the forecasting method estimated with OOS-OLS. However, the Out-of-sample MSPE is lower
for the random walk model.
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(1) (2) (3) (4) (5) (6) (7)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 -2.00 -0.60 0.70 0.22 -0.20 -0.42
2 -1.50 -0.45 0.36 0.19 0.58 -0.25
4 0.30 0.18 0.79 0.25 1.70 0.34
6 0.90 0.16 1.60 0.32 1.90 0.30
8 0.50 0.00 1.90 0.34 2.10 0.12
12 -1.00 -0.79 -0.03 0.18 0.05 -0.57
16 -1.00 -0.71 0.33 0.24 -0.82 -0.56

Percentage Gain (Loss) in Mean Square Prediction Error for Japan
Table 8

1. See notes on table 6

(1) (2) (3) (4) (5) (6) (7)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 -0.5 0.6 1.2 0.4 0.5 0.8
2 -0.3 0.3 1.1 0.3 0.9 0.4
4 -0.5 0.4 0.6 0.3 0.7 0.5
6 -0.2 0.3 0.6 0.3 0.5 0.4
8 -0.3 0.2 0.1 0.2 0.2 0.2

12 -1.3 -0.1 -1.4 0.0 -0.3 -0.1
16 -3.6 -0.3 -1.3 0.1 -1.1 -0.5

Percentage Gain (Loss) in Mean Square Prediction Error for Switzerland
Table 9

1. See notes on table 6
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(1) (2) (3) (4) (5) (6) (7)
Horizon OLS Bayesian Det OOS-OLS Full OOS-OLS Ridge

1 -4.4 -1.7 -0.3 0.0 -1.3 -1.0
2 -5.1 -2.0 -1.7 0.0 -2.5 -1.3
4 -4.3 -1.8 -2.8 -0.2 -2.5 -1.5
6 -3.8 -1.7 -2.3 -0.1 -2.2 -1.4
8 -2.9 -1.2 -1.4 0.0 -1.5 -1.1
12 -1.9 -1.0 -1.2 0.0 -1.1 -0.9
16 -2.4 -1.1 -2.2 -0.1 -1.3 -1.0

Percentage Gain (Loss) in Mean Square Prediction Error for U.K.
Table 10

1. See notes on table 6
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