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Resumen  
En este documento definimos una familia de pruebas para testear la hipótesis nula de que una serie de 
tiempo sea una Martingala en Diferencia (MD). La definición de esta familia de pruebas se basa en el 
principio de reducción de parámetros. Estas pruebas de hipótesis tienen en común que el rechazo de la 
hipótesis nula implica que el modelo alternativo, ajustado por un factor de reducción, necesariamente 
provee proyecciones con menor Error Cuadrático Medio (ECM) que el modelo que supone la 
hipótesis nula. Esta metodología generaliza la mayoría de los tests existentes pues ellos sólo 
comparan los errores de predicción del modelo nulo y el alternativo, sin ser este último modificado 
vía un proceso de reducción de parámetros. Observamos que los tests derivados de acuerdo a este 
principio de reducción tienen en general un mejor comportamiento en muestra pequeña. Esto ocurre 
pues nuestros tests se benefician implícitamente con la menor varianza de los estimadores de 
parámetros reducidos. Finalmente ilustramos el uso de nuestros tests con una aplicación a la 
predicción de tipos de cambio. 
 
 
Abstract  
In this paper we define a family of tests for the Martingale Difference Hypothesis (MDH) based upon 
a shrinkage principle. Tests within this family are such that rejection of the null implies that forecasts 
from the alternative model, adjusted by a shrinkage factor, will display lower Mean Square Prediction 
Error (MSPE) than forecasts from the null model. This generalizes most previous tests which compare 
forecast errors of one model, the null, to errors of the plain alternative model, not allowing for 
shrinkage. We argue that tests derived from this shrinkage approach display in general better small 
sample properties than MSPE based tests of the MDH. This occurs because the shrinkage based tests 
implicitly consider the reduced variance benefits of shrinkage estimators. Finally, we illustrate the use 
of our tests in an empirical application within the exchange rate literature. 
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1 Introduction

The economic literature has usually used a martingale model as a benchmark to test for
predictability. In the context of asset prices, for instance, the martingale model posits that
the best forecast of tomorrow’s price is today’s price. In other words, the martingale model
assumes that future expected returns, given information available today, are zero. This
condition is known as the Martingale Difference Hypothesis (MDH).

While the simple MDH is generally rejected when the econometrician engages in conven-
tional in-sample analysis, it is indeed a difficult benchmark to beat when an out-of-sample
approach is followed. The seminal paper of Meese and Rogoff (1983) is a classical example of
this problem in the context of the exchange rate literature. This is sometimes interpreted as
an indication that in-sample analysis is affected by overfitting or data mining problems and
therefore should be disregarded. While the conflicting results from the in-sample and out-
of-sample approaches are not entirely clear, Inoue and Kilian (2003) emphasize the higher
power of in-sample strategies over out-of-sample analysis. According to this argument, out-
of-sample tests of the MDH would fail to reject the null of no predictability mainly due to
the lack of power of these tests. Therefore, it is essential to derive out-of-sample tests of
the MDH that display power improvements with respect to their competitors. In this paper
we mainly pursue this goal: deriving out-of-sample tests of the MDH with improved small
sample properties, including power properties.

Despite some critics, a vast literature has primarily used out-of-sample Mean Square
Prediction Errors (MSPE) as a leading measure of loss when testing the MDH. Different
specifications like the mean absolute error, mean prediction error and direction of change,
among others, have also received some attention. See McCracken and West (2002), Chinn
and Meese (1991), Cheung, Chinn and Garcia (2002), Patton and Timmermann (2003) and
Giacomini and White (2003).

A key point to consider when testing the MDH is that traditional statistical methods of
comparing predictive accuracy, as those presented by West (1996) and Diebold and Mariano
(1995), are not adequate. The reason for this is that the models under analysis are nested,
see West (1996). McCracken (2004) and Clark and McCracken (2003) show that when
comparing nested models, direct application of traditional methods may result in tests of
inadequate size. In particular, Clark and West (2005a) show that traditional comparisons of
MSPE render a test with low power and questionable size.

Two interesting alternatives to construct proper statistical methods of comparing pre-
dictive accuracy when models are nested are presented by McCracken (2004) and Clark and
West (2005a). In the first paper, the asymptotic distribution of a t-type statistic, comparable
to that suggested by West (1996) and Diebold and Mariano (1995), is derived. While the
distribution is non standard, tables of asymptotically correct critical values are provided. In
the second paper, Clark and West (2005a) make an important observation about the null
hypothesis of equal MSPE when models are nested. They show that under the null the
sample distribution of the difference in MSPE is not zero. Instead, the sample MSPE from
the null model is expected to be smaller than that of the alternative model. They propose an
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adjusted procedure that takes into account this finding and demonstrate via simulations that
this adjusted procedure is well-sized and relatively powerful in small and moderate samples.
In addition they show that the procedure works well in an empirical implementation within
the exchange rate literature.

A third alternative to properly test for model adequacy when models are nested is pro-
vided by Chao, Corradi and Swanson (2000). They provide a test of Granger causality that
displays good size and power properties in small samples when applied to the MDH. See
Clark and West (2005a).

Despite these interesting alternatives to properly test the MDH, this field of research
is still not closed. From a theoretical point of view, we have already mentioned that it is
desirable to derive more powerful tests in small and moderate samples and, more generally,
to derive tests with better small sample properties. We also would like to have a test with a
direct economic interpretation that allows us, for example, to obtain positive returns when
using a given trading rule. In addition, we would like to be able to construct better forecasts
than those from the martingale difference model when the null hypothesis is rejected. Finally,
we also would like to find more empirical evidence against the MDH either in the exchange
rate literature or in a more general economic environment.

Following this last motivation, we focus here on deriving tests of the MDH by exploring
whether the alternative model may or may not be used to construct more accurate forecasts
under quadratic loss. Our tests differ from other tests in that they explicitly search for gains
in forecast accuracy. This is in opposition, for instance, to orthogonality tests that shed
no light on the construction of a more accurate forecast, yet may have good small sample
properties.

We proceed by defining a family of tests for the MDH based upon a shrinkage principle. In
other words, tests within this family are such that rejection of the null implies that forecasts
from the alternative model, adjusted by a shrinkage factor, will display lower MSPE than
forecasts from the null model. This generalizes most previous tests which compare forecast
errors of one model, the null, to forecast errors of the plain alternative model, not allowing for
shrinkage. We argue that tests derived from this generalization allow us to construct tests
of the MDH that display good small sample properties. By this generalization of MSPE
comparisons, tests of model adequacy based on forecast accuracy become useful decision
rules when an economic agent is concerned about forecasting: if a test rejects the null then
we should be able to obtain more accurate forecasts from the alternative model. Interestingly,
one of the tests we derive is a direction of change test. We show that under mild assumptions
this test is closely related to MSPE based tests.

In summary, our procedure allows us to provide the following contributions. First, we
show that our shrinkage based tests display, in general, better small sample properties that
traditional tests based upon plain comparisons of MSPE. In particular, we show that a new
test, called Max-MSPE-Adjusted, displays good size and, at least in some relevant contexts,
more power than a set of competitors. Second, our tests are useful forecasting selection
tools, meaning that rejection of the null ensures the existence of a shrinkage factor for which
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shrunken forecasts from the alternative model will display lower MSPE than forecasts from
the null model.

The rest of the paper is organized as follows: Section 2 introduces our shrinkage approach;
Section 3 derives some tests from the shrinkage approach; Section 4 describes the experi-
mental design and delivers the simulation results; Section 5 presents an empirical application
within the exchange rate literature; Section 6 briefly displays four appealing extensions for
future research; and Section 7 concludes.

2 The Shrinkage Approach

In this section we introduce a modification of traditional comparisons of MSPE. The purpose
is the derivation of tests leading to the potential construction of more accurate forecasts when
the null model is rejected. We will then see that this approach leads to tests with good small
sample properties. Our approach is in between (or linking) the literature of conditional and
unconditional tests of predictive ability, see Giacomini and White (2003). These authors
argue that the framework for out-of-sample predictive ability testing, developed by West
(1996) and Diebold and Mariano (1995), might not be useful or appropriate for an applied
forecaster trying to assess which of two competing forecasting methods will provide more
accurate forecasts in the future. They propose an alternative approach that is claimed to be
more relevant to economic forecasters. With our approach we try to connect both worlds:
we are trying to test a theory by evaluating whether it is possible for this theory to provide
more accurate forecasts in a real-time forecasting exercise using several shrinkage strategies.

Now we will set up the econometric context of our analysis. We will use an environment
similar to that in Clark and West (2005a).

2.1 Econometric Context

Consider two simple models for a scalar stationary time series yt+1 :

Model 1 (null) : yt+1 = et+1 (1)

Model 2 (alternative) : yt+1 = eyt+1(Xt+1, β) + et+1 (2)

where Xt+1 is a vector of stationary and exogenous random variables and et+1 is a zero mean
martingale difference meaning that

E(et+1|Ft) = 0 (3)

where {Ft} represents a filtration such that Ft is the sigma-field generated by current and
past X’s and e’s.

Ft = σ {Xt+1, et,Xt,et−1,Xt−1, et−2...}
Notice that we are using the index t+1 to denote exogenous variables known at time t. Thus
Xt+1 is a vector containing known variables at time t. Notice also that we will use the notation
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E(et+1|Ft) or Et(et+1). The alternative model posits that the conditional expectation of yt+1
with respect to the filtration Ft only depends in the vector Xt+1 and an unknown parameter
β :

E(yt+1|Ft) = eyt+1(Xt+1, β) (4)

where eyt+1(Xt+1, β) denotes some function of Xt+1 and β. For instance, in a linear model
we will have eyt+1(Xt+1, β) = X 0

t+1β

For simplicity we will refer to the conditional expectation in (4) by eyt+1. We further impose
the condition

eyt+1(Xt+1, 0) = 0 (5)

This condition ensures nestedness.

According to this condition, the null hypothesis may be written in terms of a restriction
over the vector of parameters: β = 0 against the alternative β 6= 0. The mean square
prediction error (MSPE) for both models is given below

MSPE 1 (null) : E(e2t+1) = E(y2t+1) (6)

MSPE2 (alternative) : E(e2t+1) = E(yt+1 − eyt+1(Xt+1, β))
2 (7)

And the difference of this MSPE is given by

∆MSPE ≡ MSPE1 −MSPE2 (8)

= E(y2t+1)−E(yt+1 − eyt+1(Xt+1, β))
2 (9)

= 2E(yt+1eyt+1)−E(eyt+1)2 (10)

= E(eyt+1)2 (11)

Under the null, the population mean square error of both models is equal because β = 0 andeyt+1 = 0, but under the alternative it is positive because eyt+1 6= 0:
H0 : ∆MSPE = E(eyt+1)2 = 0 (12)

HA : ∆MSPE = E(eyt+1)2 > 0 (13)

So, under the alternative we expect the MSPE of the true model to be lower than the MSPE
of the wrong null model. This result leads us to focus on one sided tests.

This clear distinction between the null and the alternative does not hold anymore when
we work with sample analogs. Following Clark and West (2005a) the sample difference in
MSPE under the null is negative, indicating that the null model performs better than the
alternative model. Under the alternative, in turn, the sample difference in MSPE has an
ambiguous sign. To see this result, we need to introduce some notation first.

We will focus our analysis on one step ahead forecasts. One has T + 1 observations,
from which the last P are used for predictions and R = T + 1 − P are used for the initial
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estimation of the parameters. bβt denotes a generic estimate of β with information available
until time t. In general, the estimation scheme may be either fixed, rolling or recursive.
The fixed scheme is one in which bβt is estimated only once using the first R data points.
The rolling scheme updates the estimate of bβt using the last R observations. The recursive
scheme also updates the estimate of bβt, but this time using all available information until
time t. That is to say, in the recursive scheme the estimation sample increases with t.
We will work with the rolling scheme, partly because it is appropriate when working with
time series that may have experienced breaks, and partly because we do not want parameter
uncertainty to vanish asymptotically.1We will use the following abbreviation: eyt+1 will denote
the population conditional expectation whereas byt+1 will denote its sample analog.
Let us define the sample analog of ∆MSPE as follows:

\∆MSPE = \MSPE1 − \MSPE2

=
1

P

TP
t=R

(yt+1)
2 − 1

P

TP
t=R

(yt+1 − byt+1(Xt+1, bβt))2
=

2

P

TP
t=R

yt+1byt+1(Xt+1, bβt)− 1

P

TP
t=R

(byt+1(Xt+1, bβt))2
Under the null, yt+1 is a zero mean martingale difference, so yt+1 = et+1 and as shown by
Clark and West (2005a)

E(yt+1byt+1(Xt+1, bβt)) = E(et+1byt+1(Xt+1, bβt)) = 0
Thus, under the null we should have E

³
\∆MSPE

´
< 0 :

E
³
\∆MSPE | H0

´
=

2

P

TP
t=R

E(et+1byt+1| H0)−
1

P

TP
t=R

E((byt+1)2| H0)

= − 1
P

TP
t=R

E((byt+1)2| H0) < 0

= −E((byt+1)2| H0) < 0

Under the alternative we have in turn: yt+1 = eyt+1(Xt+1, β) + et+1 therefore

E(yt+1byt+1) = E(eyt+1byt+1) +E(et+1byt+1)
= E(eyt+1byt+1)

1Working with the fixed sheme is also consistent with not vanishing parameter uncertainty, but it is
probably inefficient. The resursive scheme, however, is conflicting with not vanishing uncertainty. The
increasing precision of the recursive estimation due to the use of additional data might reduce the variance
of the estimate, making it converge to the population parameter. This intuition is given by West (2005b).
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Thus, under the alternative we have E
³
\∆MSPE

´
≶ 0 :

E
³
\∆MSPE | HA

´
= E

µ
2

P

TP
t=R

yt+1byt+1 − 1

P

TP
t=R

(byt+1)2 | HA

¶
=

2

P

TP
t=R

E(eyt+1byt+1| HA)−
1

P

TP
t=R

E((byt+1)2| HA)

= 2E(eyt+1byt+1 | HA)−E((byt+1)2| HA) ≶ 0

We will use this result recurrently in what follows.

2.2 Shrinkage Comparisons, Population Moments

Let us consider the following auxiliary function f : R+ → R

f(s) =MSPE1 −MSPE2(s)

where

MSPE1 = E(y2t+1)

MSPE2(s) = E(yt+1 − eyt+1(s))2
and eyt+1(s) is a continuously differentiable perturbation of the conditional expectation (4)
such that eyt+1(1) = eyt+1. More precisely, we are interested in a particular scaling or shrinkage
transformation as follows: eyt+1(s) = eyt+1

s
(14)

Notice that with this scaling transformation typical mean square prediction errors between
models 1 and 2 are captured by evaluating the auxiliary function in the value s = 1, therefore

f(1) =MSPE1 −MSPE2

Under the null, β = 0, so eyt+1 = 0, and f(s) = 0 for all s > 0. Under the alternative,
however, f(s) > 0⇐⇒ s > 1

2
as we can see below

f(s) = E(y2t )− E(yt − eyt+1(s))2
= 2E(yteyt+1(s))−E(eyt+1(s))2
= 2E(

yteyt+1
s

)− 1

s2
E(eyt+1)2

Therefore, under the alternative

f(s) = 2E(
yt+1eyt+1

s
)− 1

s2
E(eyt+1)2

=
2

s
E(eyt+1)2 + 2

s
E(et+1eyt+1)− 1

s2
E(eyt+1)2

=
2

s
E(eyt+1)2 − 1

s2
E(eyt+1)2 (15)
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thus, we have that

f(s) > 0⇐⇒ s >
1

2
(16)

In particular, we expect f(1) > 0 which is simply to say that under the alternative, the
MSPE of the wrong model should be greater than that of the correct model.

2.3 Shrinkage Comparisons, Sample Analogs

Let us analyze what happens when instead of considering the theoretical population mo-
ments, we take their feasible sample analogs. Define the sample analog of f(s) as follows:bf(s) = \MSPE1 − \MSPE2(s)

=
1

P

TP
t=R

(yt+1)
2 − 1

P

TP
t=R

(yt+1 −
byt+1
s
)2

=
2

P

TP
t=R

yt+1byt+1
s

− 1

P

TP
t=R

(
byt+1
s
)2

Under the null yt+1 is a zero mean martingale difference, so

E(yt+1byt+1) = E(et+1byt+1) = 0 (17)

and

E
³ bf(s) | H0

´
= −E((byt+1

s
)2| H0) < 0 (18)

Thus, under the null we should have E
³bf(s)´ < 0 for all s > 0.

Under the alternative we have in turn: yt+1 = eyt+1 + et+1, with eyt+1 6= 0. Therefore,

under the alternative we might have E
³ bf(s)´ 6= 0 for some s > 0 :

E
³ bf(s) | HA

´
= E

µ
2

P

TP
t=R

yt+1byt+1
s

− 1

P

TP
t=R

(
byt+1
s
)2 | HA

¶
=

2

P

TP
t=R

E(
eyt+1byt+1

s
| HA)−

1

P

TP
t=R

E(
byt+1
s
)2| HA)

= 2E(
eyt+1byt+1

s
| HA)−E(

byt+1
s
)2| HA)

so

E
³ bf(s) | HA

´
> 0⇐⇒ 0 <

1

s
<
2E(eyt+1byt+1 | HA)

E(by2t+1|HA)
(19)

Notice that from the theoretical point of view it is irrelevant whether improved forecasts
are achieved when s = 1 or when s 6= 1. All that matters is the existence of a positive s for
which the alternative model displays a lower MSPE2. Based upon this fact we will consider

2We emphasize here that all along the document we are using the shrinkage factor s with the only purpose
to identify the relevant condition ensuring predictability. We are not trying here to estimate s. We are just
saying that if a given condition holds true, then using a big enough shrinkage factor we should be able to
get inproved forecasts over the null model. Furthermore, we are not arguing here about the size of the
improvement. It can be either large or small, but surely it will be an improvement, meaning that the null
hypothesis cannot be true.
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that a decision rule for choosing the alternative model over the null model for forecasting
purposes is of the form:

E(eyt+1byt+1 | HA) >
1

s
, s > 0 (20)

The existence of a positive shrinkage factor s such that (19) holds true hinges upon the
following condition:

2E(eyt+1byt+1 | HA) > 0

Notice that departing from the population case in (16), it might no longer be true that

2E(eyt+1byt+1 | HA)

E(by2t+1|HA)
= 2

therefore it might no longer be true that

E
³ bf(s) | HA

´
> 0⇐⇒ s >

1

2

and in particular we should not expect

E
³
\MSPE1 − \MSPE2| HA

´
= E

³ bf(1) | HA

´
> 0

Figures 1 and 2 in the Appendix show that paying attention to s = 1 might be too restrictive
to find evidence for the alternative model because the alternative and the null’s MSPE may
only be distinguishable (display different sign) for greater values of s. Figure 1 depicts the
“ideal case” in which the MSPE difference under the alternative is positive for every s ' 1 (
actually for every s ' 0.5). Figure 2 depicts a situation in which the MSPE difference under
the alternative is positive only for s ' 3. Both cases are independent draws of a simulated
exercise following a true data generating process different from a zero mean martingale
difference. Whereas in the first case one might be prone to reject the null hypothesis because
the alternative model has lower MSPE, in the second case one might incorrectly be prone
not to reject the null.

Notice that our approach uses more information than just the value of our function bf(s)
at s = 1. When exploring a wider region we will be able to judge rejection of the null when
a shrunken alternative model displays lower MSPE. Put differently, should we be able to
reject the null we will know that for some shrinkage factor, s, our shrunk comparisons of
MSPE will be positive. This means that we could potentially construct better forecasts or
use our shrunken forecast as a decision rule in a trading strategy with more success than
when using the zero forecast of the null model.

Before deriving our tests, we extend the analysis presented here in the next subsection
to the case in which we allow different rates of shrinkage for different additive components
of the conditional expectation of the alternative model.
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2.4 The Multidimensional Case, Populations Moments

So far we have focused on the specific case of a univariate function f : R+ → R. In this
section we seek further generality considering the multivariate definition of our auxiliary
function f.

Let us assume that the conditional expectation of our alternative model can be decom-
posed into k additive components:

eyt+1(Xt+1, β) = ey1,t+1(Xt+1, β) + ey2,t+1(Xt+1, β) + ...+ eyk,t+1(Xt+1, β)

Let us use the notation

eyt+1(−→s ) = ey1,t+1(Xt+1, β)

s1
+
ey2,t+1(Xt+1, β)

s2
+ ...+

eyk,t+1(Xt+1, β)

sk
(21)

and for sample analogs

byt+1(−→s ) = by1,t+1(Xt+1, β)

s1
+
by2,t+1(Xt+1, β)

s2
+ ...+

byk,t+1(Xt+1, β)

sk
(22)

where
−→s = (s1, ..., sk)

Consider the function f : Rk
+ → R

f(−→s ) = MSPE1 −MSPE2(
−→s )

= E(y2t )−E(yt − eyt+1(−→s ))2
= 2E(yteyt+1(−→s ))−E(eyt+1(−→s ))2

Under the null we have again that β = 0, so byt+1(−→s ) = f(s1, ..., sk) = 0 for all si > 0,
i = 1...k. Under the alternative, however, β 6= 0, so we expect f(s1, ..., sk) 6= 0 for vectors
(s1, ..., sk) ∈ Rk

+ satisfying the following condition:

2E(yt+1eyt+1(−→s )) 6= E(eyt+1(−→s ))2 (23)

The condition f(s1, ..., sk) 6= 0 is satisfied at least for every vector (s1, ..., sk) ∈ Rk
+ such that

si = sj = s ∈ R+/{12} for all i, j ∈ {1, ..., k} i 6= j. Similarly, the condition f(s1, ..., sk) > 0
will be satisfied at least for every vector (s1, ..., sk) ∈ Rk

+ such that si = sj = s > 1
2
.

Therefore we have that the rejection set

CHA
=
©−→s = (s1, ..., sk) ∈ Rk

+ such that f(s1, ..., sk) > 0, given HA is true
ª

satisfies CHA
6= φ and that (s1, ..., sk) = (1, ..., 1) ∈ CHA

which means that the set CHA

includes the case where the MSPE of the alternative model is smaller than the MSPE of the
null model.
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2.5 The Multidimensional Case, Sample Analogs

The sample analog of function f is given by

bf(−→s ) = 2

P

TP
t=R

yt+1byt+1(−→s )− 1

P

TP
t=R

(byt+1(−→s ))2
Under the null yt+1 is a zero mean martingale difference, so we should have E bf(s1, ..., sk) < 0
for all (s1, ..., sk) ∈ Rk

+ :

E
³ bf(−→s ) | H0

´
=

2

P

TP
t=R

E(et+1byt+1(−→s )| H0)−
1

P

TP
t=R

E((byt+1(−→s ))2| H0)

= −E((byt+1(−→s ))2| H0) < 0

Now, we are interested in the rejection setbCHA
=
n−→s = (s1, ..., sk) ∈ Rk

+ such that E
³ bf(−→s ) | HA

´
≥ 0

o
A little algebra shows that under the alternative we have

E
³bf(−→s ) | HA

´
= 2E

µ
kP
i=1

yt+1
byi,t+1
si

|HA

¶
−E

Ãµ
kP
i=1

byi,t+1
si

¶2
| HA

!
This last expression has the chance to be non-negative for some −→s ∈ Rk

+ if and only if the
first term on the right-hand-side is non-negative, that is to say, if the following condition
holds true

∃−→s ∈ Rk
+ : E

µ
kP
i=1

yt+1
byi,t+1
si

|HA

¶
≥ 0 (24)

which in turn has a chance to be non-negative if ∃ i ∈ {1, ..., k} such thatE (yt+1byi,t+1 |HA) ≥
0.

It is straightforward to show thatbCHA
6= φ⇐⇒ E(yt+1byi,t+1) = max

j ∈{1,...k}
{E(yt+1byi,t+1)} ≥ 0

The following proposition states and proves this result.

Proposition 1 If ∃ i ∈ {1, ..., k} such that E (yt+1byi,t+1 |HA) > 0 then there is a vector

−→s =
−→
s ∈ Rk

+ : E

µ
kP
i=1

yt+1yii,t+1t
si

|HA

¶
> 0 and it is possible to find h ∈ R+ such that

E
³ bf(h−→s ) | HA

´
> 0.

Proof. Straightforward (see Appendix).

The key idea here is again to relax the restriction −→s =
−→
1 . This constraint might be

too restrictive because the alternative and the null’s MSPE may be only distinguishable for
values of −→s different from −→1 in small and moderate samples.

In the next subsection we give another interpretation of our approach. We will see that
our tests might be used to test the null of no diversification gains.
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2.6 Testing for Combination Gains

In light of the “Combination of Forecasts” literature, it is possible to give another interpre-
tation of our shrinkage procedure. Several authors have pointed out that the combination
of forecasts may improve forecast accuracy under quadratic loss. We see that in our con-
text with two competing nested models, the null of no predictability implies the null of no
combination gains.

It is straightforward to notice that our shrinkage approach searches over different com-
binations between the null model and the alternative, seeking significant combination gains.
In fact we could write the shrunken forecast as a combination of the forecasts of the two
models: eyt+1(s) = eyt+1

s
= 0 ∗ (s− 1)

s
+
eyt+1
s

Therefore the existence of a shrunken forecast displaying a significantly lower MSPE
is evidence of combination gains and hence supports the alternative model. When sample
moments are used, any statistically significant gain from combining with positive weights
should be considered evidence supporting the alternative model.

To see this clearly notice that our auxiliary function f(s) could be written as follows3:

f(s) = σ21 − σ2C(
s− 1
s
)

Combination gains means that f(s) > 0 for some s > 0, no combination gains means f(s) ≤ 0
for all s > 0.

Similarly, when working with sample analogs we have

bf(s) = bσ21 − bσ2C(s− 1s )

where

bσ21 =
1

P

TP
t=R

(yt+1)
2 =

1

P

TP
t=R

(e1t+1)
2

bσ2C(s− 1s ) =
1

P

TP
t=R

(yt+1 −
byt+1
s
)2

3

f(s) = E(y2t+1)−E(yt+1 −
eyt+1
s
)2

= E(y2t+1)−E[
s− 1
s
(yt+1 − 0) +

1

s
(yt+1 − eyt+1)]2

= E(e21t+1)−E[
s− 1
s
(e1t+1) +

1

s
(e2t+1)]

2

= σ21 − σ2C(
s− 1
s
)

11



Therefore under the null we have

E bf(s) = E[bσ21 − bσ2C(s− 1s )] = −E(byt+1
s
)2 < 0

and as mentioned earlier no combination gains are possible.

Under the alternative, however,

E bf(s) > 0 for some s > 0
and combination gains are possible.

In summary, we are claiming that direct comparisons of out-of-sample MSPE between
nested models might not be the most appropriate way to test the MDH. The reason being
that direct MSPE comparisons neglect benefits from combining, benefits that are only ac-
complished under the alternative. We will show in the simulation section that accounting
for the possibility of combination gains may also increase the power of the tests, at least in
the context of our simulations.

3 Derivation of the Tests

In this section and the next we will assume for simplicity a linear alternative model. That
is to say, we will assume a model of the following shape:

eyt+1 = E(yt+1|Xt+1) = X 0
t+1β

The existence of an s satisfying condition (19) hinges on the sign of

E(yt+1X
0
t+1
bβt)

Should this term be positive then such an s will exist. On the other hand, the existence of
an h
−→
s satisfying condition (35) (see the Appendix) hinges on the sign of

max
j ∈{1,...k}

n
E(yt+1x

j
t+1
bβjt)o

These results lead us to focus on the sign of the following estimators:

1

P

TP
t=R

yt+1X
0
t+1
bβt (25)

or

max
j ∈{1,...k}

½
1

P

TP
t=R

(yt+1x
j
t+1
bβjt)¾ (26)

We first propose to build tests based in these two statistics (25) and (26). Clark and West
(2005a) derive an asymptotically normal test based on a statistic like (25). In this sense
we will include their test as a shrinkage based test because it is possible to derive the
same statistic following our shrinkage analysis. Clark and West (2005a) called their statistic

12



“MSPE-Adjusted”. We will follow the same tradition and call our statistic in (26) “Max-
MSPE-Adjusted".

Notice that our analysis reveals that the relevant information for testing the MDH is
summarized in the sign of (25) and (26), rather than in all the information that might be
possibly enclosed in the statistics (25) and (26). In other words, when testing the martingale
hypothesis the magnitude of (25) and (26) is irrelevant; only the sign is relevant because we
can construct a forecast with lower MSPE than the random walk model as long as (25) or
(26) are positive and not only when they are positive and large with respect to their variance.

Second, the previous remark leads us to build a sign test based4 on (25). While the
proper construction of a sign test based on (25) requires some further assumptions, we think
that for the applications of interest here, these assumptions are mild and provide a test with
interesting properties. Arguments for preferring sign tests instead of mean tests are given by
Diebold andMariano (1995); Reineke, Baggett, and Elfessi (2003); and Brown and Ibragimov
(2005). The first authors remark that sign tests are powerful. The second authors provide
conditions under which a standard sign test has more power than the standard t-student test.
In particular they show that deviations from normality toward leptokurtic distributions result
in a standard sign test being more powerful that the standard t-test. Provided that series of
returns in finance and economics are typically leptokurtic, it is our belief that the results of
Reineke, Baggett, and Elfessi (2003) may be extended to the environment we are interested
in for this paper. Finally, Brown and Ibragimov (2005) stress the possibility of building exact
sign tests rather than asymptotic tests. Exact tests are especially useful when the number
of observations is small. We will see later that a sign test based on (25) corresponds to a
direction of change test. This test was applied apologetically by Cheng et.al. (2002). The
authors argue that one could criticize them for “changing the rules of the game”. But what
we see here is that the linkage between a MSPE test and a direction of change test is close.
We will come back to this point later.

Finally we will present an induced test. This is a test searching all over the domain of
the function f . Therefore, we are interested in a statistic like

Sup
s∈R+

√
P

bf(s)qbV (s)
where bV (s) = 4bV (yt+1X 0

t+1
bβt) + 1

s2
bV ((X 0

t+1
bβt)2)− 4sdCov(yt+1X 0

t+1
bβt, (X 0

t+1
bβt)2)

For simplicity we will focus in the unidimensional version of our function f . We call this
statistic “Sup MSPE”.

In the following subsections we formally introduce these tests and some of their properties,
but first we need to introduce some assumptions.

4Simulations indicate that a sign test based on (26) is also appealing to work with. For now we just focus
on a signed test based on (25).
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3.1 Assumptions

The following assumptions will be used in what follows

E(et+1X
0
t+1
bβt)2 = σ2t > 0 s.t

1

P

PP
t=1

σ2t → σ2 > 0 (27)

E|et+1X 0
t+1
bβt|r <∞ for some r > 2 and all t (28)

1

P

PP
t=1

(et+1X
0
t+1
bβt)2 Pr→ σ2 (29)

These are standard assumptions to ensure asymptotic normality of martingale difference
sequences. See White (1984).

3.2 MSPE-Adjusted (MSPE-Adj)

As previously noted, the MSPE-Adj test was proposed by Clark and West (2005a). The
context in which this test was developed is one in which the size of the test is the relevant
target in the analysis. In other words, Clark and West (2005a) claim that the MSPE-Adj
test has better size, even in small and moderate samples than traditional tests of MSPE
comparisons. Intuitively this test shows good size because it does not take into account a
term that introduces noise into its forecasts by estimating a parameter vector that under the
null should be zero.

In this subsection we show that the same MSPE-Adj test can be derived using our
shrinkage approach. Therefore we provide an alternative interpretation for this test.

Remark:

lim
s→∞

P 1/2
bf(s)qbV (s) = P 1/2

2
P

TP
t=R

yt+1X
0
t+1
bβtq

4bV (yt+1X 0
t+1
bβt)

where bf(s) = 2

P

TP
t=R

yt+1X
0
t+1
bβt − 1

P

TP
t=R

(X 0
t+1
bβt)2

s

bV (s) = 4bV (yt+1X 0
t+1
bβt) + 1

s2
bV ((X 0

t+1
bβt)2)− 4sdCov(yt+1X 0

t+1
bβt, (X 0

t+1
bβt)2)

The proof is straightforward.

This remark shows that the Clark andWest (2005a) test explores the asymptotic behavior
of a normalized version of the limit of our univariate auxiliary function f . They search for
evidence for the alternative model far away from the factor s = 1. They search for evidence
at the limit when the shrinkage factor goes to infinity. The intuition for the good behavior
of this test is straightforward. It is clear that the existence of s such that f(s) > 0 implies
that
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f(s) > 0 for all s > s

therefore exploring the behavior of f(s) in the limit when s goes to infinity is the safest way
to check for the existence of s such that f(s) > 0.

3.3 Max-MSPE-Adjusted

Let us focus now on the following statistic:

Max−MSPE −Adjusted : max
i ∈{1,...k}

½
1

P

TP
t=R

yt+1x
i
t+1
bβit¾

where xit+1bβit are the components of the estimated conditional mean X 0
t+1
bβt.

Consider the k-dimensional vector u:

u =

µ
1

P 1/2

TP
t=R

yt+1x
1
t+1
bβ1t , ..., 1

P 1/2

TP
t=R

yt+1x
k
t+1
bβkt¶

Under the null and assumptions (27), (28) and (29)

u→A N(0, V ); V ∈Mk×k

We propose finding a consistent estimate bV of V and then proper asymptotic critical
values for a one-sided test based on the “Max-MSPE-Adjusted” statistic via simulations.

3.4 Sup MSPE

Consider an infinite induced test as follows:

Sup
s∈R+

√
P

bf(s)qbV (s) (30)

where

bV (s) = 4bV (yt+1X 0
t+1
bβt) + 1

s2
bV ((X 0

t+1
bβt)2)− 4sdCov(yt+1X 0

t+1
bβt, (X 0

t+1
bβt)2)

It turns out that a test (one-sided) based on Sup MSPE has the same asymptotic critical
values as a test based upon the MSPE-Adjusted statistic. It is easy to understand the
linkage between MSPE-Adjusted and our induced test. We already saw that when looking
for evidence of a region in which bf(s) is positive, we only need to look at the limiting behavior
when s goes to infinity. That is equivalent to looking over all the domain of the function f .
Proposition 2 summarizes this result.
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Proposition 2 Under the null and assumptions (27), (28) and (29)

lim
P→∞

P

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u

⎞⎠→ Φ(u) for all u > 0

where Φ denotes a standard normal distribution function and

bf(s) = 2

P

TP
t=R

yt+1X
0
t+1
bβt − 1

P

TP
t=R

(X 0
t+1
bβt)2

s

bV (s) = 4bV (yt+1X 0
t+1
bβt) + 1

s2
bV ((X 0

t+1
bβt)2)− 4sdCov(yt+1X 0

t+1
bβt, (X 0

t+1
bβt)2)

Proof. See the Appendix.

We stress here that this result only holds for one sided tests because the negative tail of
(30) is different from that of the MSE-Adjusted test.

Via simulations we observe that both the MSPE-Adj and the Sup MSPE statistics are
very similar under the alternative, at least for sample sizes relevant to our applications. This
happens because most of the time the statistic (30) reaches a maximum when s goes to
infinity. In other words the probability of reaching an interior solution is low.

Therefore, we see that in one-sided tests we should expect the MSPE-Adjusted statistic
to have similar behavior to the Sup MSPE test given by (30). Due to this fact, results for
the Sup MSPE test are omitted and we only display results for the MSPE-Adj test.

3.5 Sign Tests

As mentioned earlier, our derivations show that evidence for the alternative model could be
found whenever a statistic like (25) or (26) is positive. With this idea in mind, we suggest
the implementation of a sign test over (25). The proper application of a sign test in this
context requires one further assumption. Now we will not only assume that et+1 represents
a zero mean martingale difference, but also a zero median martingale difference. That is to
say, we will assume:

E(et+1|Ft) = 0 (31)

m(et+1|Ft) = 0 (32)

where m(et+1|Ft) represents the conditional median of et+1. This implies assumption (32)
can be rewritten as

P (et+1 > 0|Ft) = P (et+1 < 0|Ft) =
1

2

Notice that a test like the MSPE-Adjusted is a test over the following expectation

E(yt+1X
0
t+1
bβt)
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Notice also that under the null given by assumption (32) and assuming that X 0
t+1
bβt = 0 with

probability zero, the following median is zero:

m(et+1X
0
t+1
bβt) = 0

This is because
P (et+1X

0
t+1
bβt > 0) =

P (et+1X
0
t+1
bβt > 0|X 0

t+1
bβt > 0)P (X 0

t+1
bβt > 0) +

P (et+1X
0
t+1
bβt > 0|X 0

t+1
bβt < 0)P (X 0

t+1
bβt < 0) +

P (et+1X
0
t+1
bβt > 0|X 0

t+1
bβt = 0)P (X 0

t+1
bβt = 0)

So
P (et+1X

0
t+1
bβt > 0) =

P (et+1 > 0|X 0
t+1
bβt > 0)P (X 0

t+1
bβt > 0) +

P (et+1 < 0|X 0
t+1
bβt < 0)P (X 0

t+1
bβt < 0)

and
P (et+1X

0
t+1
bβt > 0) = 1

2

There is sufficient theoretical and empirical evidence supporting the conditional symmetry
of some macroeconomic and financial data returns, so it is our belief that there is a number
of cases for which testing (32) is equivalent to test the MDH. See Clark and West (2005a,
2005b), Tsay (2002), and Diebold and Mariano (1995).

Under assumption (32) it is possible to apply an asymptotically normal test as well as
an exact test for the MDH.

Let us consider the following statistic:

sign(yt+1X
0
t+1
bβt) =

⎧⎪⎨⎪⎩
1 if yt+1X

0
t+1
bβt > 0

0 if yt+1X
0
t+1
bβt = 0

−1 if yt+1X
0
t+1
bβt < 0

⎫⎪⎬⎪⎭
We can state the following proposition:

Proposition 3 Under the null and assumption (32) the sequence sign(yt+1X 0
t+1
bβt) form a

martingale-difference sequence with respect to the filtration Ft.

Proof. See Appendix

This proposition enables us to use standard theorems of asymptotic normality for mar-
tingale sequences that require mild assumptions. See Hamilton (1994).
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Notice that under the alternative we expect

E(sign(yt+1X
0
t+1
bβt)|Ft) > 0

because if we knew the true parameter β,we would expect

E(sign(yt+1X
0
t+1β)|F t) =

= E(sign((X 0
t+1β)

2+et+1X
0
t+1β)|F t)

= P ((X 0
t+1β)

2+et+1X
0
t+1β > 0|F t)− P ((X 0

t+1β)
2+et+1X

0
t+1β < 0|F t)

but a little algebra shows that

P ((X 0
t+1β)

2 + et+1X
0
t+1β > 0|Ft) >

1

2

P ((X 0
t+1β)

2 + et+1X
0
t+1β < 0|Ft) <

1

2

so,

E(sign(yt+1X
0
t+1β)|F t) =

= P ((X 0
t+1β)

2+et+1X
0
t+1β > 0|F t)− P ((X 0

t+1β)
2+et+1X

0
t+1β < 0|F t) > 0

While asymptotic normality is a nice property, the next proposition, based on Ibragimov
and Brown (2005), shows that under assumption (32) we can also construct an exact test.

For completeness we give a proof in the Appendix.

Proposition 4 Consider the following sequencesn
sign(yt+1X

0
t+1
bβt)o

t≥1
, {εt+1}t≥0

where {εt+1}t≥0 denotes an i.i.d. sequence of symmetric Bernoulli random variables inde-

pendent of sign(yt+1X 0
t+1
bβt) and the information available until time t, Ft. Then, under the

null and assumption (32), the sequence

ηt+1 = sign(yt+1X
0
t+1
bβt) + εt+1I(yt+1X

0
t+1
bβt = 0)

forms an i.i.d. sequence of Bernoulli random variables taking values in {1,−1} ,where I
denotes an indicator function.
Proof. See the Appendix.

Once we have proved that
©
ηt+1

ª
is an independent sequence of symmetric Bernoulli

random variables we know that the sum of these variables follows an exact binomial distri-
bution:

Remark: Under the null and assumption (32) we have that

TP
t=R

ηt+1 + P

2
→ B(P,

1

2
)
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We notice here that a test based on sign(yt+1X
0
t+1
bβt) is a direction of change test, so under

symmetry of yt+1X 0
t+1
bβt or under assumption (32), we have that a test based on MSPE-

Adjusted is equivalent to a direction of change test, and therefore they are both shrinkage
based tests5 derived from traditional comparisons of MSPE. This is an important remark.
We see that under assumption (32), rejection of the direction of change test implies the
existence of a shrinkage factor for which the alternative model displays lower MSPE. In this
sense a direction of change based test is closely related to MSPE comparisons because it also
searches for diversification gains. We will be using asymptotically normal critical values for
our sign test. This test is denoted by Sign-N.

The next section presents the experimental design as well as the main results of the
simulations. These results show the behavior of the statistics and tests developed in this
paper.

4 Experimental Design and Simulation Results

4.1 Experimental Design

Following Clark and West (2005a) we use Monte Carlo simulations for two multivariate
data-generating processes (DGPs) to evaluate the finite-sample properties of the statistics
previously presented in this paper. The idea is to compare small sample properties of the
shrinkage based tests (Sign-N, Max-MSPE-Adjusted and MSPE-Adjusted) with those of
some benchmark tests already available in the literature. We consider three benchmark
tests: the traditional Diebold and Mariano (1995) test that we call MSPE-Normal; a test
of MSPE differences that uses McCracken (2004) critical values and that we call MSPE-
McCracken; and a test introduced by Chao, Corradi, and Swanson (2000) that we call CCS.
The first two tests, MSPE-Normal and MSPE-McCracken, are tests that compare the MSPE
between the null and the alternative model. The CCS test is a projection test that has been
reported to be powerful, see Clark and West (2005a).

We use DGPs following Clark and West (2005a). These DGPs are calibrated to match
common features of exchange rate series for which the martingale difference is a sensible null
hypothesis. Basically the DGPs used are variations of the following process:

yt+1 = βxt + et+1

xt = 0.95xt−1 + vt;

et+1 = N(0, 1); vt+1 = N(0, σ2v)

with E(et+1|Ft) = 0, E(vt+1|Ft) = 0 and var(et+1) = 1. DGP 1 is calibrated to match
exchange rate features based on interest parity so we will have var(vt) = σ2v (with σv =
0.025) and corr(et, vt) = 0. We set β = −2 in experiments evaluating power and β = 0 in
experiments evaluating size. DGP 2 is the same as DGP 1 except that we assume that et+1

5Both tests can be seen as tests of the null of no diversification gains as well.
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has a t(2) distribution displaying fat tails. We assume data generated from homoskedastic
draws of their respective distributions.

Estimation always includes a constant term in each regression. We explore the perfor-
mance of rolling schemes for a number of sample sizes (T + 1) and decompositions of the
sample in the estimation window (size R) and the prediction window (size P, (T + 1 =
R + P )). We run simulations for the following sample sizes: R = 35, 120 and 240;
P = 48, 109, 166, 226, 480 and 700. All results are displayed in tables in the appendix and in
the following section.

4.2 General Results

In this subsection we discuss aggregate results of our experiments. More details can be
found in tables in the Appendix. Table 1 below shows averages over both DGP’s and
different values of P and R for the following categories: Empirical Size, Raw Power, and
Size-Adjusted-Power.

(1) (2) (3) (4)
Empirical Size Raw Power Size-Adjusted Power

Max-MSPE-Adjusted 0.096 0.399 0.383
Sign-N 0.098 0.347 0.334
MSPE-Adjusted 0.078 0.377 0.397
MSPE-Normal 0.005 0.064 0.369
MSPE-McCracken 0.068 0.324 0.369
CCS 0.110 0.430 0.402

Table 1
Averages of Small Sample Properties

Notes:
1. See sections 3.1, 3.2 and 3.4 for the definition of the shrinkage based tests Sign-N, Max-

MSPE-Adjusted, and MSPE-Adjusted. See section 4.1 for a description of the benchmark tests
MSPE-Normal, MSPE-McCracken, and CCS.

2. For all the experiments nominal size is set to 10%.

Column 2 shows results on empirical size when the nominal size of the tests is 10%.
We see that, on average, Sign-N and Max-MSPE-Adjusted display the closest empirical size
to the nominal size. Notice also that the worst performances on empirical size are those
corresponding to both MSPE based tests. Column 3 shows results on power. The best or
highest values correspond to CCS and Max-MSPE-Adjusted. On the other hand, the worst
values are those of the MSPE-Normal and MSPE-McCracken tests. The last column shows
results on size-adjusted power. All the tests display similar size-adjusted power although
the lowest average size-adjusted-power corresponds to the Sign-N test. In tables in the
Appendix it can be seen that the size-adjusted-power of the Sign-N depends dramatically
on the particular DGP. Therefore, averages results for this Sign-N test should be taken with
caution.
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4.3 Results on Size

Results on size, power and size adjusted power are attached in tables in the Appendix. Some
remarks about empirical size follow below:

1) Max-MSPE-Adjusted: It is a little undersized on average. It has an average size of
9.6%. It also moves in a narrow region. For instance, its minimum value is 8.5% and the
maximum is 11%. It shows no relationship whatsoever with R and P . There is a slight
tendency to have a higher size in fat tail distributions.

2) Sign-N: It is mildly undersized on average. It has an average size of 9.8%. It has the
best average size of all the statistics considered in this paper. As in the previous statistic,
it covers a narrow range of values from a minimum size of 8.6% to a maximum of 11.2%.
The variation of size with respect to P is not clear. The little variation that the size of this
statistic displays with R is striking. For instance, in DGP2 for P = 109, the empirical size
is 8.9%, 8.6% and 8.6% for R given by 35, 120 and 240 respectively. It seems also to be
very robust with respect to different distributional assumptions of the errors. Basically its
behavior is similar in both DGPs.

3) MSPE-Adjusted: In both DGPs the MSPE-Adjusted is uniformly undersized. Its
maximum empirical size is 9.6%, (the minimum is 6.3%) and its average empirical size over
all the experiments is 7.8%. We notice that there is no clear pattern of variation with the
parameters P and R. The empirical size is, however, much closer to the correct nominal size
in the experiments with fat tails.

4) MSPE-Normal: In both DGPs traditional MSPE is uniformly extremely undersized.
Its maximum empirical size is 3.8%, its average is 0.5%. We notice that the empirical size
decreases with P and increases with R. There is no significant difference between the results
with fat tails and normal tails.

5) MSPE-McCracken: It is undersized on average with an average size of 6.8%. It is
not uniformly undersized, however. For both DGPs it sometimes reaches sizes over 10%. It
shows an increasing pattern with R and a decreasing pattern with P , with a few exceptions.
It is not evident how the assumption of fat tails affects the size of this test.

6) CCS: It is oversized on average. Its average size is 11%. It is not uniformly oversized
however. The maximum size is 15.6% and the minimum is 8.9%. It shows a decreasing trend
with respect to P (with a few exceptions) and no relationship whatsoever with respect to
R. Recall that R is not a factor in the determination of this test. This test is also highly
oversized in DGPs with fat tails for small values of P .

4.4 Results on Power

On average we observe that CCS presents the highest raw power followed by Max-MSPE-
Adjusted, then by MSPE-Adjusted, then by the Sign test, then by MSPE-MCracken and
finally by MSPE-Normal. All tests, with the exception of CCS, show higher raw-power for
higher values of R. We recall that CCS is neutral to changes in R because there is no
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estimated parameter in this statistic. All tests, with the exception of MSPE-Normal and
occasionally MSPE-McCracken, show increasing raw-power with the number of forecasts P .
Most of the time the raw-power of MPSE-Normal decreases along with P . An intuition for
this is given in Clark and West (2005a). In general, fat tails have a negative effect on raw-
power for all the tests. Similarly, in most cases Max-MSPE-Adjusted has higher raw-power
than MSPE-Adjusted.

We also notice that in the following circumstances our shrinkage statistics have the highest
raw-power: For DGP 1, Max-MSPE-Adjusted display the highest power, for all cases with
R = 240 and R = 120 when P ≤ 226. For DGP 2, Sign-N display the highest power for
R = 120 and P = 166, 226 and P = 700. For R = 240 when P ≥ 109.

Regarding size adjusted power we want to make a few observations. The drastic difference
in raw-power observed between MSPE-Normal and the rest of the statistics now decreases.
MSPE-Normal now has relatively similar size adjusted power compared to its competitors.
CCS still has more size-adjusted power for low R and high P. We also observe that Sign
tests display the highest size-adjusted-power in DGP2 for R ≥ 120 (with only one exception,
R = 120, P = 700).

5 Empirical Application

In this section we study the behavior of our statistics using monthly forecasts of five US
dollar bilateral exchange rates. We analyze the cases of Canada, Japan, Switzerland, U.K,
and Chile6. While the null model corresponds to a zero mean martingale difference for
the percentage change in exchange rates, the alternative model posits that this percentage
change is explained by two regressors: a constant and the one-month interest differential7.
The data from Canada, Japan, Switzerland, and U.K. were generously provided by Todd
Clark and correspond to the same database used in Clark and West8 (2005a). We obtained
the data for Chile from the International Financial Statistics. This time we use the discount
rates as measures of interest rates.

Using rolling regressions estimated by OLS we engage in two empirical exercises. First,
we assume that the number of observations used for the first estimation (R) as well as
the number of predictions (P ) are fixed. We follow Clark and West (2005a) to choose R
relatively small with respect to P . For Canada, Japan, Switzerland, and U.K. we set R = 120
and P = T + 1 − R, where T + 1 is the total number of observations. For Chile we set
R = 36, P = 108. Then we compute our statistics and we analyze whether the tests are able

6Eventhough the MDH may not be the most efficient benchmark to use in the absence of pure flotation,
we still think it is a simple an interesting framework to compare with. The obvious exception being variants
of fixed exchange regimes.

7See Clark and West (2005a) for a discussion about exchange rate models based on interest parity.
8Interest rates correspond to 1-month eurocurrency deposit rates, taking an average of bid and ask rates

at London close. Monthly time series are formed as the last daily rate of each month. Data was obtained
from Global Insight’s FACS database.
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to reject the null of a MDH at three different significance levels: 1%, 5% and 10%. The tests
under consideration are: MSPE-Adjusted, Max-MSPE-Adjusted, MSPE with McCracken
critical values, Sign-N, and CCS.

Second, we analyze how robust the results from the first empirical exercise are when we
slightly change the parameters R and P . We consider a symmetric variation of roughly 10%
of the data around P to check the percentage of rejections that we obtain in a neighborhood
of P = 166 for Canada and Japan, P = 226 for Switzerland and U.K, and P = 108 for Chile.

Results are displayed in Tables 2 and 3. First, we clearly see how difficult is to reject
the null hypothesis using a traditional comparison of MSPEs. This traditional comparison
uses standard normal critical values. We see in column (5) that none of the values obtained
for these countries would allows us to reject the martingale difference model using standard
normal critical values. We already mentioned that standard normal critical values are not
appropriate for this application. Use of the correct asymptotic critical values tabulated by
McCracken (2004) leads to an improvement. Now the null model is rejected in two out of five
countries (Canada and Chile at a 5% and 10% significance level respectively. See Column
6). Similar results are displayed by the CCS, MSPE-Adjusted, and Max-MSPE-Adjusted
statistics. The CCS test rejects the null model for two countries: Chile, at a 5% significance
level, and Japan, at a 10% significance level. The MSPE-Adjusted statistic rejects the null
for Canada and Switzerland at a 5% significance value, and is close to rejection for Japan
and Chile. The Max-MSPE-Adjusted statistic rejects the null for Chile at a 5% significance
level, and for Switzerland at a 10% significance level. Finally, the sign test, Sign-N displays
the strongest results. This test rejects the null in four out of five countries: it rejects the null
in Canada at a 1% level, in Chile at a 10% level, in Japan at a 5% level, and in Switzerland
at a 1% significance level. The null is never rejected for the U.K.
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(1) (2) (3) (4) (5) (6) (7) (8)

country Max Sign-N MSPE MSPE MSPE CCS f(s1,s2)
MSPE-Adj Adjusted Normal McCracken

Canada 0.07 15 0.14 0.04 0.04 0.05
(6.44) (0.08) (0.08) (0.08) s1=1.392

0.89        2.33***    1.77**    0.54    0.54** 1.94 s2=1.531

Chile 5.88E-05 7.0 4.00E-05 -5.34E-06 -5.34E-06 17.4E-06
(5.20) (3.42E-05) (3.48E-05) (3.48E-05) s1=44.750

     6.11E-04**     1.35* 1.17 -0.15    -0.15*      7.25** s2=2.238

Japan 0.36 11 0.53 -0.23 -0.23 0.09
(6.44) (0.43) (0.44) (0.44) s1=2.854

4.64      1.71** 1.23 -0.52 -0.52    5.02* s2=2.854

Switzerland 1.03 20 0.90 -0.06 -0.06 0.21
(7.52) (0.48) (0.48) (0.48) s1=2.134

   15.49*         2.66***     1.87** -0.13 -0.13 1.72 s2=2.134

U.K. 0.18 1 0.00 -0.43 -0.43 0.0057
(7.52) (0.33) (0.34) (0.34) s1=1000

2.76 0.13 0.00 -1.28 -1.28 0.77 s2=20
*Rejection at the 10% significance level.
**Rejection at the 5% significance level.
***Rejection at the 1% significance level.

Table 2
Forecasts of Monthly Changes in U.S. Dollar Exchange Rates

Notes:
1. See sections 3.1, 3.2 and 3.4 for the definition of the shrinkage based tests Sign-N, Max-

MSPE-Adjusted and MSPE-Adjusted. See section 4.1 for a description of the benchmark tests
MSPE-Normal, MSPE-McCracken and CCS.

2. Rejections at 1% (***), 5% (**) and 10% (*) level of significance.
3. Standard Deviations in parenthesis.
4. For each country and each statistic we report three numbers. First, we report the value of

the statistic without normalization. Next, we report its standard deviation and finally we report
the value of the normalized statistic to be compared with critical values. For instance, in the case
of Canada and Sign -N test the value of the statistic without normalization is 15. Its standard
deviation is 6.44 and the ratio between both is 2.33.

5. The last column displays the difference between the MSPE of the null model and the MSPE
of the alternative model using different shrinkage factors.

6. Data range: 1980:01-2003:10 for Canada and Japan, 1975:01-2003:10 for Switzerland and
U.K. and 1993:4-2005:4 for Chile.

In this empirical application we can group our shrinkage based tests in two families. First,
a family including the MSPE-Adjusted and Max-MSPE-Adjusted tests. This family has a
similar rate of rejection within itself and when compared with the rest of the asymptotically
correct tests in the literature (CCS and MSPE-McCracken). Second, a family that includes
the sign test that shows more rejection than its competitors. As explained in section 3, we
do not need to focus on the relative size of a statistic like (25), but only on its sign. As long
as a statistic like (25) is positive we know that a shrunken alternative model might be more
useful than the martingale difference model to correctly predict changes in exchange rates.
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We also notice that in all five cases the Max-MSPE-Adjusted statistic is positive. This
implies that it would be possible to construct forecasts from the alternative model displaying
lower MSPE with a big enough shrinkage factor. Column (8) shows the value of the difference
in MSPE when the alternative model is shrunk by some specific factors. With these shrinkage
factors the alternative model is more accurate than the null model for all countries including
the U.K.

Table 3 explores the robustness of previous results with respect to changes in the number
of observations used for prediction and estimation. Results seem to be robust in a neighbor-
hood of P and R with just a couple of exceptions. As we can see from Table 3, anytime the
null is rejected, it is also rejected for most of the different combinations of P and R, the only
exception being Switzerland with the Max-MSPE-Adjusted statistic where the rejection rate
is rarely low. On the other hand, almost every time the null is not rejected, it is also not
rejected for most of the different combinations of P and R. The only exception to this is the
case of Chile with the MSPE-Adjusted statistic, where there is a rejection rate of about 0.5.

(1) (2) (3) (4) (5) (6)

country Max Sign-N MSPE MSPE CCS
MSPE-Adj Adjusted McCracken

Canada 0.00 1.00 0.80 0.80 0.00
0.89        2.33***    1.77**    0.54** 1.94

Chile 0.73 0.94 0.45 0.73 0.73
     6.11E-04**     1.35* 1.17 -0.15      7.25**

Japan 0.00 0.77 0.29 0.00 0.89
4.64      1.71** 1.23 -0.52    5.02*

Switzerland 0.34 0.77 0.64 0.28 0.00
   15.49*         2.66***     1.87** -0.13 1.72

U.K. 0.00 0.00 0.00 0.00 0.00
2.76 0.13 0.00 -1.28 0.77

*Rejection at the 10% significance level.
**Rejection at the 5% significance level.
***Rejection at the 1% significance level.

Table 3
Forecasts of Monthly Changes in U.S. Dollar Exchange Rates

Percentage of Rejection at 10% level

Notes:
1. See sections 3.1, 3.2 and 3.4 for the definition of the shrinkage based tests Sign-N, Max-

MSPE-Adjusted and MSPE-Adjusted. See section 4.1 for a description of the benchmark tests
MSPE-Normal, MSPE-McCracken and CCS.

25



2. Rejections at 1% (***), 5% (**) and 10% (*) level of significance.
3. For each country and each statistic we report two numbers. First we report the rejection rate

of the null at the 10% level of significance. Next, we report the value of the normalized statistic
presented in Table 2. For instance, in the case of Canada and Sign -N test we see that in all the
combinations of R and P analyzed the null was rejected at the 10% level. Finally we report the
value 2.33 which is the value of the normalized statistic obtained in Table 2.

Our tests, based on a shrinkage perturbation of traditional MSPE comparisons, provide
interesting and sound evidence of the predictability of exchange rates in 4 out of 5 countries.
Aside from this statistical evidence, our approach also allows us to find an interpretation
for our rejections: rejection means the existence of a positive shrinkage factor for which the
MSPE difference between the null and the shrunk alternative favors the alternative. Put
differently, rejection means statistically significant evidence of diversification gains. This
result would allow us to find, at least theoretically, a better forecast in terms of MSPE than
the martingale difference model anytime we reject the null.

6 Extensions

6.1 Forecast Accuracy

We have claimed that rejecting the null ensures the existence of a positive shrinkage factor
s, such that shrunken forecasts from the alternative display lower MSPE than the null.
The question about estimation of the shrinkage factor, however, remains open and further
research in this direction should be done.

6.2 Granger Causality Tests

Our shrinkage procedure may be extended to construct tests in more general contexts beyond
those of the MDH. We consider here a brief extension to test for Granger causality. Following
Clark and West (2005b) consider the models

Model 1 (null) : yt+1 = X 0
t+1β + e1t+1 (33)

Model 2 (alternative) : yt+1 = X 0
t+1β + Z 0t+1γ + e2t+1 (34)

where E(e1t+1|Ft) = E(e2t+1|Ft) = 0, and we have assumed for simplicity that EXt+1Z
0
t+1 =

0.Working at the population level we could define the following auxiliary function f : R+ →
R

f(s) = E(yt+1 −X 0
t+1β)

2 −E((yt+1 −X 0
t+1β)−

Z 0t+1γ

s
)2

= 2E(yt+1 −X 0
t+1β)

Z 0t+1γ

s
−E

∙
Z 0t+1γ

s

¸2
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Under the null, γ = 0, so f(s) = 0 for all s > 0. Under the alternative, however, γ 6= 0 and
we have

f(s) > 0⇔ E(yt+1 −X 0
t+1β)Z

0
t+1γ > 0

The existence of different behavior under the null and the alternative suggests that it would
be possible to construct a test based upon the sample analog of

E(yt+1 −X 0
t+1β)Z

0
t+1γ

Of course further analysis is required to give a formal definition of a test. Our only intention
is to show that this is a natural extension of our shrinkage based tests, which seems to be a
promising area for future research.

6.3 Equivalent Measure

Our tests are derived based on a robustness principle. Basically, we use the fact that under
the null model, a deterministic perturbation over a conditional expectation would leave the
MSPE differential unchanged. Under the alternative we expected to find some change. A
natural extension for future research is to explore the robustness of the MSPE differential
to stochastic perturbations. For instance, let us assume that we have a set of regressors in
the vector Xt+1, and a positive stochastic perturbation

0 < mt ∈ Ft

Notice that this positive stochastic factor does not affect the distinctive features under the
null and under the alternative of the population analog of a statistic like (25).

In fact, we have

E(yt+1Xt+1βmt|H0) = E(et+1Xt+1βmt) = 0

E(yt+1Xt+1βmt|HA) = E((Xt+1β)
2mt) > 0

Preliminary simulations and empirical applications with different stochastic perturbations,
not included for the sake of brevity, show that some stochastic perturbations boost the
empirical power of the tests presented here, sometimes drastically. This preliminary evidence
shows that there is some room for research on this topic.

6.4 Combination of Tests

Combination of forecasts has been proven useful in the exchange rate literature to outper-
form the random walk model in forecasting comparisons under a quadratic loss (see Clemen
(1989)). Combining strategies have been reported as having excellent predictive behavior by
several authors includingWright (2003) and Avramov (2002), who independently showed the
predictive power of Bayesian Model Averaging as a combining tool. We have also stressed
throughout the paper that diversification gains may arise when combining different forecasts.
A natural question to ask is the following: is it possible to obtain diversification gains when
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combining different tests of the MDH? The intuition is as follows: assume that we have two
statistics T1 and T2 that under the null are normally distributed

Ti Ã N(0, Vi) i = 1, 2

Consider the following combined statistic

TC = ωT1 + (1− ω)T2

Then we have
TC Ã N(0, V (ω))

and we could pick ω to minimize V (ω). If this is so, and diversification gains prevail, the
combined statistic will have narrower confidence intervals. It seems worthwhile to analyze
whether these narrower confidence intervals will be associated with gains in power. An
extension like this is also left for future research.

7 Conclusion

We define a family of tests for the Martingale Difference Hypothesis based upon a shrinkage
principle. In other words, tests within this family are such that rejection of the null implies
that forecasts from the alternative model, adjusted by a shrinkage factor, will display lower
Mean Square Prediction Error than forecasts from the null model. In particular we introduce
a new test called Max-MSPE-Adjusted that displays good power and size properties.

We also show that already known tests, like the direction of change test and the MSPE-
Adjusted test, can be derived from our shrinkage procedure. These shrinkage tests explore
the ability of the alternative model to produce more accurate forecasts than the null model.
In other words, rejecting the null with these tests implies that shrunken forecasts from the
alternative model should display lower MSPE than the null model. In this sense we show
that direction of change tests are closely related to MSPE comparisons.

We explore via simulations the small sample behavior of shrinkage based tests along with
other tests already known in the literature. Following Clark and West (2005a), we use a
bivariate DGP calibrated to match a simple model of exchange rates based upon interest
parity. Surprisingly, we find that tests based on direct MSPE comparisons are outperformed
by other tests in terms of power properties. We argue that these MSPE based tests might
not be as powerful as other tests of the MDH because they neglect benefits from combination
and therefore do not use all the information about potential combination gains. This result
questions the traditional use of MSPE comparisons, at least in the context we have used
them here.

Simulation results indicate that the sign test (direction of change) and the Max-MSPE-
Adjusted display the closest empirical size to nominal size. In terms of power, the Max-
MSPE-Adjusted and the CCS test seem to outperform the rest of the tests for normal tails,
whereas for thick tails the Sign test tends to outperform the rest of the tests.
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We illustrate the use of our tests in an application within the exchange rate literature.
Using monthly series of bilateral exchange rates and an alternative model based on interest
parity, the Sign-N test (direction of change) rejects the MDH for Canada, Chile, Japan, and
Switzerland, sometimes at extremely tight critical values. The MSPE-Normal test is unable
to reject the null for all five countries, and the rest of the tests reject the null for only two
countries. For the U.K, however, no test rejects the null. For all five cases analyzed, however,
it is possible to find a shrinkage factor for which the alternative renders improved forecasts
over the null model. Therefore, this application suggests that, at least in the context of our
simulations, the Sign-N test is more appropriate than other tests to detect diversification
gains. These results seem to be robust to the size of the estimation and forecasting windows,
as long as P is relatively big with respect to R.

Several interesting extensions are suggested for future research. First, the estimation of an
optimal shrinkage factor to improve forecast accuracy is still an open question. Second, the
extension of our shrinkage based tests to more general environments of Granger causality is
promising but not straightforward. Third, we claim that the use of a stochastic perturbation
might boost the empirical power of some of the tests. Finally we ask whether a suitable
combination of tests may yield power gains when testing the MDH.

8 Appendix

8.1 Figures

Figure 1
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Figure 2 
Auxiliary Function f(s)
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8.2 Simulation Results

8.2.1 Results on Empirical Size

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.094 0.100 0.105 0.100 0.095 0.102
Sign-N 0.102 0.092 0.093 0.101 0.087 0.109
MSPE-Adjusted 0.075 0.075 0.083 0.076 0.081 0.089
MSPE-Normal 0.002 0.000 0.000 0.000 0.000 0.000
MSPE-McCracken 0.072 0.048 0.040 0.031 0.018 0.016
CCS 0.128 0.101 0.098 0.094 0.089 0.095

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.095 0.088 0.088 0.085 0.098 0.099
Sign-N 0.099 0.090 0.094 0.107 0.095 0.107
MSPE-Adjusted 0.075 0.063 0.067 0.067 0.074 0.082
MSPE-Normal 0.022 0.006 0.002 0.001 0.000 0.000
MSPE-McCracken 0.097 0.086 0.078 0.076 0.066 0.059
CCS 0.127 0.107 0.102 0.100 0.098 0.092

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.091 0.089 0.090 0.086 0.090 0.092
Sign-N 0.098 0.092 0.092 0.101 0.093 0.109
MSPE-Adjusted 0.076 0.070 0.067 0.064 0.069 0.071
MSPE-Normal 0.038 0.017 0.011 0.005 0.001 0.000
MSPE-McCracken 0.103 0.095 0.093 0.095 0.083 0.080
CCS 0.128 0.113 0.104 0.098 0.097 0.095

Table 4
Empirical Size DGP 1

R=35, Size = 10%, beta = -2, Gaussian errors

Table 5
Empirical Size DGP 1

R=120, Size = 10%, beta = -2, Gaussian Errors

Table 6
Empirical Size DGP 1

R=240, Size = 10%, beta = -2, Gaussian Errors
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P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.098 0.104 0.110 0.104 0.102 0.099
Sign-N 0.097 0.089 0.094 0.104 0.089 0.112
MSPE-Adjusted 0.082 0.085 0.090 0.090 0.095 0.096
MSPE-Normal 0.002 0.000 0.000 0.000 0.000 0.000
MSPE-McCracken 0.064 0.046 0.038 0.034 0.032 0.041
CCS 0.150 0.119 0.117 0.111 0.107 0.105

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.096 0.094 0.094 0.097 0.102 0.100
Sign-N 0.096 0.086 0.097 0.104 0.092 0.105
MSPE-Adjusted 0.084 0.076 0.078 0.078 0.084 0.087
MSPE-Normal 0.018 0.004 0.001 0.001 0.000 0.000
MSPE-McCracken 0.088 0.081 0.072 0.068 0.056 0.050
CCS 0.153 0.118 0.111 0.113 0.099 0.098

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.099 0.092 0.095 0.095 0.095 0.100
Sign-N 0.102 0.086 0.097 0.105 0.097 0.111
MSPE-Adjusted 0.086 0.080 0.079 0.078 0.076 0.081
MSPE-Normal 0.032 0.014 0.009 0.005 0.000 0.000
MSPE-McCracken 0.106 0.091 0.089 0.093 0.076 0.070
CCS 0.156 0.118 0.114 0.108 0.103 0.099

Empirical Size DGP 2
R=240, Size = 10%, beta = -2, t(2) Errors

Table 9

Table 7
Empirical Size DGP 2

R=35, Size = 10%, beta = -2, t(2) Errors

Table 8
Empirical Size DGP 2

R=120, Size = 10%, beta = -2, t(2)  Errors

Notes:
1.See sections 3.1, 3.2 and 3.4 for the definition of the shrinkage based tests Sign-N, Max-

MSPE-Adjusted and MSPE-Adjusted. See section 4.1 for a description of the benchmark tests
MSPE-Normal, MSPE-McCracken and CCS.

2. For all the experiments, nominal size is set to 10%.
3. See section 4.1 for the definition of the DGPs. Notice that DGP 2 differs from DGP 1 in

that the distribution of the dependent variable perturbations displays fat tails.
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8.2.2 Results on Power

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.228 0.312 0.367 0.423 0.556 0.660
Sign-N 0.192 0.230 0.275 0.326 0.422 0.540
MSPE-Adjusted 0.201 0.284 0.357 0.407 0.591 0.708
MSPE-Normal 0.015 0.004 0.003 0.001 0.000 0.000
MSPE-McCracken 0.178 0.225 0.264 0.281 0.388 0.486
CCS 0.258 0.375 0.492 0.602 0.876 0.966

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.314 0.467 0.568 0.640 0.849 0.929
Sign-N 0.237 0.301 0.395 0.461 0.619 0.741
MSPE-Adjusted 0.279 0.413 0.514 0.593 0.816 0.906
MSPE-Normal 0.093 0.083 0.087 0.085 0.104 0.114
MSPE-McCracken 0.265 0.405 0.500 0.578 0.787 0.874
CCS 0.256 0.378 0.497 0.598 0.883 0.963

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.353 0.537 0.655 0.749 0.917 0.968
Sign-N 0.260 0.355 0.435 0.529 0.710 0.832
MSPE-Adjusted 0.333 0.500 0.611 0.703 0.895 0.957
MSPE-Normal 0.150 0.179 0.199 0.219 0.312 0.409
MSPE-McCracken 0.307 0.439 0.557 0.665 0.878 0.946
CCS 0.257 0.381 0.494 0.612 0.880 0.964

Table 10
Raw Power DGP 1

R=35, Size = 10%, beta = -2, Gaussian Errors

Table 11
Raw  Power DGP 1

R=120, Size = 10%, beta = -2, Gaussian Errors

Table 12
Raw  Power DGP 1

R=240, Size = 10%, beta = -2, Gaussian Errors
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P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.140 0.150 0.151 0.166 0.169 0.183
Sign-N 0.144 0.153 0.168 0.207 0.232 0.286
MSPE-Adjusted 0.120 0.135 0.136 0.156 0.172 0.195
MSPE-Normal 0.003 0.000 0.000 0.000 0.000 0.000
MSPE-McCracken 0.092 0.071 0.062 0.059 0.059 0.075
CCS 0.203 0.195 0.208 0.236 0.336 0.415

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.168 0.186 0.213 0.213 0.277 0.295
Sign-N 0.168 0.199 0.231 0.265 0.322 0.404
MSPE-Adjusted 0.148 0.160 0.178 0.184 0.245 0.274
MSPE-Normal 0.035 0.015 0.007 0.005 0.001 0.000
MSPE-McCracken 0.140 0.153 0.153 0.154 0.172 0.178
CCS 0.194 0.200 0.213 0.235 0.335 0.403

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.179 0.212 0.241 0.255 0.321 0.362
Sign-N 0.184 0.224 0.264 0.304 0.393 0.476
MSPE-Adjusted 0.160 0.189 0.207 0.224 0.281 0.327
MSPE-Normal 0.064 0.042 0.032 0.026 0.010 0.006
MSPE-McCracken 0.159 0.173 0.195 0.214 0.249 0.279
CCS 0.194 0.196 0.220 0.236 0.340 0.409

Table 13
Raw Power DGP 2

R=35, Size = 10%, beta = -2, t(2) Errors

Table 14
Raw  Power DGP 2

R=120, Size = 10%, beta = -2, t(2) Errors

Table 15
Raw  Power DGP 2

R=240, Size = 10%, beta = -2, t(2) Errors

1. See notes on tables above.
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8.2.3 Results on Size Adjusted Power

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.160 0.287 0.332 0.354 0.533 0.637
Sign-N 0.127 0.230 0.275 0.284 0.422 0.513
MSPE-Adjusted 0.174 0.324 0.377 0.410 0.603 0.718
MSPE 0.157 0.319 0.389 0.418 0.620 0.734
CCS 0.150 0.357 0.484 0.569 0.874 0.966

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.374 0.487 0.577 0.638 0.847 0.922
Sign-N 0.237 0.301 0.395 0.417 0.619 0.721
MSPE-Adjusted 0.324 0.473 0.575 0.625 0.846 0.914
MSPE 0.269 0.415 0.535 0.596 0.829 0.907
CCS 0.216 0.344 0.482 0.565 0.880 0.964

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.503 0.639 0.728 0.777 0.932 0.972
Sign-N 0.260 0.355 0.435 0.479 0.710 0.815
MSPE-Adjusted 0.386 0.551 0.665 0.732 0.919 0.967
MSPE 0.298 0.435 0.555 0.625 0.888 0.953
CCS 0.216 0.343 0.470 0.574 0.877 0.964

Table 16
Size Adjusted  Power DGP 1

R=35, Nominal Size = 10%, beta = -2, Gaussian Errors

Table 17
Size Adjusted  Power DGP 1

R=120, Nominal Size = 10%, beta = -2, Gaussian Errors

Table 18
Size Adjusted  Power DGP 1

R=240, Nominal Size = 10%, beta = -2, Gaussian Errors
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P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.122 0.116 0.126 0.103 0.126 0.136
Sign-N 0.144 0.153 0.168 0.173 0.232 0.262
MSPE-Adjusted 0.135 0.150 0.153 0.145 0.169 0.189
MSPE 0.129 0.142 0.140 0.133 0.149 0.149
CCS 0.129 0.157 0.190 0.196 0.325 0.406

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.140 0.143 0.158 0.154 0.209 0.242
Sign-N 0.168 0.199 0.231 0.226 0.322 0.379
MSPE-Adjusted 0.160 0.170 0.201 0.197 0.262 0.298
MSPE 0.143 0.161 0.184 0.176 0.232 0.277
CCS 0.135 0.156 0.185 0.192 0.315 0.409

P=48 P=109 P=166 P= 226 P=480 P=700
Max-MSPE-Adjusted 0.160 0.183 0.205 0.197 0.271 0.304
Sign-N 0.184 0.224 0.264 0.267 0.393 0.452
MSPE-Adjusted 0.165 0.199 0.235 0.236 0.307 0.353
MSPE 0.146 0.171 0.204 0.202 0.287 0.329
CCS 0.124 0.157 0.197 0.192 0.324 0.398

Table 19
Size Adjusted  Power DGP 2

R=35, Nominal Size =10%, beta = -2,t(2) Errors

Table 20
Size Adjusted  Power DGP 2

R=120, Nominal Size = 10%, beta = -2, t(2) Errors

Table 21
Size Adjusted  Power DGP 2

R=240, Nominal Size = 10%, beta = -2, t(2) Errors

1. See notes on tables above
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8.3 Proof of Proposition 1

Proposition: If ∃ i ∈ {1, ..., k} such that E (yt+1byi,t+1 |HA) > 0 then there is a vector
−→s = −→s ∈

Rk
+ : E

µ
kP
i=1

yt+1yii,t+1t
si

|HA

¶
> 0 and it is possible to find h ∈ R+ such that E

³ bf(h−→s ) | HA

´
>

0.
Proof. Without loss of generality let us assume E (yt+1by1,t+1 |HA) > 0. Pick s1 small enough

and components of s−1 big enough so that E

µ
kP
i=1

yt+1yii,t+1t
si

|HA

¶
> 0. Now we need to pick

h ∈ R+ according to:

E
³ bf(h−→s ) | HA

´
> 0⇐⇒

2

h
E

µ
kP
i=1

yt+1byi,t+1
si

|HA

¶
− 1

h2
E

Ãµ
kP
i=1

byi,t+1
si

¶2
| HA

!
> 0⇐⇒

2E

µ
kP
i=1

yt+1byi,t+1
si

|HA

¶
− 1

h
E

Ãµ
kP
i=1

byi,t+1
si

¶2
| HA

!
> 0⇐⇒

2E

µ
kP
i=1

yt+1yi,t+1
si

|HA

¶
E

Ãµ
kP
i=1

yi,t+1
si

¶2
| HA

! >
1

h
(35)

Because E

Ãµ
kP
i=1

yi,t+1
si

¶2
| HA

!
> 0, restriction (35) is well defined. Therefore for h big enough

we will have 0 < E
³ bf(h−→s ) | HA

´
.

8.4 Proof of Proposition 2

Proposition: Under the null and assumptions (27), (28) and (29)

lim
P→∞

P

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u

⎞⎠→ Φ(u) for all u > 0

where Φ denotes a standard normal distribution function and

bf(s) = 2

P

TP
t=R

yt+1X
0
t+1
bβt − 1

P

TP
t=R

(X 0
t+1
bβt)2

s

bV (s) = 4bV (yt+1X 0
t+1
bβt) + 1

s2
bV ((X 0

t+1
bβt)2)− 4sdCov(yt+1X 0

t+1
bβt, (X 0

t+1
bβt)2)
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Proof. For brevity we will use the following notation:

nt+1 = yt+1X
0
t+1
bβt; dt+1 = (X

0
t+1
bβt)2

n =
1

P

TP
t=R

yt+1X
0
t+1
bβt; d =

1

P

TP
t=R

(X 0
t+1
bβt)2

f1 =
2

P

TP
t=R

yt+1X
0
t+1
bβt

d =
1

P

TP
t=R

(X 0
t+1
bβt)2

and

bV (s) = 4V1 +
1

s2
V2 −

4

s
V3

V1 = bV (yt+1X 0
t+1
bβt) = bV (nt+1)

V2 = bV ((X 0
t+1
bβt)2) = bV (dt+1)

V3 = dCov(yt+1X 0
t+1
bβt, (X 0

t+1
bβt)2) = dCov(nt+1, dt+1)

Now notice that given {yt+1,yt, ..., y1;Xt+1,Xt, ..., X1;} we have that

lim
s→∞

bf(s)qbV (s) =
2n√
4V1

=

2
P

TP
t=R

yt+1X
0
t+1
bβtq

4bV (yt+1X 0
t+1
bβt) (36)

lim
s→0

bf(s)qbV (s) = −
d√
V2
= −

1
P

TP
t=R

(X0
t+1βt)

2

sqbV ((X 0
t+1
bβt)2) < 0 (37)

These results and the fact that given {yt+1,yt, ..., y1;Xt+1,Xt, ..., X1} the function f(s)√
V (s)

is con-

tinuous and differentiable for s > 0, show that this function is bounded. Let us assume that this
function has a local interior maximum s∗ > 0. This local solution satisfies:

s∗ =
2nV2 − dV3

2(2nV3 − dV1)
> 0

It is also possible to show that

d

ds

bf(s)qbV (s) =
½

< 0 if s > s∗

> 0 if s < s∗

¾

which means that s∗ is the unique interior local maximum.
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If there is no local interior solution, then the supremum must be found either at (36) or at (37).

More generally we can characterize Sup
s>0

f(s)√
V (s)

as follows:

Sup
s>0

bf(s)qbV (s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(s∗)√
V (s∗)

if 2nV2 − dV3 > 0 and 2nV3 − dV1 > 0

max{− d√
V2
, 2n√

4V1
}if 2nV2 − dV3 < 0 and 2nV3 − dV1 < 0

max{− d√
V2
, 2n√

4V1
}if (2nV3 − dV1) 6= 0 and2nV2−dV3

2nV3−dV1
≤ 0

− d√
V2

if 2nV2 − dV3 < 0 and 2nV3 = dV1
2n√
4V1

if 2nV2 − dV3 > 0 and 2nV3 = dV1
2n√
4V1

if 2nV2 = dV3 and 2nV3 = dV1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
So, we have a description of Sup

s>0

f(s)√
V (s)

in terms of six different and disjoint sets, namely:

A1 =
©
2nV2 − dV3 > 0 and 2nV3 − dV1 > 0

ª
A2 =

©
2nV2 − dV3 < 0 and 2nV3 − dV1 < 0

ª
A3 =

n
(2nV3 − dV1) 6= 0 and 2nV2−dV3

2nV3−dV1
≤ 0

o
A4 =

©
2nV2 − dV3 < 0 and 2nV3 − dV1 = 0

ª
A5 =

©
2nV2 − dV3 > 0 and 2nV3 − dV1 = 0

ª
A6 =

©
2nV2 − dV3 = 0 and 2nV3 − dV1 = 0

ª
satisfying

6P
i=1

Pr(Ai) = 1

It turns out that under the null hypothesis, 4 of these 6 sets have asymptotic probability zero
(A1, A4, A5, A6). To see this, first notice that

2nV2 − dV3 → P0

2nV3 − dV1 → P −E((X 0
t+1
bβt)2)V (et+1X 0

t+1
bβt)

= −E((X 0
t+1
bβt)2)E((X 0

t+1
bβt)2E(e2t+1|Ft)) < 0

which, when using our parameterization, reduces to

2nV3 − dV1 →P −E((X 0
t+1
bβt)2)2 < 0

To abbreviate notation and make explicit the dependence of 2n, V3, d, V1 and V2 from P let us
write:

Z1P = 2nV2 − dV3 →P 0 (38)

Z2P = 2nV3 − dV1 →P µ < 0 (39)
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We are interested in the following limits

lim
P→∞

Pr(Ai), ..., i = 1, ..., 6

By definition, and following (38) and (39), we have that for all θ1, θ2 > 0,

lim
P→∞

Pr(|Z1P | > θ1) = 0

lim
P→∞

Pr(|Z2P − µ| > θ2) = 0

Now

0 ≤ Pr(A1) ≤ Pr(Z2P > 0) ≤ Pr(Z2P > −µ) ≤

Pr(Z2P − µ > −2µ) ≤ Pr(|Z2P − µ| > −2µ)

taking the limit when P goes to infinity and considering θ2 = −2µ > 0 we have

0 ≤ lim
P→∞

Pr(A1) ≤ lim
P→∞

Pr(|Z2P − µ| > −2µ) = 0

therefore

lim
P→∞

Pr (A1) = 0

Now consider i = 4, 5, 6.

Pr(Ai) ≤ Pr(Z2P = 0) ≤ Pr(Z2P > 2µ) =

Pr(Z2P − µ > −µ) ≤ Pr(|Z2P − µ| > −µ)

taking the limit when P goes to infinity and considering θ2 = −µ > 0 we have

0 ≤ lim
P→∞

Pr(Ai) ≤ lim
P→∞

Pr(|Z2P − µ| > −µ) = 0

therefore

lim
P→∞

Pr (Ai) = 0, ..., i = 4, 5, 6

From which we obtain that

lim
P→∞

Pr (A2∪A3) = 1

Let us denote
Θ = A1 ∪A4 ∪A5 ∪A6

Now notice that

0 ≤ Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u|Θ

⎞⎠Pr (Θ) ≤ Pr (Θ)
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therefore

lim
P→∞

Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u|Θ

⎞⎠Pr (Θ)= 0
On the other hand, consider u ∈ R+

Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u|A2 ∪A3

⎞⎠ = Pr

µ
P 1/2max{− d√

V2
,
2n√
4V1

} ≤ u

¶

= Pr

µ
P 1/2 2n√

4V1
≤ u

¶
Therefore, for every u ∈ R+ :

Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u

⎞⎠ = Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u|Θ

⎞⎠Pr (Θ)+
+Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u|A2 ∪A3

⎞⎠Pr (A2 ∪A3)
So

lim
P→∞

Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u

⎞⎠ =

lim
P→∞

Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u|A2 ∪A3

⎞⎠ lim
P→∞

Pr (A2 ∪A3) =

lim
P→∞

Pr

⎛⎝⎡⎣Sup
s>0

P 1/2
bf(s)qbV (s)

⎤⎦ ≤ u|A2 ∪A3

⎞⎠ =

lim
P→∞

Pr

µ
P 1/2max{− d√

V2
,
2n√
4V1

} ≤ u

¶
=

lim
P→∞

Pr

µ
P 1/2 2n√

4V1
≤ u

¶
= Φ(u)
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8.5 Proof of Proposition 3

Proposition: Under the null and assumption (32) the sequence sign(yt+1X 0
t+1
bβt) form a martingale-

difference sequence with respect to the filtration Ft.
Proof.

E(sign(yt+1X
0
t+1
bβt)|Ft) = E(sign(et+1X

0
t+1
bβt)|Ft) =

P (et+1X
0
t+1
bβt > 0|Ft)− P (et+1X

0
t+1
bβt < 0|Ft)

but

P (et+1X
0
t+1
bβt > 0|Ft) =

⎧⎪⎨⎪⎩
P (et+1 > 0|Ft) = 1

2
if X 0

t+1
bβt > 0

P (et+1 < 0|Ft) = 1
2
if X 0

t+1
bβt < 0

P (0 > 0|Ft) = 0 if X 0
t+1
bβt = 0

⎫⎪⎬⎪⎭
P (et+1X

0
t+1
bβt < 0|Ft) =

⎧⎪⎨⎪⎩
P (et+1 < 0|Ft) = 1

2
if X 0

t+1
bβt > 0

P (et+1 > 0|Ft) = 1
2
if X 0

t+1
bβt < 0

P (0 < 0|Ft) = 0 if X 0
t+1
bβt = 0

⎫⎪⎬⎪⎭
Therefore

E(sign(et+1X
0
t+1
bβt)|Ft) = 0

and we conclude that, under the null, the sequence sign(et+1X 0
t+1
bβt) is a martingale difference

sequence with respect to the filtration Ft.

8.6 Proof of Proposition 4 (based on Ibragimov and Brown (2005))

Proposition: Let us consider the following sequences
n
sign(yt+1X

0
t+1
bβt)o

t≥1
, {εt+1}t≥0 where

{εt+1}t≥0 denotes an i.i.d. sequence of symmetric Bernoulli random variables independent of

sign(yt+1X
0
t+1
bβt) and the information available until time t, Ft. Then, under the null and as-

sumption (32), the sequence ηt+1 = sign(yt+1X
0
t+1
bβt) + εt+1I(yt+1X

0
t+1
bβt = 0) forms an i.i.d.

sequence of Bernoulli random variables taking values in {1,−1} ,where I denotes an indicator
function.
Proof. First notice that ηt+1 takes only values in{1,−1} . Let us denote eP (A) = P (A|Ft),then

we have:

eP (ηt+1 = 1) = eP (ηt+1 = 1|I = 1) eP (I = 1) + eP (ηt+1 = 1|I = 0) eP (I = 0)
= eP (εt+1 = 1) eP (I = 1) + eP (sign(et+1X 0

t+1
bβt) > 0) eP (I = 0)

Now notice that eP (εt+1 = 1) = 0.5. Besides we have that:
eP (I = 1) = P (et+1X

0
t+1
bβt = 0|Ft) =

(
1 if X 0

t+1
bβt = 0

0 if X 0
t+1
bβt 6= 0

)

eP (I = 0) = P (et+1X
0
t+1
bβt 6= 0|Ft) =

(
0 if X 0

t+1
bβt = 0

1 if X 0
t+1
bβt 6= 0

)
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eP (sign = 1) = P (et+1X
0
t+1
bβt > 0|Ft) =

(
0 if X 0

t+1
bβt = 0

0.5 if X 0
t+1
bβt 6= 0

)
this implies that eP (ηt+1 = 1) =

(
0.5 if X 0

t+1
bβt = 0

0.5 if X 0
t+1
bβt 6= 0

)
= 0.5

therefore it is clear that the sequence ηt is a sequence of symmetric Bernoulli random variables. Let
us show now that they are indeed independent. First notice that this sequence forms a martingale
difference sequence:

E(ηt+1|Ft) = E(sign(et+1X
0
t+1
bβt)|Ft) +E(εtI(et+1X

0
t+1
bβt = 0)|Ft)

= 0 +E(I(et+1X
0
t+1
bβt = 0)|Ft)E(εt)

= 0

Now consider the following scalars

1 ≤ l1 ≤ l2 ≤ ... ≤ lk, k = 2, 3...

then we have
E
¡
ηl1ηl2 ...ηlk

¢
= E

³
ηl1ηl2...ηlk−1E(ηlk |Flk−1)

´
= 0

Notice that we could rewrite I(et+1X 0
t+1
bβt = ht+1) as follows

I(ηt+1 = ht+1) =
(1 + ηt+1ht+1)

2

where ht+1 ∈ {1,−1}Therefore we have that for all

1 ≤ j1 ≤ j2 ≤ ... ≤ jm,m = 2, 3...

and any hjk ∈ {1,−1} , k = 1, 2, ...,m

P (ηj1 = hj1 , ..., ηjm = hjm) = EI(ηj1 = hj1)I(ηj2 = hj2)...I(ηjm = hjm)

=
E(1 + ηj1hj1)(1 + ηj2hj2)...(1 + ηjmhjm)

2m

=
1

2m

= P (ηj1 = hj1)P (ηj2 = hj2)...P (ηjm = hjm)

given that any expectation involving products of ηlk terms is zero.
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