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Resumen
En este trabajo se derivan las funciones de densidad y probabilidad acumulada de los parámetros de
sesgo estocástico de tres conocidos estimadores de Regresión “Ridge” operacionales. El
comportamiento de estos parámetros afecta las propiedades del estimador de Regresión “Ridge”
resultante, por lo que un conocimiento de este tipo puede ser útil en la selección de la regla de
encogimiento. También se presentan algunos cálculos numéricos para ilustrar el comportamiento de
estas distribuciones. Estos resultados pueden a su vez ayudar a explicar el comportamiento de los
estimadores.

Abstract
In this article we derive the density and distribution functions of the stochastic shrinkage parameters
of three well-known operational Ridge Regression estimators by assuming normality. The
stochastic behavior of these parameters is likely to affect the properties of the resulting Ridge
Regression estimator, therefore such knowledge can useful in the selection of the shrinkage rule.
Some numerical calculations are carried out to illustrate the behavior of these distributions,
throwing light on the performance of the different Ridge Regression estimators.
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1 Introduction

Let us consider the Classical Linear Regression Model (CLRM)

y = Xβ + ε , (1.1)

where y is an n × 1 vector of observations of the dependent variable; X is
an n× p full rank matrix of non-stochastic observations of the explanatory
variables; β is a p×1 vector of unknown coefficients and ε is an n×1 vector
of unobserved random disturbances, such that

ε ∼ N(0, σ2I) . (1.2)

In this model the Ordinary Least Squares (OLS) estimator,

β̂ = (X ′X)−1X ′y , (1.3)

has well known optimal properties. Nevertheless, OLS can badly be affected
by collinearity, a common condition in non-experimental time series data.
With multicollinear data some coefficients may be statistically insignificant
and may have the wrong signs. Working in the field of Engineering, Hoerl
and Kennard (2000, 1970) found this to be a common occurrence, and led
them to propose an alternative estimator which, although biased, may have
a smaller Mean Square Error (MSE) than OLS.

Let Λ and Q be the matrices of eigenvalues and eigenvectors of X ′X,
then

Q′X ′XQ = Λ = diag(λ1, λ2, ..., λp) and Q′Q = QQ′ = I . (1.4)

The orthogonal version of the CLRM (1.1) is

y = XQQ′β + ε = Zα + ε , (1.5)

where
Z = XQ and α = Q′β . (1.6)

The Generalized Ridge Regression (GRR) estimator proposed by Hoerl
and Kennard (2000) is defined by

α̃ = (Λ + K)−1Z ′y = (Λ + K)−1Λα̂ , (1.7)

where
K = diag(k1, k2, ..., kp) , ki > 0 (1.8)
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and
α̂ = Λ−1Z ′y , (1.9)

is the Ordinary Least Squares (OLS) estimator of α. Thus, according to
(1.6) the GRR estimator of β is

β̃ = Qα̃ . (1.10)

Hoerl and Kennard (2000) have shown that the values of ki that minimize
the MSE of β̃ are given by

ki =
σ2

αi
2

, (1.11)

where αi is the ith element of α. To yield an operational estimator, Ho-
erl and Kennard (2000, 1970) propose replacing σ2 and αi by their OLS
estimates:

k̂i =
σ̂2

α̂2
i

. (1.12)

A simpler version of the estimator has also been discussed by Hoerl
and Kennard (2000). The so called Ordinary Ridge Regression (ORR)
estimator, which is obtained by setting K = kI:

β̃
k

= (X ′X + kI)−1X ′y . (1.13)

No explicit optimum value can be found for k. Yet, several stochastic
choices have been proposed for this shrinkage parameter. Hoerl, Kennard
and Baldwin (1975) propose taking the harmonic mean of the k̂i in (1.12),
yielding the following stochastic value of k:

k̂HKB =
pσ̂2

β̂
′
β̂

. (1.14)

From a Bayesian perspective, Lawless and Wang (1976) propose

k̂LW =
pσ̂2

β̂
′
X ′Xβ̂

. (1.15)

as the estimator of k. Another Bayesian interpretation of the ORR estima-
tor is provided by Frank and Friedman (1993), who also give an interesting
discussion and comparison of Ridge Regression (RR) with other regression
tools commonly used in chemometrics. For the new developments in RR
techniques the reader is referred to Aldrin (1997), Elston and Proe (1995),
Foucart (1999), Jang and Yoon (1997), Kibria (1996), Saleh and Kibria
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(1993) and recently Shi and Wang (1999) among others. RR is also re-
viewed in a recent book by Gruber (1998).

A notorious fact about RR is that the original, 1970, article by Hoerl
and Kennard has been republished in the Special 40th Anniversary Issue
of Technometrics, being regarded by Gunst (2000) as a classical study that
revolutionized the practice of regression analysis. But also, according to
Gunst (2000): “Although ridge regression is widely used in the application
of regression methods today, it remains as controversial as when it was first
introduced”. Indeed, Gunst (2000) points out that RR methods have been
criticized on two grounds: “Existence theorems do not apply to the usual
setting where ridge parameters must be estimated from the data” and “as-
sumptions needed for the ridge estimator to be optimal in a well-defined
theoretical sense are unrealistic in practice, yet simulations often inadver-
tently impose these very assumptions”. From the outset, in this article
we make no claim of universal validity of RR estimators, but remain con-
vinced that if collinearity is present, particularly if the signal to noise ratio
is not large, (it is not only the β coefficient that matters), RR is a useful
alternative to OLS. We moreover take the view that the properties of RR
estimators are strongly dependent on the stochastic shrinkage parameters
and an effort should be made in studying their properties. Take for instance
the case of k̂i, which according to (1.2), has no finite moments of any order,
yielding values that are, on average, too large. Consequently, the resulting
GRR estimator will shrink too much the estimates of α and β towards zero
introducing much more bias than necessary to produce RR estimators with
good MSE properties. Ultimately the selection of one among the many
alternative operational RR estimators requires the knowledge of the prop-
erties of the estimators. Thus, Hemmerle and Carey (1984) derive some
exact finite sample properties of GRR estimators, (see also Inoue (1999)),
and Kozumi and Othani (1994) have obtained general expressions for the
moments of the ORR estimator proposed by Lawless and Wang (1976).
A perhaps more interesting paper from the practitioner’s point of view is
that of Crivelli, Firinguetti, Montaño and Muñoz (1995), which, apart from
showing consistency, provides asymptotic confidence intervals based on the
ORR due to Lawless and Wang. Unfortunately no general conclusions can
be reached from these studies, but as argued earlier on the performance of
all operational Ridge Regression estimators will crucially depend upon the
distribution of the stochastic shrinkage parameters. The aim of this pa-
per is to determine the probability density and the probability distribution
function of the shrinkage parameters. In sections 2, 3 and 4 we set about
to derive the distribution and density of k̂i, k̂LW and k̂HKB respectively;
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in section 5 some numerical results are presented to compare the densities
of these stochastic shrinkage parameters; finally a concluding remarks has
been presented in section 6.

2 Distribution of the Hoerl and Kennard

Stochastic Shrinkage Parameter

We want to determine the distribution of k̂i, i = 1, 2, · · · , p, as
defined by (1.12). This result is presented in the following theorem

Theorem 2.1. Under the conditions stated in equations (1.1) and (1.2) the
density function of k̂i = σ̂2/α̂2

i is given by

f(k̂i) =
e−θi/2 (n− p)(n−p)/2

B(1/2, (n− p)/2)

(1/λi)
(n−p+1)/2(1/k̂i)

3/2

((n− p)/λi + 1/k̂i)(n−p+1)/2
×

∞∑
j=0

[
θi/2k̂i

((n− p)λi + 1/k̂i)

]j
Γ((n− p + 1)/2 + j) Γ(1/2)

Γ(j + 1)Γ((n− p + 1)/2)Γ(j + 1/2)
,

k̂i > 0, i = 1, 2, · · · , p; (2.1)

where

θi =
α2

i λi

σ2
. (2.2)

Proof. From the definition of k̂i and (1.2) we note that

k̂i =
λi

n− p

u

vi

, (2.3)

where
u = (n− p)σ̂2/σ2 ∼ χ2

(n−p) (2.4)

and

vi =

(
α̂i

σ/
√

λi

)2

∼ χ2
(1)(θi), (2.5)

a non-central Chi-square distribution with one degree of freedom and non-
central parameter θi . This last result follows since the normality of the
disturbances implies

α̂i ∼ N(αi, σ
2λ−1

i ), (2.6)
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and σ̂2 and α̂i are independent. Then

y =
vi

u/(n− p)
= λi

α̂2
i

σ̂2
∼ F(1,n−p)(θi , 0), (2.7)

that is y is a non-central F with 1 and n−p degrees of freedom and with
θi and 0 as first and second non-central parameters respectively. From
Johnson and Kotz (1970, page 191):

f(y) =
e−θi/2(n− p)(n−p)/2

B(1/2, (n− p)/2)

y−1/2

((n− p) + y)(n−p+1)/2
×

∞∑
j=0

[
θi y /2

((n− p) + y)

]j
Γ((n− p + 1)/2 + j)Γ(1/2)

Γ(j + 1)Γ((n− p + 1)/2)Γ(1/2 + j)
, y > 0,

where

Γ(a) =

∫ +∞

0

ta−1 e−t dt and B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
. (2.8)

But since k̂i = σ̂2/α̂2
i = λi/y, from a change of variables we find

f(k̂i) =
e−θi/2 (n− p)(n−p)/2

B(1/2, (n− p)/2)

(λi/k̂i)
−1/2λi/k̂

2
i

((n− p) + λi/k̂i)(n−p+1)/2
×

∞∑
j=0

[
(θi/2) λi(1/k̂i)

((n− p) + λi/k̂i)

]j
Γ((n− p + 1)/2 + j) Γ(1/2)

Γ(j + 1)Γ((n− p + 1)/2)Γ(j + 1/2)
,

which proofs the theorem.

Theorem 2.2. Under the conditions stated in equations (1.1) and (1.2) the
distribution function of k̂i = σ̂2/α̂2

i is given by

F (xi) = 1−
∞∑

j=0

(θi/2)je−θi/2

j! B(1/2 + j , (n− p)/2)
Bri

(j + 1/2 , (n− p)/2), (2.9)

where

Br(a, b) =

∫ r

0

ta−1(1− t)b−1dt (Incomplete Beta) (2.10)

and

ri =
λi

xi(n− p) + λi

. (2.11)
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Proof. According to (2.7)

F (xi) = IP (k̂i ≤ xi)

= IP (λi/y ≤ xi)

= 1− IP (y ≤ λi/xi), (2.12)

where y ∼ F(1,n−p)(θi , 0) = (n − p)G(1,n−p)(θi , 0) and G(1,n−p)(θi , 0) =
χ2

(1)(θi)/χ
2
(n−p) (see Johnson and Kotz (1970), page 191). Hence

IP (y < λi/xi) = IP ((n− p)G < λi/xi)

= IP (G < λi/xi(n− p))

=

∫ λi/xi(n−p)

0

{ ∞∑
j=0

(
(θi/2)je−θi/2

j!

)
×

gj−1/2

B(1/2 + j, (n− p)/2)(1 + g)(n−p+1)/2+j

}
dg

=
∞∑

j=0

(
(θi/2)je−θi/2

j!B(1/2 + j, (n− p)/2)
×

∫ λi/xi(n−p)

0

gj−1/2

(1 + g)(n−p+1)/2+j
dg

)
. (2.13)

To evaluate the integral we make the following change of variables:

z =
g

1 + g
, hence g =

z

1− z
, dg =

dz

(1− z)2
and

∫ λi/xi(n−p)

0

gj−1/2

(1 + g)(n−p+1)/2+j
dg

=

∫ ri

0

(z/(1− z))j+1/2

(1 + z/(1− z))(n−p+1)/2+j

1

(1− z)2
dz

=

∫ ri

0

z(j+1/2)−1 (1− z)(n−p)/2−1 dz

= Bri
(j + 1/2, (n− p)/2),

(2.14)

replacing this in (2.13) and the result in (2.12) we obtain (2.9)
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3 Distribution of the Hoerl, Kennard and

Baldwin Stochastic Shrinkage Parameter

We now consider the density and distribution function of k̂HKB, which
according to (1.14) may be written as

k̂HKB =
p

n− p

u

w
, (3.1)

where u is defined in (2.4) and

w =
β̂
′
β̂

σ2
=

y′My

σ2
, (3.2)

and also
M = X(X ′X)−2X ′ . (3.3)

The density function is presented in the following theorem.

Theorem 3.1. Under the conditions stated in equations (1.1) and (1.2),

the density function of k̂HKB = pσ̂2/β̂
′
β̂ is given by

f(k̂HKB) =
∞∑

j=0

Γ(j + n/2)aj[(n− p)/p](n−p)/2k̂
(n−p)/2−1
HKB

Γ((n− p)/2)Γ(p/2 + j)∆p/2+j[(n− p)k̂HKB/p + 1/∆]j+n/2
,

k̂HKB > 0, (3.4)

where ∆ is a number such that

| ci |=| 1−∆/hi |< 1 , i = 1, 2, ..., p, (3.5)

and hi is the ith eigenvalue of M = X(X ′X)−2X ′.

Proof. It has been shown,(see Firinguetti and Rubio (2000)), that under

the stated conditions, the density function of w = β̂
′
β̂/σ2 is given by

f(w) =
∞∑

j=0

aj

Γ(p/2 + j)(2∆)p/2+j
wp/2+j−1e−w/2∆ , w > 0, (3.6)

with

a0 = e−d/2

p∏
i=1

(∆/hi)
1/2 and aj = (2j)−1

j−1∑
i=0

bj−iai , j > 0, (3.7)
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bj = j∆

p∑
i=1

(δ2
i /hi)c

j−1
i +

p∑
i=1

cj
i , j > 0, (3.8)

d =

p∑
i=1

δ2
i , (3.9)

Also, according to (2.4) u = (n− p)σ̂2/σ2 ∼ χ2
(n−p), and since u and w are

independent, their joint distribution is:

f(u,w) =
∞∑

j=0

aj u((n−p)/2−1) w(p/2+j−1) e−(u/2+w/2∆)

Γ((n− p)/2)Γ(p/2 + j)(2∆)p/2+j2(n−p)/2
, u, w > 0. (3.10)

But from (3.1), k̂HKB = (p/(n − p))u/w . Hence u = ((n − p)/p) k̂HKB x,
x = w , and the jacobian is |J | = ((n− p)/p)x. Therefore

f(x, k̂HKB) =
∞∑

j=0

aj((n− p)/p)(n−p)/2k̂
(n−p)/2−1
HKB xj+(n/2)−1

Γ((n− p)/2)Γ(p/2 + j)(2∆)p/2+j2(n−p)/2
×

e−x((n−p)k̂HKB/2p+1/2∆) , x, k̂HKB > 0. (3.11)

Now integrating out x we obtain

f(k̂HKB) =

∫ +∞

0

f(x, k̂HKB)dx

=
∞∑

j=0

aj(n− p)/p)(n−p)/2k̂
((n−p)/2)−1
HKB Γ(p/2 + j)

Γ((n− p)/2)Γ(p/2 + j) ∆p/2+j[(n− p)k̂HKB/p + 1/∆]j+n/2

×
∫ +∞

0

[x(n− p)/2p + 1/2∆]j+n/2

Γ(j + n/2)
×

xj+(n/2)−1e−[(n−p)k̂HKB/2p+1/2∆]xdx .

(3.12)

Noting that the integral is a Gamma distribution with parameters (j+n/2)
and [(n− p) k̂HKB/p + 1/∆]/2, the theorem is proven.

We now turn to the distribution function of k̂HKB
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Theorem 3.2. Under the conditions stated in equations (1.1) and (1.2) the

distribution function of k̂HKB = pσ̂2/β̂
′
β̂ is given by

F (x) =
∞∑

j=0

ajΓ(j + n/2)Br((n− p)/2, j + p/2)

Γ((n− p)/2)Γ(p/2 + j)
x > 0 , (3.13)

where

∆∗ = ∆(j+n/2) ((p/(n− p))∆)(n−p)/2 , (3.14)

r = [(n− p)/p]∆x, (3.15)

and Br(a, b) is the incomplete Beta function defined in (2.10).

Proof.

F (x) =

∫ x

0

f(k̂HKB) dk̂HKB

=
∞∑

j=0

aj((n− p)/p)(n−p)/2 Γ(j + n/2)

Γ((n− p)/2)Γ(p/2 + j)∆p/2+j
×

∫ x

0

k̂
(n−p)/2−1
HKB [(n− p)k̂HKB/p + 1/∆]−(j+n/2)dk̂HKB. (3.16)

Now let

I =

∫ x

0

k̂
(n−p)/2−1
HKB [(n− p)k̂HKB/p + 1/∆]−(j+n/2)dk̂HKB

= (1/∆)−(j+n/2)

∫ x

0

k̂
(n−p)/2−1
HKB [(n− p)∆k̂HKB/p + 1]−(j+n/2)dk̂HKB.

Taking u = (n− k)∆k̂HKB/p , we have du = [(n− p)∆/p]dk̂HKB and

I = ∆(j+n/2)

∫ ∆x(n−p)/p

0

(
pu

(n− p)∆

)(n−p)/2−1

(u + 1)−(j+n/2) p

(n− p)∆
du

= ∆∗

∫ ∆x(n−p)/p

0

u(n−p)/2(u + 1)−(j+n/2)du,

where ∆∗ is given in (3.14). Let z = u/(1 + u), 0 < z < 1 , then u =
z/(1− z), du = dz/(1− z)2. Letting r = [(n− p)/p]∆x , we have:
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I = ∆∗

∫ r

0

(
z

(1− z)

)(n−p)/2−1 (
z

1− z
+ 1

)−(j+n/2)
dz

(1− z)2

= ∆∗

∫ r

0

z(n−p)/2−1(1− z)j+n/2−(n−p)/2−1dz

= ∆∗

∫ r

0

z(n−p)/2−1(1− z)j+p/2−1dz

= ∆∗Br((n− p)/2, j + p/2) , (3.17)

where Br((n − p)/2, j + p/2) is the incomplete beta function defined in
(2.10). Then replacing (3.17) in (3.16) we obtain the desired result.

4 Distribution of the Lawless and Wang

Stochastic Shrinkage Parameter

To obtain the density and the distribution function we recall from (1.15)
that

k̂LW =
pσ̂2

β̂
′
X ′Xβ̂

=
p

n− p

u

v
, (4.1)

where, according to (2.4), u is a central Chi-square distribution with (n-p)
degrees of freedom and

v =
β̂
′
X ′Xβ̂

σ2
∼ χ2

(p)(θ), (4.2)

that is v is distributed as a non-central Chi-square distribution with p

degrees of freedom and non-central parameter θ = β̂
′
X ′Xβ̂/σ2.

We now state the following result:

Theorem 4.1. Under the conditions stated in equations (1.1) and (1.2) the

density function of k̂LW = pσ̂2/β̂
′
X ′Xβ̂ is given by

f(k̂LW ) =
e−θ/2pp/2(n− p)(n−p)/2

B(p/2, (n− p)/2)

k̂
(n−p)/2−1
LW

(k̂LW (n− p) + p)n/2
×

∞∑
j=0

(
pθ/2

(k̂LW (n− p) + p)

)j
Γ(n/2 + j)Γ(p/2)

Γ(j + 1)Γ(n/2)Γ(p/2 + j)
,(4.3)
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θ = β̂
′
X ′Xβ̂/σ2. (4.4)

Proof. Since u and v are independent it follows that

k̂LW ∼ F(n−p,p)(0, θ). (4.5)

That is, k̂LW is distributed as a non-central F with (n-p) and p degrees of
freedom and non-central parameters 0 and θ (see Johnson and Kotz (1970,
page 191)), and the theorem is proven.

Finally we derive the distribution function of k̂LW .

Theorem 4.2. Under the conditions stated in equations (1.1) and (1.2) the

distribution function of k̂LW = pσ̂2/β̂
′
X ′Xβ̂ is given by

F (x) = 1−
∞∑

j=0

(θ/2)j e−θ/2

Γ(j + 1)

Γ(n/2 + j)

Γ(p/2 + j)Γ(p/2 + j)Γ((n− p)/2)
×

Bγ(p/2 + j ; (n− p)/2) , (4.6)

where Bγ(p/2 + j ; (n − p)/2) is the incomplete beta function defined in
(2.10) with γ = p/[(n− p)x + p].

Proof. Since k̂LW ∼ Fn−p,p(0, θ) it follows that (k̂LW )−1 ∼ Fp,n−p(θ, 0),
(see Johnson and Kotz, 1970). Hence:

F (x) = IP (k̂LW ) ≤ x)

= IP ((k̂LW )−1 ≥ 1/x)

= 1− IP ((k̂LW )−1 < 1/x). (4.7)

But Fp,n−p(θ, 0) = ((n−p)/p)Gp,n−p(θ, 0) and G(p,n−p)(θ, 0) = χ2
(p)(θ)/χ

2
(n−p)

(see Johnson and Kotz (1970), page 191). Hence:

IP (1/k̂LW < 1/x)= IP (G < p/(n− p)x)

=

∫ p/(n−p)x

0

e−θ/2

B(p/2, (n− p)/2)

gp/2−1

(1 + g)n/2
×

∞∑
j=0

[
gθ/2

1 + g

]j
Γ(n/2 + j) Γ(p/2)

Γ(n/2) Γ(j + 1) Γ(p/2 + j)
dg

=
e−θ/2

B(p/2, (n− p)/2)

∞∑
j=0

(θ/2)j Γ(n/2 + j) Γ(p/2)

Γ(n/2)Γ(p/2 + j)Γ(j + 1)

×
∫ p/(n−p)x

0

gp/2+j−1

(1 + g)n/2+j
dg. (4.8)

11



Now let y = g/(1 + g) then dg = dy/(1− y)2. Consequently:

∫ p/(n−p)x

0

gp/2+j−1

(1 + g)n/2+j
dg =

∫ p/[(n−p)x+p]

0

(y/(1− y))p/2+j−1

(1 + y/(1− y))n/2+j(1− y)2
dy

=

∫ p/[(n−p)x+p]

0

yp/2+j−1

(1− y)−(n−p)/2+1
dy.

But from (2.10)

∫ p/(n−p)x

0

gp/2+j−1

(1 + g)n/2+j
dg = Bγ(p/2 + j, (n− p)/2), (4.9)

where γ = p/[(n− p)x + p]. Finally, from (4.7), (4.8) and (4.9) we obtain
(4.6).

5 Numerical Results

In this section we carry out numerical calculations to provide some
empirical evidence on the behavior of the distribution of the stochastic
shrinkage parameters, under different model set ups. The different model
specifications can be conveniently summarized by the signal to noise ratio:

θ =
β′X ′Xβ

σ2
, (5.1)

which is sensitive to the values of X, β and σ2. In fact, for a given length

of the coefficient vector, β, one would expect θ to vary with the orienta-
tion of β to the eigenvectors of X ′X. Moreover, since it is desirable for
the shrinkage parameters to be larger the higher the degree of collinearity
and/or the smaller the signal to noise ratio, it would be useful to know
whether these parameters vary with the degree of collinearity and size of
the signal to noise ratio. Consequently, we produced different model setups
by varying the following factors:

i) We specified two X matrices, each with 5 explanatory variables, in-
cluding a constant term, and 25 observations. To achieve different
degrees of collinearity, the explanatory variables were generated using
the following device (see Firinguetti and Rubio (2000)):

xtj = (1− a2
j)

1/2 ztj + ajzt,p j = 1, · · · , p− 1 ; t = 1, · · · , n,
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where

ztj ∼ U(0, 1) j = 1, · · · · · · , p ; t = 1, · · · · · · , n.

We then specified the following sets of aj values:

A1 = (0.20, 0.30, 0.40, 0.50) ;

A2 = (0.99, 0.95, 0.65, 0.60) .

ii) The vector of coefficients, β, was specified by:

β =

∑p
i=1 q

i√
p

,

where Q = (q
1
, q

2
, · · · · · · , q

p
) is the matrix of eigenvectors of X ′X,

which are ordered such that the corresponding eigenvalues are: λ1 >
λ2 > · · · > λp. That is, β is a simple average of all eigenvectors of
X ′X, such that β′β = 1 . This choice of β is prompted by the fact that
the properties of the RR estimators are affected by the orientation of
the parameter vector to the eigenvectors of X ′X, and in practice is
more likely that β depends on all the eigenvectors rather than on any
one in particular.

iii) Finally, the following values of σ2 were considered 2.5, 5, 10, 20 .

To obtain the density of k̂HKB it was necessary to specify ∆ = 1.99hp,
where hp is the smallest eigenvalue of X ′(X ′X)−2X. This value was chosen
to accelerate convergence.

The results for the density of k̂i are presented in Figure I. From these
results the density function is noted to be highly dependent on the size of
the corresponding eigenvalue. In fact, the larger the corresponding eigen-
value is, the heavier the tail of the distribution. That is to say, there is a
greater chance of getting a larger value of k̂i, the larger λi is, which is an
undesirable result.

The results for the densities of k̂HKB and k̂LW are presented in Figure
II. From these results the behavior of the density of k̂HKBcan be charac-
terized by the following: It is rather insensitive to the values of β, σ2 and
θ. The only factor that appears to significantly affect the the density is the
degree of collinearity. In fact k̂HKB tend to be smaller for high collinearity
and vice versa, which is contrary to expectations, since one would hope to
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shrink more when collinearity is high, particularly if the signal to noise ratio
is not large.

The results for the density of k̂LW merit the following comments: firstly,
there is a slight increase in variability with increasing σ2 and a higher degree
of collinearity. More importantly the density appears to be significantly
affected by the values of θ. In fact the higher θ is, the more concentrated
is the density, and the more likely this rule will produce less shrinkage; the
opposite is also true. Thus, for reasonable values of θ ( not too large, not too
small ) the density indicates that k̂LW can produce, with high probability,
values of which are large enough to attain significant reductions in the MSE
of the estimator of β.

6 Concluding Remarks

In this paper we set about to derive the density and distribution func-
tion of the shrinkage parameters proposed by Hoerl and Kennard (2000),
Hoerl, Kennard and Baldwin (1975) and by Lawless and Wang (1976).

From these limited numerical results we found evidence that k̂LW has
some advantages over k̂i and k̂HKB: firstly, there is a larger probability
that k̂LW will produce smaller values when less collinearity is present and
the signal to noise ratio is larger, which is commendable since OLS is most
likely a superior estimator when θ is large. Secondly, the distribution of k̂LW

will tend to produce larger shrinkage values than the distribution of k̂HKB

whenever θ is small. In fact the distribution of k̂HKB is rather insensitive
to the value of θ. Thirdly, the distribution of k̂LW is more concentrated
around the mean and mode than that of k̂HKB. Thus, k̂LW appears to be
more reliable than the other rules of shrinking, as it will tend to shrink
more when there is a greater chance of reducing the MSE of the estimator
of β.
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