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A central focus of monetary policy is the underlying rate of inflation 
that might be expected to prevail over a horizon of one or two years. 
Because inflation is estimated from noisy data, the estimation of 
this underlying rate of inflation, which we refer to as trend inflation, 
requires statistical methods to extract the inflation “signal” from the 
noise. The task of measuring trend inflation is further complicated 
by the large seasonal fluctuations in many prices, so that attempts 
to estimate core or trend inflation at a frequency higher than annual 
must additionally either use seasonally adjusted data or undertake 
seasonal adjustment as part of the effort to measure trend inflation. 

The challenge of estimating trend inflation is particularly acute for 
the euro-area Harmonized Index of Consumer Prices (HICP) inflation, 
official values of which are only reported seasonally unadjusted.  
Figure 1 plots quarterly values of euro-area HICP inflation (in 
percentage points at an annual rate) from 2001 to 2018. The quarter-
to-quarter variation in inflation is large: the standard deviation of 
quarterly changes in inflation is 2.5 percentage points. HICP inflation 
is also highly seasonal: over the entire sample period, inflation 
averaged 1.6 percent, but averaged 4.8 and 2.2 percent in the second 
and fourth quarters respectively, and 0.1 and 0.3 over the first and 
third quarters. While some long-run, low-frequency variation in HICP 
inflation is evident, that variation —the “signal”— is small compared 
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to the seasonal variation and what appears to be transient, one-off 
movements in the rate of inflation. The question, “What is the value 
of trend inflation today?” is an important one for monetary policy, but 
the answer to it arguably requires more than just staring at figure 1. 

One approach to estimating trend inflation is to exploit variation 
across the components of inflation (across sectors) to reduce noise. 
The most prominent such estimates are “core” measures (e.g., Gordon, 
1975 Eckstein, 1981) that exclude inflation from the volatile food and 
energy sectors. Alternative core measures include trimmed mean or 
median of sectorial inflation rates; for example, see the early work by 
Bryan and Cecchetti (1994) or the paper by Ball and Mazumder in this 
volume. Ehrmann and others (2018) provide an up-to-date summary 
of work at the European Central Bank (ECB) involving underlying 
and sectorial inflation. 

The HICP has 12 second-tier components, which we modify to 
create 13 components by pooling the energy components of housing and 
transportation into a separate “energy” component. These 13 inflation 
components are plotted in figure 2. The heterogeneity of the time-series 
properties of these components is striking. Some sectors exhibit large 
seasonal variation (for example, clothing), others exhibit large non-
seasonal quarterly variation (energy) or outliers (healthcare), and 
relative price movements impart different lower-frequency trends in 
each sector. Almost as striking is the apparent variation over time in 
those time-series properties, for example, the seasonal components 
of furnishing, clothing, and transportation have increased markedly 
over this period. The heterogeneity of these components suggests that 
there could be considerable gains from using a multivariate approach 
that allows the components to have distinct time-series properties 
and uses both time-series smoothing and cross-sectional weighting 
to estimate aggregate HICP trend inflation. 

This paper makes three contributions towards measuring trend 
HICP inflation. First, we estimate an unobserved components (UC) 
model with stochastic volatility (UCSV), which extends the UCSV 
model in Stock and Watson (2007) to include a seasonal component. 
This univariate model is an extension of the textbook unobserved 
components model1 to incorporate stochastic volatility to capture 

1. Chapter 1 of Nerlove and others (1979) offers a historical survey of UC models 
in economics. The textbook by Harvey (1989) is a classic reference on analyzing UC 
models by using Kalman filter methods.
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the time-varying importance of the trend, seasonal, and irregular 
components.2

Second, we extend the multivariate unobserved components/
stochastic volatility model of Stock and Watson (2016) to allow each 
component to have separate seasonals, also with stochastic volatility. 
We apply this extended model to the 13 HICP components in figure 2  
to obtain multivariate estimates of the trend. We find that doing so 
produces trend estimates that are more precise than those based on the 
univariate model of aggregate HICP. We also find that this measure of 
core inflation moves cyclically with real economic activity. 

Third, as a byproduct, we also obtain quarterly estimates of 
seasonally adjusted HICP. Another approach to handling seasonals is 
simply to use the four-quarter average of quarterly inflation; however, 
that measure tends to respond sluggishly. Compared with four-quarter 
rolling inflation, the new seasonally adjusted HICP series has the 
potential to provide more timely insights into movements of inflation. 

Section 1 presents the univariate and multivariate model that we 
use for aggregate and sectorial inflation. Section 2 uses these models 
to estimate trend and seasonal factors for euro-area HICP inflation. 
Section 3 examines the relation between seasonally adjusted inflation 
and real activity.

Figure 1. HICP Inflation for the Euro Area
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2. Several papers have used related univariate UC models to study the evolution 
of prices and inflation. Examples include Ball and Cecchetti (1990); Ceccheti and others 
(2007); Cogley and Sargent (2015); Cogley and others (2015); and Kang and others (2009).



Figure 2. 13 HICP Sectors
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Notes: These are the 12 HICP tier-two sectors, with energy excluded from the housing and transportation sectors, 
and shown separately as the 13th sector.
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1. Seasonal UCSV Models

Unobserved components models have a long history in economic 
time series and have been used for, among other things, data 
description, forecasting, structural analysis, and seasonal adjustment. 
Here we present versions of the UC model that can be used to 
seasonally adjust aggregate inflation and to estimate its trend value. 
One version of the model is univariate and uses only aggregate 
inflation; the other is multivariate and models the joint dynamics of 
sectoral inflation. Both models incorporate stochastic volatility and 
are known by their acronym UCSV. 

 
1.1 Univariate Seasonal UCSV Model 

Inflation is observed quarterly and is denoted by pt. The UC model 
decomposes pt into three unobserved components: trend (tt), seasonal 
(st), and irregular (et). 

pt = tt + st + et.	 (1)

The components are separately identified because they follow 
distinct stochastic processes. Let ht,t, hs,t, and he,t denote three 
martingale-difference processes; the trend component follows a 
martingale: 

(1 − L)tt = ht,t	 (2)

so it is dominated by low-frequency, or “trend”, variation; st follows 
the quarterly seasonal process:

(1 + L + L2 + L3) st = hs,t	 (3)

so is dominated by variation at the seasonal frequencies with periods 
2 and 4 quarters; and the irregular component is unforecastable: 

et = he,t	 (4)

The unobserved components model (1)–(4) is a version of Harvey’s 
(1989) “local-level” model, augmented by the seasonal component 
st. Versions of the model (often with more flexible models for the 
components) are the backbone of model-based seasonal adjustment 



322 James H. Stock and Mark W. Watson 

methods—e.g., Hillmer and Tiao (1982), Hausman and Watson (1985), 
and Maravall (1995). 

In the non-seasonal version of the local-level model, the estimate 
of tt based on observations of p through date t is the forecast of the 
future rate of inflation: 

E(pt+h|{pi}i
t
= 1) = E(tt+h + et+h| {pi}i

t
= 1) = E(tt|{pi}i

t
= 1) = tt|t,	 (5)

where the final equality follows from the martingale assumption for  
tt and the martingale-difference assumption for et. 

The seasonal model (3) is specified so that this definition of the 
trend as the long-run forecast continues to hold for annual averages. 
Specifically, Harvey (1989), in subsection 6.2, defines a seasonal 
process to be any time-series process with predicted values that (i) 
repeat seasonally and (ii) sum to zero over a one-year period. The 
seasonal process (3) satisfies these two conditions, specifically (i)  
sT '+ j|T = sT '+ j+4|T and (ii) Sj

4
= 1 sT '+ j|T = 0, where sr |T is the predicted value 

of sr made by using data through time T, for any T '  ≥ T. The seasonal 
model (3) yields a similar interpretation of tt|t, but now for annual 
averages of future values of p: letting x i:j denote the sample average 
of an arbitrary variable x between time i and j,

	 (6)

for j > 0, where the penultimate equality follows from the random walk 
model for t, Sj

4
= 1 sT '+ j|T = 0, and the unpredictability of future e’s. Thus, 

as in the model without seasonality,tt|t measures the (non-seasonal) 
forecastable level of inflation. 

Examination of the inflation series in figure 1 and figure 2 
highlights the need for two modifications of the basic UCSV model. 
The first modification allows for time variation in the variances of 
the unobserved components, and the second allows for outliers. We 
discuss these in turn. 

Time-varying variances are added to the model by allowing the 
shocks in (2), (3), and (4) to follow stochastic volatility processes, say  
ht = stet , where et ~ i.i.d N(0,1) and st

2 evolves through time as a 
logarithmic random walk: (1− L)ln(st

2 ) = nt with nt ~ i.i.d N(0, sn
2  ). 

Kim and others (1998) show how this stochastic volatility model 
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can be estimated using Gibbs sampling methods by using a mixture 
of normal densities to approximate the log-ct

2  density together 
with standard Kalman smoothing recursions; Omori and others 
(2007) provide improved approximations. Stock and Watson (2007) 
incorporate these methods together with ideas in Carter and Kohn 
(1994), and Kim and Nelson (1999) to estimate a non-seasonal version 
of the UCSV model. 

Outliers are incorporated in the model through additional random 
multiplicative factors linking the ht innovations to the i.i.d. N(0,1) 
shocks et. As in Stock and Watson (2016), we use a formulation with 
ht = otstet where ot is an i.i.d. outlier term with ot = 1 with probability 
1−p and ot ~ U(2,10) with probability p. When ot = 1, there is no outlier, 
and when ot ~ U(2,10) there is an outlier with a standard deviation that 
is between 2 and 10 times larger than in the no-outlier case. In the 
model for euro-area inflation, we allow outliers only in the irregular 
component et, as this seems consistent with outliers evident in figure 2; 
in other applications, outliers might also be appropriate for tt and/or st. 

In summary, the complete UCSV model is (1)–(4) and 

	 (7)

	 (8)

where (et,t, es,t, ee,t , nt,t, ns,t, nx,t) are mutually independent i.i.d. normal 
random variables with mean zero, the e terms have unit variance, 
and each of the n terms has a component-specific variance, say sn(t), 
sn(s), and sn(e). 

 
1.2 Multivariate Seasonal UCSV Model 

The multivariate model is a generalization of the univariate that 
includes common and sector-specific versions of the three unobserved 
components. For each of the i = 1,…, n sectors, the rate of price inflation 
in sector i, pi,t follows: 

	 (9)

where (tc,t,  sc,t,  ec,t)  are common to all sectors, (ti,t,  si,t,  ei,t)  are sector 
specific, and (ai,t,  ai,s,  ai,e)  are time-invariant coefficients (factor 
loadings). The t, s, e components follow processes as in the univariate 



324 James H. Stock and Mark W. Watson 

model, with component/sector-specific parameters. The components are 
mutually independent, so that dependence across sectors comes from 
the common components tc,  sc,and ec. Outliers are allowed in each of 
the sector-specific ei,t components and in the common ec,t component. 

The multivariate sectorial model is designed so that it (approximately) 
aggregates to univariate UCSV model. Because of its symmetric 
structure, aggregation in the multivariate model is straightforward: 
letting wi,t  denote the share weight for sector i at time t 

	 (10)

where 

	 (11)

and similarly for the other components. When the share weights are 
time-invariant, tt

a evolves as a martingale, st
a follows the seasonal 

process in (3), and et
a is a martingale difference. And, as in the 

univariate model, filtered values of (tt
a, tc,t, ti,t) constructed from the 

multivariate model summarize the forecastable levels in both sectorial 
and aggregate inflation:  

	 (12)

and 

.	 (13)

1.3 Estimation and Inference 

We estimate the univariate and multivariate UCSV models 
by using Bayes’ methods that are generalizations of the methods 
outlined in online appendix to Stock and Watson (2016). We provide 
an overview here. 

The univariate UCSV model is characterized by four sets of 
parameters: (i) the stochastic volatility innovation standard deviations, 
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sn(t), sn(s), and sn(e); (2) the outlier probability parameter p; (3) the initial 
values for the standard deviations st,0, ss,0, and se,0; and (4) the initial 
values of the components t0 and (s0, s–1, s–2 , s–3). We used independent 
priors for the parameters: 

•	sn ~ U(0,0.10). (A value of sn(t) = 0.10 implies that the standard 
deviation of ln(st+t+40 /st,t) is approximately 0.3, that is a standard 
deviation of 30 percent over 40 quarters).

•	p ~ Beta(a,b) with a = 2.5 and b = 37.5. (This implies that an outlier 
is expected to occur every four years). 

•	ln(st,0), ln(ss,0), ln(se,0), and t0 follow independent diffuse 
Gaussian priors.

•	(s0, s–1, s–2 , s–3) follow a diffuse singular Gaussian distribution, 
where the singularity enforces s0 + s–1 + s–2  + s–3 =0. 

The multivariate model requires two normalizations. First, the 
factor structure requires a normalization to separately identify the 
scales of the factor loadings (at, as, ae) and the common factors (tc, sc, 
and ec). We normalize the standard deviations of the common factors 
to be unity for t = 0. The second normalization is needed because the 
initial values of the common and idiosyncratic factors (e.g., tc,0 and 
ti,0) are not separately identified. To identify the model, we normalize 
the common factors to be zero for t = 0; that is tc,0 = 0 and (sc,0, sc,–1, 
sc,–2, sc,–3) = 0. 

The multivariate model also requires a prior distribution for the 
factor loadings. Let at denote the n×1 vector of factor loadings for tc,t; 
we use the prior at ~ N(0,102ii' + 0.42In), where i is an n×1 vectors of 
ones. This prior is essentially uninformative about the average value 
of ai,t (the first term in the variance), but shrinks the factor loadings 
toward a common value (the second term in the factor variance). 
Independent priors of the same form were used for as and ae. 

The empirical results in the next section are based on 60,000 
Markov chain Monte Carlo (MCMC) draws from the posterior 
(discarding the first 10,000 draws) by using the algorithm outlined 
in Stock and Watson (2016), modified to incorporate the seasonal 
factor. Error bands are from 68-percent equal-tail credible sets. The 
95-percent error bands, which are unreported, are approximately twice 
as wide as the reported 68-percent bands. 
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2. The Data and Estimation Results 

2.1 Data 

There are twelve tier-two components for the euro-area HICP. 
These consumer spending components are organized by purpose 
(transportation, housing, recreation, etc.) rather than by type of 
product (motor vehicles, gasoline, recreational goods, etc.), which is 
the organizing principle used in the U.S. PCE and CPI data. Because 
the euro-area sectors are organized by purpose, they contain a mix of 
both goods and services. For example, the transportation component 
contains both motor vehicles (a good) and airline transport (a service). 
Energy is not a separate sector in the HICP tier-two categorization. 
Because energy prices historically behave differently from other prices, 
including large outliers and different seasonal patterns, we extracted 
the major energy components from housing (electricity, gas, liquid 
fuels, solid fuels, heat energy) and transportation (fuels and lubricants 
for personal transportation equipment) to form a separate energy 
component. Thus the 13 components we analyze are energy, housing 
excluding energy, transportation excluding fuels and lubricants for 
personal transportation, and the ten remaining unaffected components 
of the HICP. These are the thirteen sectors shown in figure 2. 

The data are available monthly. We temporally aggregated the 
monthly price indices to quarterly averages and computed sectoral 
inflation rates as pi,t = 400×ln(pi,t / pi,t–1), where pi,t is the quarterly 
price index for sector i in quarter t. Data are available for all sectors 
as from 2001:Q1, and the first quarterly inflation value is for 2001:Q2. 
Our sample ends in 2018:Q1. 

Spending shares for each sector are available annually. We 
interpolated the annual average shares to construct quarterly shares 
by using a random walk interpolator.3 Table 1 lists the 13 sectors, 
shows the average share weights over the entire sample period and 
over the first and second subsamples. Shares vary little over the sample 
period; the largest sector is food (16%) and smallest is education (1%); 
the energy share is 10 percent.

3. That is, we modeled the unobserved quarterly shares as a random walk, the 
observed annual shares as the annual average of the quarterly shares, and estimated 
the quarterly shares by using the Kalman smoother. 
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Table 1. The 12 Tier-two Sectors of the Euro-Area HICP 
Plus the Energy Sector

Average expenditures shares

2001-2018 2001-2009 2010-2018
Food 0.16 0.16 0.15

Alcohol and tobacco 0.04 0.04 0.04

Clothing 0.07 0.07 0.06

Housing (excl. energy) 0.10 0.10 0.10

Furnishing 0.07 0.08 0.07

Healthcare 0.04 0.04 0.04

Transportation (excl. energy) 0.11 0.11 0.11

Communications 0.03 0.03 0.03

Recreation 0.10 0.10 0.09

Education 0.01 0.01 0.01

Restaurants and accommodations 0.09 0.09 0.09

Miscellaneous 0.08 0.08 0.09

Energy 0.10 0.09 0.10
Source: Authors’ calculations.
Notes: Energy components of housing (electricity, gas, liquid fuels, solid fuels, heat energy) and transportation 
(fuels and lubricants for personal transportation equipment) were removed from those components and 
collected into the separate “Energy” category, given in the final row.

2.2 Results

Univariate HICP. The univariate model produces estimates 
of the volatilities st, t,  ss,t,  se, t and the components t t,  st and e t.  
Table 2 shows the estimated values (posterior medians) and 68-percent 
credible sets for these variables at the beginning, middle, and end of 
the sample. 

The estimated standard deviations of the innovations in t , s, 
and e  are relatively constant over the sample period. The level of 
trend inflation is estimated to have fallen from 2.5 percent in 2001 
to 1.5 percent in 2018. The estimated seasonal component shows 
that aggregate HICP inflation tends to be low in the first and third 
quarters and high in the second; the seasonal amplitude increased 
over the sample period. 



328 James H. Stock and Mark W. Watson 

Table 2. Parameter Estimates for the Univariate UCSV 
Model for Aggregate Inflation
Posterior medians and 68-percent equal-tail posterior credible 
intervals

(a) Estimated volatilities and trends from the univariate model

2001:Q2 2009:Q4 2018:Q1

Standard deviations of shocks to components
st 0.44 (0.25, 0.70) 0.55 (0.34, 0.85) 0.52 (0.32, 0.81)

ss 0.29 (0.18, 0.45) 0.26 (0.17, 0.40) 0.26 (0.15, 0.43)

se 0.61 (0.32, 0.90) 0.67 (0.36, 0.99) 0.65 (0.35, 0.98)

Estimates of trend component
tt 2.54 (2.01, 3.12) 1.39 (0.96, 1.84) 1.45 (0.94, 2.03)

(b) Estimates of seasonal factors

Q1 Q2 Q3 Q4
2002 -0.06 (-0.67, 0.48) 2.16 (1.74, 2.62) -1.76 (-2.12, -1.39) -0.14 (-0.50, 0.22)

2009 -1.78 (-2.20, -1.34) 3.24 (2.85, 3.63) -2.23 (-2.59, -1.86) 0.81 (0.43, 1.19)

2017 -2.42 (-2.91, -1.97) 3.45 (2.95, 3.95) -2.22 (-2.64, -1.78) 1.19 (0.77, 1.64)

Source: Authors’ calculations.

Figure 3 shows estimated values of t t and seasonally adjusted 
inflation, p t – st. The upper panels show the posterior estimates based 
on the full sample (the smoothed estimates) and the lower panel 
shows estimates based on data through date t (the filtered estimates).4 
As desired, the estimates of seasonally adjusted inflation evidently 
eliminate the largest seasonal swings. The 68-percent error bands for 
seasonally adjusted inflation are wide (1.0 percentage points at the 
end of the sample). The time path of trend inflation is also uncertain, 
but, as shown below, the estimates closely track real activity in the 
euro area. 

4. For computational simplicity, the filtered estimates are based on the full-sample 
estimates of the variance parameters, and are therefore approximations the true one-
sided estimates. The filtered estimates are plotted beginning in 2004 because of the 
diffuse prior for the t = 0 values. 
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Figure 3. Smoothed and Filtered Estimates from Univariate 
UCSV Model for Trend (ττt) and Seasonally Adjusted (ppt – st) 
HICP Inflation
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C. Filtered estimates of tt D. Filtered estimates of pt –st
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Source: Authors’ calculations. 
Notes: The values shown are the posterior median and 68-percent equal-tail posterior credible intervals for the 
dates shown.

The estimates of t t and st are weighted averages of the p t+j. 
For example, the full-sample posterior estimates of t t are given by   
t t|T = , where the weights at, j depend on the parameters 

. When these parameters are time-invariant and t is 

not close to the beginning or end of the sample, the weights are time-
invariant, that is, at, j ≈ aj. Figure 4 plots these weights constructed 
by using the sample average of  for both the one-sided 
(filtered) and two-sided (smoothed) estimates of t t. By construction, 
these weights sum to unity (because the zero-frequency pseudo-
spectrum of p  is determined solely by variation in t ) and the figure 
indicates that nearly all of the weight is placed on values of p t, j for 
|j|≤ 4. These short moving-average weights are optimal because of 
the relatively high signal-to-noise ratio for the trend (st/ se ≈ 0.80). 
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Figure 4. Weight Placed on ppt+j for Estimating ttt.
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Notes: The weights are computed from the Kalman filter and smoother for a univariate trend + seasonal + irregular 
model with constant variances computed as the average values of the UCSV model variances.

Multivariate. The univariate model implicitly applies the same time-
series filter to each of the 13 sectors making up the aggregate, with the 
component-wise results aggregated by using share weights. Yet it is clear 
from figure 2 that the components follow highly heterogeneous time-series 
processes. For example, the clothing sector appears to be dominated by 
seasonality, healthcare by a few large outliers but little seasonality, energy 
by large irregular variation, and the housing sector by components with 
roughly equal variation. Thus, there plausibly is considerable variation 
in the UCSV parameters across the 13 components. 

These visual impressions are confirmed by the posterior estimates 
for 13-sector model. Table 3 summarizes some key results. Consider the 
standard deviations of the innovations in the idiosyncratic components: 
the estimated values of the st/se signal-to-noise ratios range from a 
high of 1.8 (furnishing) to a low of 0.2 (food and energy). Seasonal 
signal-to-noise ratios (s s /se) vary from nearly 4 (clothing) to 0.05 
(energy). Most of these standard deviations are reasonably stable 
over the 2001–2018 sample, but there are exceptions: for example, 
seasonal fluctuations have become larger in recreation, and irregular 
fluctuations have become smaller in alcohol and tobacco. 

The multivariate model captures the covariance across sectors 
through the common factors t c, sc, and e c. The estimated standard 
deviation of the innovations in these factors fell by roughly 40 percent 
from 2001 to 2018; this implies a reduction in the co-variability across 
the sectors. The estimated factor loadings suggest that much of the 
comovement arises from the common trend component, less from 
common seasonals, and very little from common irregular variation. 



Table 3. Parameter Estimates from the 13-sector 
Multivariate UCSV Model

(a) Standard deviation of shocks to common components (ttc, sc, eec)

2001 2018
st 0.99 (0.91, 1.04) 0.57 (0.30, 1.00)

ss 0.98 (0.89, 1.03) 0.62 (0.32, 1.00)

se 0.99 (0.91, 1.03) 0.67 (0.36, 1.00)

(b) Sector-specific parameters

Factor loadings

Sector at as ae

Food
0.72

(0.41, 1.04)
0.29

(0.17, 0.42)
0.05

(-0.32, 0.42)

Alcohol and tobacco
0.06

(-0.15, 0.34)
0.03

(-0.06, 0.14)
0.05

(-0.29, 0.41)

Clothing
0.29

(0.12, 0.47)
0.12

(0.05, 0.19)
0.03

(-0.28, 0.36)

Housing (xE)
0.03

(-0.03, 0.12)
0.01

(-0.01, 0.05)
-0.01

(-0.12, 0.09)

Furnishing
0.24

(0.11, 0.45)
0.10

(0.04, 0.18)
0.02

(-0.15, 0.19)

Healthcare
0.28

(0.16, 0.45)
0.12

(0.06, 0.18)
-0.02

(-0.22, 0.21)

Transportation 
(xE)

0.36
(0.24, 0.53)

0.15
(0.10, 0.22)

-0.04
(-0.40, 0.33)

Communications
-0.13

(-0.38, 0.23)
-0.05

(-0.16, 0.09)
0.02

(-0.37, 0.39)

Recreation
0.35

(0.18, 0.54)
0.14

(0.07, 0.22)
0.03

(-0.51, 0.53)

Education
0.26

(0.11, 0.46)
0.11

(0.04, 0.19)
-0.01

(-0.23, 0.21)

Restaurants and 
accommodations

0.47
(0.32 0.69)

0.19
(0.13, 0.28)

-0.04
(-0.41, 0.40)

Miscellaneous
0.18

(0.08, 0.30)
0.07

(0.03, 0.12)
0.01

(-0.20, 0.23)

Energy
0.39

(-0.02, 0.78)
0.16

(-0.01, 0.32)
-0.01

(-0.45, 0.42)
Source: Authors’ calculations. 
Notes: The values shown are the posterior median and 68-percent equal-tail posterior credible intervals for the 
dates shown.
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Table 3. Parameter Estimates from the 13-sector 
Multivariate UCSV Model

(b) Sector-specific parameters (continued)

Standard deviation of shocks to sector-specific components 
(τ i, si, e i)

st ss se

Sector 2001 2018 2001 2018 2001 2018

Food
0.30

(0.12, 0.94)
0.28

(0.12, 0.74)
0.17

(0.10, 0.31)
0.17

(0.09, 0.31)
1.60

(1.15, 2.16)
1.54

(1.19, 1.92)

Alcohol and 
tobacco

0.28
(0.14, 0.53)

0.29
(0.15, 0.50)

0.50
(0.17, 0.89)

0.40
(0.16, 0.69)

1.41
(0.69, 2.60)

0.92
(0.53, 1.34)

Clothing
0.13

(0.07, 0.23)
0.12

(0.07, 0.20)
1.56

(1.11, 2.13)
1.14

(0.79, 1.60)
0.31

(0.15, 0.51)
0.31

(0.15, 0.49)

Housing (xE)
0.13

(0.09, 0.18)
0.13

(0.09, 0.18)
0.10

(0.07, 0.14)
0.11

(0.08, 0.15)
0.13

(0.08, 0.19)
0.13

(0.08, 0.19)

Furnishing
0.21

(0.14, 0.27)
0.22

(0.17, 0.30)
0.15

(0.11, 0.20)
0.15

(0.11, 0.20)
0.12

(0.07, 0.20)
0.12

(0.07, 0.20)

Healthcare
0.12

(0.07, 0.20)
0.11

(0.07, 0.19)
0.13

(0.08, 0.21)
0.13

(0.08, 0.21)
0.77

(0.60, 1.02)
0.47

(0.32, 0.66)

Transportation 
(xE)

0.11
(0.07, 0.19)

0.11
(0.07, 0.20)

0.26
(0.15, 0.39)

0.28
(0.17, 0.40)

0.37
(0.21, 0.52)

0.39
(0.22, 0.55)

Communications
0.69

(0.46, 1.01)
0.69

(0.48, 1.01)
0.14

(0.08, 0.26)
0.14

(0.08, 0.25)
0.93

(0.59, 1.21)
0.87

(0.53, 1.15)

Recreation
0.17

(0.10, 0.27)
0.17

(0.10, 0.26)
0.35

(0.21, 0.54)
0.68

(0.46, 1.00)
0.28

(0.14, 0.50)
0.32

(0.15, 0.65)

Education
0.15

(0.09, 0.24)
0.15

(0.09, 0.24)
0.23

(0.11, 0.38)
0.22

(0.11, 0.39)
0.71

(0.51, 0.89)
0.77

(0.61, 0.97)

Restaurants and 
accommodations

0.15
(0.09, 0.23)

0.14
(0.09, 0.22)

0.23
(0.14, 0.37)

0.38
(0.22, 0.57)

0.24
(0.16, 0.35)

0.22
(0.13, 0.36)

Miscellaneous
0.16

(0.11, 0.22)
0.17

(0.12, 0.25)
0.17

(0.11, 0.25)
0.16

(0.10, 0.26)
0.22

(0.14, 0.34)
0.27

(0.18, 0.43)

Energy
1.38

(0.43, 2.63)
1.47

(0.45, 2.77)
0.40

(0.14, 1.03)
0.41

(0.15, 1.08)
7.15

(4.78, 9.28)
8.12

(6.25, 10.32)
Source: Authors’ calculations. 
Notes: The values shown are the posterior median and 68-percent equal-tail posterior credible intervals for the 
dates shown.

The multivariate model produces a rich set of results. Figures 5 
and 6 illustrate a few of these results. The first four panels of figure 5 
show selected results for the transportation sector: the raw data and 
seasonally adjusted values (pi,t – si,t) are plotted in panel (a), the trend 
and seasonally adjusted values are plotted in panel (b), the seasonals 
are shown panel (c), and the estimated seasonal standard deviations, 
si,s,t , are shown in panel (d). Evidently, the multivariate UCSV model 
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accommodates the increased dispersion in the seasonal evident in 
panel (c) with increases in si,s,t in panel (d), and provides a reasonably 
sharp decomposition into trend, seasonal, and irregular components 
in panel (b). Panels (e)–(h) show the same results for the clothing 
sector. From panel (e), seasonal variation in clothing price inflation is 
so large that it is difficult to discern any variation in the seasonally 
adjusted series. A change of scale in panel (f) makes the variation in 
the seasonally adjusted series visible and shows an outlier in 2011. 
Panel (g) shows that the variance of the seasonal component increases 
in the first half of the sample, but remains large and approximately 
constant, in the second half of the sample. The estimates of si,s,t shown 
in panel (h) are consistent with this changing seasonal variability. 
Panel (i) plots healthcare inflation and shows two large outliers. 
Panel (j) shows the posterior mean estimates of the outlier factor oi,t 
for healthcare, which successfully pinpoints the outliers in panel (i). 
Panels (k) and (l) show the analogous results for the energy sector, 
where outliers are also an important source of variability. 

Figure 6 shows the trend estimates for each of the 13 sectors. The 
sectorial trends differ, but comovement is apparent, most notably 
during the cyclical downturns in 2008–10 and 2014–15. 

As discussed above, the estimates of tt from the univariate model 
are constructed by using weighted averages of aggregate inflation, 
where the weights sum to unity; the one- and two-sided weights 
were plotted in figure 4. In the multivariate model, estimates of tt 
are also weighted averages of leads and lags of inflation for each of 
the sectors. When share weights and variances are time-invariant, 
lead-lags weights on each sector sum to that sector’s share weight. 
For sectors with low signal-to-ratios, substantial weight is placed on 
distant leads and lags, but for sectors with high signal-to-ratios, most 
of the weight is concentrated near the contemporaneous value of pi,t. 
figure 7 plots the sector-specific optimal weights from the 13-sector 
model, and compares these to the weights for the 1-sector model (which 
are identical for all sectors). Relative to the 13-sector weights, the 
1-sector model puts too much weight on contemporaneous values of 
food, alcohol, and energy inflation (which have a low signal-to-noise 
ratio) and too little weight on sectors like furnishing and restaurants 
(which have relatively high signal-to-noise ratios). An implication is 
that the estimates of the aggregate seasonal and trend components 
constructed from the sectorial model and data are more precise than 
the estimates by using only the aggregate data. 



Figure 5. Selected Results from the 13-sector UCSV Model
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Figure 5. (continued)
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Figure 6. Trend Estimates from the 13-sector UCSV Model
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Notes: These are the 12 HICP tier-two sectors, with energy excluded from the housing and transportation sectors, 
and shown separately as the 13th sector.



Figure 7. Weight Placed on ππi,t+j for Estimating Aggregate ttt

A. Food B. Alcohol and tobacco C. Clothing

-5 0 5
0

0.1

0.2

0.3

-5 0 5
0

0.1

0.2

0.3

-5 0 5
0

0.1

0.2

0.3

D. Housing E. Furnishing F. Healthcare

-5 0 5

0

0.2

0.4

-5 0 5

0

1

2

-5 0 5
0

0.2

0.4

G. Transportation H. Communications I. Recreation

-5 0 5
0

0.2

0.4

-5 0 5
0

0.1

0.2

0.3

-5 0 5

0

0.2

0.4

J. Education K. Restaurants and  
accomodations L. Miscellaneous

-5 0 5

0

0.5

1

-5 0 5

0

0.5

1

-5 0 5

0

0.2

0.4

0.6

M. Energy

-5 0 5
0

0.1

0.2

0.3

Multivariate Model
Univariate Model

Source: Authors’ calculations.  
Notes: Values shown are the sum of the Kalman smoother weights on πi,t+j for estimating πt. The results in the 
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This improved precision from the multivariate model can be seen 
in table 4 and figure 8, which show aggregate estimates constructed 
as share-weighted averages of the sectorial components. Comparing 
the error bands in table 4 with the corresponding error bands for the 
univariate model in table 2 shows a tightening of the bands for the 
multivariate model. For example, the multivariate errors bands for 
t2018:Q1 are roughly 80 percent as wide as the univariate bands, and 
the multivariate error bands for s2018:Q1 are roughly 60 percent as 
wide as the univariate bands. 

 
Figure 8. Smoothed and Filtered Estimates from 13-sector 
Multivariate UCSV Model for Aggregate HICP Inflation
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Source: Authors’ calculations. 
Notes: The values shown are the posterior median and 68-percent equal-tail posterior credible intervals for the 
dates shown. Aggregate values are computed as share-weighted averages of the sectorial values.
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Table 4. Selected Results for Aggregate Inflation from the 
13-sector UCSV Model

(a) Estimated trends from the multivariate model

2001:Q2 2009:Q4 2018:Q1
t t 2.43 (1.95  2.92) 1.35 (1.05  1.66) 1.32 (0.91  1.73)

(b) Estimated seasonal factors

Q1 Q2 Q3 Q4
2002 -0.44 (-0.75 -0.14) 1.95 (1.69  2.22) -1.48 (-1.71 -1.24) 0.07 (-0.18  0.32)

2009 -1.65 (-1.89 -1.40) 2.94 (2.69  3.17) -2.13 (-2.37 -1.89) 0.89 (0.66  1.13)

2017 -2.42 (-2.71 -2.13) 3.87 (3.53  4.18) -2.09 (-2.38 -1.81) 0.52 (0.19  0.88)
Source: Authors’ calculations. 
Notes: The values shown are the posterior median and 68-percent equal-tail posterior credible intervals for the dates 
shown. Aggregate values are computed as share-weighted averages of the sectorial values.

2.3 Different Levels of Disaggregation 

The results presented thus far show that the 13-sector multivariate 
trend and seasonal estimates are more accurate than estimates that 
only use aggregate inflation. A natural question to ask is how much 
of these gains could be achieved by using a coarser disaggregation 
scheme, for example by using a three-sector decomposition of food, 
energy, and the aggregate of all of the other sectors. Using data for the 
U.S., Stock and Watson (2016) found that much of the gain from using 
a 17-sector decomposition of U.S. PCE inflation could be achieved by 
using this three-sector decomposition. Can similar gains be achieved 
from the euro-area HICP? 

To answer this question, we estimated three additional multivariate 
UCSV models. The first is a two-sector model composed of energy and 
HICP excluding energy. The second is a three-sector decomposition 
composed of food, energy, and HICP excluding food and energy. The 
third is a four-sector decomposition that uses third-tier components 
to further decompose the non-food-and-energy HICP into goods and 
services. The two- and three-sector models are special cases of the 
13-sector model; the four-sector model is not: as discussed above, the 
second-tier decomposition in the 13-sector model includes goods and 
services jointly in many of the sectors. 
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Figure 9. Estimates of Trend Inflation from the Various 
UCSV Models

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
1 sector
2 sectors
3 sectors
4 sectors
13 sectors

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

P
er

ce
n

ta
ge

 p
oi

n
ts

 (
P

A
A

R
)

Source: Authors’ calculations. 
Notes: Values shown are full-sample posterior medians.

Table 5. Width of Credible Intervals, Final Quarter

Model 68% credible interval 90% credible interval

t p – s t p – s
Univariate 1.09 1.00 1.89 1.77

2 sectors 0.96 0.81 1.63 1.39

3 sectors 0.87 0.68 1.53 1.19

4 sectors 0.82 0.67 1.48 1.19

13 sectors 0.82 0.62 1.45 1.09
Source: Authors’ calculations. 
Notes: The values are the widths of 68-percent and 90-percent credible intervals for τ and π – s for the final quarter 
in the sample (2018:Q1).

Figure 9 plots the estimates of trend inflation computed for each 
model. The estimated trends are generally similar, although there 
are noteworthy differences between the one- and multi-sector trends 
during 2009 and 2015.5 Table 5 summarizes the accuracy of these 
alternative models by showing the final quarter (2018:Q1) width of 
the 68-percent and 90-percent error bands for trend and seasonally 
adjusted inflation. Each decomposition yields marginal improvements, 

5. This paper has taken a multivariate approach to trend (and seasonal adjustment) 
of aggregate inflation by using sectorial inflation rates. Other series beyond sectorial 
inflation rates may also help identify trend inflation. Mertens (2016) provides an 
interesting application by using inflation expectations and nominal interest rates as 
additional indicators. 
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but much of the gain can be achieved by using the three-sector 
decomposition; this is consistent with the results for the U.S. reported 
in Stock and Watson (2016). 

3. Inflation and Real Activity 

The multivariate estimates of trend inflation suggest a large 
variation in the trend level of inflation over the 2001–2018 sample 
period. Figure 10 shows how this variation in inflation was related 
to variation in real economic activity, where real activity is measured 
as an average of three coincident indicators for the euro area: the 
unemployment gap (inverted), capacity utilization, and the logarithm 
of industrial production, each band-pass filtered to isolate business-
cycle variation (6-32 quarters) and standardized to have zero mean 
and unit variance. Over 2001–2018, changes in trend inflation closely 
mirrored changes in real activity: trend inflation increased to nearly 3 
percent in early 2008 as activity was near its cyclical peak, fell by 1.5 
percent during the 2009 recession, returned to 2 percent during the 
recovery, but fell again to under 1 percent as real activity weakened 
during 2013–2016. 

Figure 10. Inflation and Real Activity
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Table 6 presents correlations between the cyclical activity index 
and various measures of HICP inflation. The lowest correlation is 
with seasonally unadjusted quarterly inflation, and the highest (0.55) 
is with four-quarter inflation. As can be seen in figure 10, 4-quarter 
inflation falls sharply with economic activity in the 2009 recession, 
whereas trend inflation falls less, hence it has a somewhat lower 
correlation with the cyclical activity index. These correlations are all 
substantial and are consistent with a Phillips relation being present 
in euro-area inflation.

Table 6. Width of Credible Intervals, Final Quarter

Inflation measure Correlation

Quarterly inflation 0.20

4-quarter inflation (100Δln(Pt/Pt-4)) 0.55

Seasonally adjusted HICP 0.42

Univariate trend 0.43

3-sector trend estimate 0.47

13-sector trend estimate 0.44
Source: Authors’ calculations. 
Notes: Seasonally adjusted HICP is the smoothed estimate of πt – st computed by using the univariate UCSV model. 
The three trend estimates are computed by using the UCSV model (univariate or multivariate, depending on the 
estimate). The cyclical activity index is the average of standardized band-pass filtered values of the unemployment gap 
(inverted), the capacity utilization rate, and the logarithm of industrial production, for a pass band of 6-32 quarters).
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