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The PassThrough of Large-cosT 
shocks in an infLaTionary economy

Fernando Álvarez
University of Chicago and NBER

Pablo Andrés Neumeyer
Universidad Torcuato Di Tella

This paper surveys and modestly extends the theory of menu-cost 
models of the behavior of the aggregate price level after large-cost 
shocks. It does so in the context of an economy with a high underlying 
rate of inflation. It concentrates on the effect of large permanent and 
unexpected increases in the nominal price of inputs on the price level at 
different horizons. We use a simple theoretical model where increases 
in nominal cost will increase aggregate prices one for one in the long 
run. We study how the nominal rigidities implied by a menu cost 
distribute the increases in the price level between the impact effect 
immediately after the cost shock and the subsequent price adjustment 
until the price catches up with its long-run increase. In other words, 
we study the passthrough of large-cost shocks at different horizons. 
We pay particular attention to the role of the underlying inflation rate 
as well as to the role of the size of the cost shock, since both elements 
are important to determine the dynamics of aggregate prices.

Our interest in that question comes both from interest in testing 
aspects of price-setting theories and from a practical monetary policy 
point of view. On the theoretical side, the differential effect of large 
versus small shocks is the hallmark difference between menu-cost 
models and time-dependent models of price adjustment. Hence, the 
characterization of the model’s behavior is important to be able to 
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discern between theories with observed experiences. On the monetary 
policy side, we are interested in this particular question because of 
the recent experience in Argentina, an economy where inflation has 
been quite high for international standards in the last decade, and 
where due to changes in macroeconomic policies in the last four years 
there have been large-cost shocks. In particular, there have been 
large changes in exchange rates as well as extremely large changes 
in the price of regulated prices, mainly inputs related to energy. In 
this context we ask the question of whether the response to these  
large-cost shocks is close to one of an economy with fully flexible prices 
or to one with time-dependent price setting, such as the Calvo model.

We give a short narrative of instances where, in a single month, 
there have been very large-cost changes in the inputs for goods that 
make up the core CPI for Argentina between 2012 and 2018. We also 
use a comprehensive, never used in the price adjustment literature, 
micro-data set underlying the construction of the core CPI for the 
city of Buenos Aires to compute the objects analogous to the ones we 
describe in the theory. From the comparison between statistics in the 
model and in the data, we conclude that either full price flexibility 
or time-dependent rules are quite counterfactual. Nevertheless, in 
the cases of very large positive cost shocks in an economy with an 
underlying high inflation, the passthrough of the shock to prices is 
quite fast. In the most extreme case, when the exchange rate jumped 
almost 25% in one day (from 31.94 pesos per dollar on August 29th 
to 39.60 on August 30th), the fraction of firms changing prices, which 
is 24% in normal times, rose to almost 60% between August and 
September 2018.

We believe that through this narrative approach we can make a 
plausible case that regulated prices can be thought of as exogenous 
changes in cost, and that the same will be true for some of the large 
changes in exchange rates. The change in regulated prices followed a 
period of many years during which, despite the fact that inflation was 
very high for international standards, regulated prices were frozen in 
nominal terms. The situation became untenable from the fiscal point 
of view, costing at least 3% of GDP, and also due to the distortions that 
this policy generated. The normalization of prices occurred in steps due 
to the very large increases that it implied, as well as due to challenges 
in the courts. To get an idea of the magnitude of the change in relative 
prices, during the sample period, the price of natural gas relative to 
the core CPI was multiplied by a factor of five and the relative price 
of electricity by a factor of three. On the exchange-rate changes there 
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were different reasons for the observed large changes. In 2014 there 
was a devaluation within a regime with severe capital controls and 
dual exchange rates. At the end of 2015 and beginning of 2016, there 
was a large devaluation, when the multiple exchange-rate regime 
was abandoned essentially overnight. The sharp depreciation of the 
exchange rate throughout April–August 2018 is probably the result 
of a mix of a reaction to a change in economic policies (perhaps larger 
than what policymakers had anticipated) and exogenous shocks within 
the framework of a dirty floating exchange-rate regime. In our model, 
cost shocks are once-and-for-all unexpected changes, which may not 
be completely accurate for some of the episodes.1

We use the microdata underlying the construction of the consumer 
price index (CPI) in the city of Buenos Aires to compare the predictions 
of the model with actual observations after several of the large-cost 
increases that occurred between 2014 and 2018. Some readers may 
be aware that the National Statistical Agency (Instituto Nacional de 
Estadística y Censos, Indec) produced price indices that are widely 
regarded as underestimating the inflation rate between 2008 and 
2015.2 The price index of the city of Buenos Aires has the advantage 
that it was independent from the National Statistical Agency and 
produced figures very similar to the privately produced price indices.

We propose a theoretical model where firms have both idiosyncratic 
as well as aggregate changes in costs. We assume that firms are 
monopolistic competitors and that they face a fixed menu cost for 
changing prices. The solution to the firms’ price-setting problem gives 
rise to a classical sS rule for price changes, which postulates price 
increases as well as price decreases. The optimal decision rule, as well 
as the response of the aggregate price level, depends crucially on the 
ratio of the inflation rate to the variance of the idiosyncratic shocks. 
While idiosyncratic shocks make the analysis more complicated, we 
think that they are essential to the answer of the problem for two 
reasons. First, they are required to reproduce the large fraction of 
price decreases that are observed even when inflation rate is above 

1. For instance, the normalization of the exchange-rate system and removal of 
capital controls is a policy that was to a large extent announced by the two main parties 
before the elections at the end of 2015. Indeed there is an unsettled debate in the 
Argentine economic circles on whether the effect of the likely increase in the exchange 
rate that the unification of the exchange-rate markets will entail was anticipated and 
included in price changes months before it happened. We discuss these episodes in 
more detail in section 1.

2. See, for instance, Cavallo (2013).
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25% per year. Second, the behavior of the passthrough depends on 
the magnitude of these shocks relative to the level of inflation. In the 
theoretical section, we compare the effect of cost increases in three 
cases: a very low inflation rate, which is the case of most economies; 
high inflation rates, of the order of Argentina during this period (say, 
25% per year); and very high inflation. The degree of passthrough 
depends on both the size of the steady-state inflation rate and the 
size of the shocks. It turns out that, even for inflation rates as large 
as 25% per year, still one can see clear effects of price stickiness. Yet, 
for large-cost increases of the magnitude that occurred in Argentina, 
the passthrough occurs in an extremely short time. In particular, there 
is a very large impact effect, with most of the adjustment occurring 
at the time of the shock, and a very short half-life, smaller than two 
months, for the remaining adjustment. Indeed this matches what we 
see during the months of large-cost increases in Argentina: a very 
sharp increase in the fraction and in the size of price increases, almost 
no change in the fraction and in the size of price decreases, and a jump 
on the inflation rate close to the size of the cost increase.

It is well known that cost shocks explain a large fraction of the 
variance of inflation in standard estimates of medium size New 
Keynesian models. Nevertheless, these costs are typically a residual 
in the standard specification. On the other hand, there is a literature 
that tries to use identified cost shocks to evaluate different price-
setting mechanism. Our paper adds to the literature that studies the 
effect of large-cost shocks in price-setting models with menu costs 
of price adjustment. Early examples of this literature are Gagnon 
(2009) and Gagnon and others (2013). These papers consider the 
experience of Mexico in the mid-90s, when there was both a large step 
devaluation (about 40%) and changes in the VAT (from 10% to 15%). 
Another similar recent exercise is the one in Karadi and Reiff (2019), 
which uses changes in the VAT in Hungary. In both cases, a version 
of a menu-cost model is used to interpret the microdata underlying 
the construction of CPI and to compare the predictions of this class of 
models with the data. A related, yet different evidence, is the study of 
the exchange-rate passthrough to export and import prices in customs 
data in Bonadio and others (2016), comparing small changes in the 
Swiss franc’s value with the large change that occurred when the Swiss 
National Bank abandoned its peg to the euro in January 2015. Finally, 
Álvarez, Lippi, and Passadore (2016) estimate panel regressions of the 
short-term passthrough of exchange-rate changes to consumer prices 
that include non-linear terms in the size of the exchange-rate changes. 
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Differently from the previous studies, these panel regressions do not 
use microprice statistics. Relative to Gagnon (2009), Gagnon and others 
(2013), and Karadi and Reiff (2019), and motivated by the levels of 
inflation in Argentina during the period of interest, this paper has a 
more systematic treatment of the role of the running (or steady-state) 
inflation and of the size of the cost shocks on the level of short-term 
passthrough, and on the overall speed of adjustment. Finally, relative 
to Álvarez and others (2019) we study a different period of time for 
Argentina, but more importantly, in this paper we concentrate on the 
effect that large unexpected-cost shocks have on price dynamics, as 
opposed to the effect of different steady-state inflation levels, which 
is the main point of Álvarez and others (2019).

The remainder of the paper is organized as follows. In section 1 we 
provide a brief narrative of macroeconomic events in Argentina in the 
period 2012–2018 as they pertain to nominal cost shocks and inflation. 
The theoretical analysis is in section 2. The firm’s problem is described 
in subsection 2.1; subsection 2.2 describes the steady-state distribution 
of price markups over nominal marginal costs; subsection 2.3 explains 
how inflation affects optimal decision rules; subsection 2.4 derives 
analytically expressions for the impulse responses of consumer prices 
to cost shocks; and subsection 2.5 contains numerical simulations of 
how cost shocks affect consumer price dynamics for small and for 
large-cost shocks, and for three different inflation rates (low, high, 
and extremely high). Finally, section 3 compares the predictions of the 
model with the evidence emerging from city of Buenos Aires consumer 
price microdata.

1.  NomiNal Cost shoCks aNd iNflatioN, argeNtiNa 
2012-2018

In this section we provide some background on the evolution 
of inflation and the nominal value of some key inputs during our 
sample period, July 2012 to December 2018. We first comment on the 
monetary policy framework and exchange-rate developments, and 
later on regulated price policies for energy inputs.

We divide the analysis of the monetary policy framework in three 
periods: the dual exchange-rate regime prior to December 2015, the 
inflation-targeting regime between March 2016 and December 2017, 
and the abandonment of the inflation-targeting regime throughout 
2018.
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During the first period, the monetary policy framework was a dual 
exchange-rate regime. The Central Bank fixed the Argentine peso price 
of the U.S. dollar for transactions related to international trade as 
well as for some limited financial ones. Capital controls were binding 
and a shadow exchange-rate market that carried a premium over the 
official one developed. We believe that this was caused by the high 
rate of money growth due to the monetary financing of deficits. Part 
of the monetary financing of deficits was sterilized with Central Bank 
debt that reached close to 6% of GDP in March 2016. The average rate 
of core inflation between July 2012 and December 2015 in the city of 
Buenos Aires was 31% (with a median of 28%).3 The official exchange 
rate crawled at a median rate of 17% (annualized median monthly rate 
of devaluation). Between November 2013 and March 2014, a succession 
of jumps in the exchange rate resulted in a cumulative increase of 32% 
in the exchange rate. Core CPI prices in those months rose by 15%.

On December 15th, 2015, exchange-rate controls were removed 
and the exchange rate started to float with limited central bank 
intervention. The unification of the foreign-exchange market entailed 
a depreciation of the peso of over 50% between December 2015 and 
February 2016.4 In March 2016 the Central Bank adopted an interest 
rate peg as its policy instrument in the context of an incipient inflation-
targeting regime, which was formally adopted in September. The 
national inflation targets were 12–17% for 2017, 10% ± 2% for 2018, 
and 5% ± 1.5% for 2019. The actual core inflation rates in the city of 
Buenos Aires were 35% in 2016, 24% in 2017, and 43% in 2018. Wages 
increased by 34% in 2016, 24% in 2017, and 21% in the first nine 
months of 2018 (prices increased by 30% in this period).5

Starting in December of 2017, there was a gradual abandonment 
of the inflation-targeting framework. On December 28th, 2017, the 
inflation target for 2018 was raised from 10% to 15%, and in January 
the Central Bank lowered interest rates by 150 basis points from 
28.75% to 27.25%. The market perception was that this interest rate 
move was motivated by political pressure. A speculative run on the 
Central Bank’s debt unraveled between April and September 2018. In 
the period between April and September (end of period), the Central 
Bank paid (did not rollover) 529 billion pesos of short-term debt (40% 
of its debt and 53% of the monetary base in April), and the monetary 

3. Average and median of annualized monthly inflation.
4. See table 1 and figure 1.
5. Core inflation for the city of Buenos Aires. Wages are from Ministerio de Trabajo, 

Empleo y Seguridad Social (2018). [Ministry of Labor, Employment and Social Security]
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base increased by 250 billion pesos in the same period.6,7 This led to 
a sharp depreciation of the Argentine peso. The peso-dollar exchange 
rate quivered around 17 pesos per dollar in the period July–December 
2017, then around 20 pesos between late January and the end of April, 
and reached 41 pesos per dollar in late September. The evolution of 
the (log) exchange rate is depicted in figure 1.

Public utilities prices were also an important source of large 
nominal cost shocks during our sample period. The nominal price of 
regulated goods such as electrical power, natural gas, water, and public 
transportation was practically frozen for a decade up to 2014. With 
the price level rising, the relative price of regulated goods, especially 
energy items, steadily eroded. The gap between the nominal marginal 
cost of these regulated goods and their sale prices was covered with 
government subsidies that in 2015 are conservatively estimated 
around 3% of GDP. A small attempt at normalizing these prices 
resulted in large nominal increases in the price of natural gas during 
2014. A more ambitious normalization started in 2016.

Figure 1. Cost Shocks and Inflation
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by the Central Bank. Core inflation is the monthly log difference of the core price level (rest), which excludes seasonal 
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6. See Bassetto and Phelan (2015) for a related theoretical model.
7. Establishing the reasons behind this run is difficult and goes beyond the purpose 

of this paper. Several explanations have been proposed in local economic circles, including 
the importance of current account deficits, the effect of negative productivity shocks 
on agriculture (a very large drought), the size and maturity of the Central Bank debt, 
changes in local taxation of capital flows, the fear of fiscal dominance in the near future, 
and the adverse international financial circumstances, just to cite a few.
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Figure 1 provides an overview of the evolution of the nominal 
variables described in the preceding paragraphs. All prices are from the 
city of Buenos Aires CPI.8 The solid lines depict the natural logarithm 
of the core CPI, regulated prices in the CPI, the price of electricity, the 
price of natural gas, and the exchange rate. Core inflation excludes 
seasonal products and regulated prices. All five are normalized to 
their July 2012 value.

The black solid line is the price level for core goods and services 
while the dotted black line represents its rate of change (in log 
differences). The dark grey line represents the exchange rate expressed 
as pesos per dollar. There are three major devaluations. During the 
dual exchange-rate period, the exchange rate exhibits a rate of growth 
below that of core prices except for the period of the devaluation 
around January of 2014. There is a second sharp depreciation of the 
peso between December 2015 and February 2016 after the removal 
of capital controls. The last episode of depreciation of the peso, about 
80%, occurred between April and September of 2018.

Regulated consumer prices in the city of Buenos Aires are 
represented by the light grey line in figure 1. As it was the case for 
the exchange rate, prior to December 2015 these prices grow at a 
slower pace than core prices and there are two important relative 
price corrections, one in 2014 and another in 2016. The main drivers 
of regulated prices are the prices of energy, especially electricity, and 
gas. The middle grey line represents the price of electricity. It is a step 
function with jumps of 253% in February 2016, 92% in January–March 
2017, 68% in December–February 2018 and 25% in August 2018. The 
price of natural gas follows a similar pattern.9,10

We summarize the behavior of nominal cost shocks in a proxy 
variable, which we refer to as cost proxy of cost shock. We assume 
that consumer goods are produced with labor, tradable inputs, and 
regulated goods. In our model we assume that there is a consolidated 
sector that produces and retails consumption goods. It purchases an 

8. We work with data for the city of Buenos Aires as the reliability of national 
statistics between 2007 and 2016 has been severely questioned. For example, on 
February 2013, the International Monetary Fund issued a declaration of censure against 
Argentina in connection with the inaccuracy of CPI data from the National Statistical 
Agency, the Indec. Also see Cavallo (2013) for a comparison of national statistics and 
online prices across several Latin American countries, including Argentina.

9. See table 1.
10. The price of natural gas fell 68% in August 2016 because the Supreme Court 

stayed the April price increase on procedural grounds. The price increases were resumed 
after the Executive remedied the judicial objection to the previous price increase.
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aggregate input in a flexible price competitive market and sells its 
output to consumers in a monopolistically competitive market. To 
construct our intermediate input measure, we assume following Jones 
(2011) that the share of intermediate inputs in the production of the 
final consumption goods is 50%, and that the remaining is a labor 
share of 50%. The weights of energy and tradable intermediate goods 
are 10% and 40%, respectively. Hence, our measure of cost shocks is 
obtained by computing first a geometric price index for this aggregate 
input as pR

0  .1 E0.4W0.5, where pR denotes regulated prices, E is the 
peso/U.S. dollar exchange rate, and W  are nominal wages. 

Figure 2 depicts the cost shock proxy variable, wholesale prices and 
core inflation.11 The proxy for nominal cost shocks tracks wholesale 
prices closely with a correlation of 0.92. Observe that spikes in nominal 
cost shock inflation are associated with spikes in core inflation.

Table 1. Large Nominal Cost Shocks

Elect. Natural 
gas

Exchange 
rate

Elec. Natural 
gas

Exchange 
rate

Oct-12 9 Feb-17 48

Nov-12 15 18 Mar-17 30

Jan-14 12 Apr-17 31

Feb-14 11 Jul-17 7

Apr-14 57 Dec-17 43 42

Jun-14 32 Jan-18 8

Aug-14 29 Feb-18 17

Dec-15 19 Apr-18 36

Jan-16 19 May-18 17

Feb-16 253 8 Jun-18 12

Apr-16 184 Aug-18 25 9

Jul-16 5 Sep-18 28

Aug-16 –68 Oct-18 27

Oct-16 134 Nov-18 6

Nov-16 14
Source: Authors’ calculations.
Note: We report the percentage change between prices in month t and t–1. Price data for electricity and natural 
gas is from the Consumer Price Index for the city of Buenos Aires. Exchange rate is the change in the monthly 
average exchange rate.

11. There is no official reliable data on wholesale prices prior to December 2015.
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Figure 2. Cost Shocks and Inflation
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In the next section we present a theoretical model of the pricing 
decision of a retail firm in order to study the speed and the magnitude 
of the passthrough of these cost shocks to consumer prices.

2. Passthrough of Cost shoCks to PriCes: theory

In this section we study the nominal passthrough to consumer 
prices of the nominal cost shocks in a menu-cost model of price 
adjustment. We consider the problem of a monopolistically competitive 
firm that faces idiosyncratic demand and productivity shocks in 
an environment in which the cost of an aggregate input grows at a 
constant inflation rate. We study how the aggregate consumer price 
level reacts to an unexpected jump in nominal marginal costs in this 
environment.

We first describe the firm’s price-setting problem in subsection 2.1 
and then look at the cross sectional distribution of prices in  
subsection 2.2. We then proceed to describe how steady-state inflation 
affects decision rules in subsection 2.3, which refers to Álvarez 
and others (2019). Finally, in subsection 2.4, we report the impulse 
response of price distributions to cost shocks and, in subsection 2.5, 
we compare the reaction of prices to small and large-cost shocks and 
find interesting nonlinear effects.
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2.1 Price-Setting Problem for the Firm

We consider an economy where firms’ marginal nominal costs have 
a common and an idiosyncratic component. The common component 
is given by a nominal cost, which we will assume that, after an initial 
value is realized, will grow at a deterministic constant rate. The (log 
of the) idiosyncratic component follows driftless Brownian motion, 
with innovation variance s2. Firms face a downward sloping demand, 
act as monopolistic competitors, and must pay a fixed menu cost to 
adjust their price. The firm’s marginal (and average) cost will then be  
W(t)x(t), where W(t) is the nominal cost of the aggregate input and 
x(t) is an idiosyncratic shock. We assume that x(t) = exp(sB(t)), where 
B(t) is a standard Brownian motion, independent across firms. We 
will start the firms at a steady state, where Wt has been growing at a 
constant inflation rate p, so that W(t0+T) = W(t0)eTp.

We will use g to describe the logarithmic deviation of the firm’s 
current markup relative to the one that maximizes instantaneous 
profits. We refer to this variable as the “price gap”. The price gap is 
positive, g > 0, if the price of the product is relatively high or if the 
firm’s cost is relatively low. We will assume that the optimal markup 
is independent of the level of the costs and of the demand, as it 
will be the case with an iso-elastic demand function and constant 
marginal cost. Note that during a period where the firm does not 
change prices, its markup changes only because its cost changes, i.e.,  
dg(t) = – dlogW(t) – dlogx(t). For instance, at steady state, we have 
that dg = –pdt – sdB during the period at which the price of the good 
does not change. At the times when the firm decides to pay the fixed 
cost and change prices, g(t) changes discretely and in equal proportion 
(equal in log points) to the change in price.

The firm problem can be summarized by the Bellman equation:

 (1)

subject to

dg(t) = – pdt – sdB(t) for all 0  ≤ t  ≤ t and g(0) = g. (2)

In this problem ψ is the fixed cost, ρ is the (real) discount rate, 
p is the inflation rate (of the aggregate input), s is the idiosyncratic 
volatility of the cost shocks, and F(·) is the instantaneous profit 
function, written as a function of the price gap. The expectation in 
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the objective function is with respect to the cost shocks, the values of 
the path for B(t). Mathematically speaking, the object of choice t are 
stopping times. A stopping time indicates the time and circumstances 
under which prices will be adjusted. In this kind of problem, the 
optimal rule is that t occurs the first time that g(t) is outside a range 
of inaction. After paying the cost and deciding the optimal price we find 
the optimal return point as , or . 
In appendix B we write the ordinary differential equation (o.d.e.) and 
boundary conditions which simultaneously determine the function V(·) 
and the values of g, g∗ and g. In appendix C we formulate and compute 
a discrete time and discrete state-space problem that approximates 
the continuous one.

The optimal policy for the firm is an sS rule described by three 
numbers g , g∗ and g . We refer to g  < g  as the boundaries of the range 
of inaction, and to g∗  ( g , g) as the optimal return point. The inaction 
region is thus described by the interval [ g , g]. If the price gap g is in 
the inaction region, the price of the firm stays constant and the price 
gap changes with the cost changes—with opposite sign. If the price 
gap is lower than g , so that the markup is very low, then the firm will 
pay the fixed cost ψ and increase prices so that, right after the price 
change, the price gap will be g∗. Likewise, if the price gap is higher or 
equal than g , so that the markup is very high, the firm will pay the 
fixed cost ψ and decrease its price, so that, right after the price change, 
the price gap becomes g∗.

Note that we are writing the profit function F as a function of the 
price gaps exclusively. In general, even at steady state, it should be a 
function of both the price and the cost. Below, we explain the conditions 
under which this simplification can be obtained. We choose units so 
that F is measured in either terms of units of the aggregate input, or 
as deviations of maximized steady-state profits—our preferred choice. 
Of course, the fixed cost ψ has to be measured in the same units as F. 
The optimal decision rule depends only on the ratio ψ/B, since the value 
function is homogeneous of degree one in ψ and B. Intuitively, the fixed 
cost matters only through the relative advantages of changing prices, 
captured by the curvature of F, rather than on each of them separately. 
Furthermore, the discount factor ρ is a real interest rate measuring 
the intertemporal price of the aggregate input. The inflation rate p is 
also the nominal change in the price of the aggregate input. Since ρ, 
p and s2 are rates per time unit, the optimal decision rule depends, 
apart from on ψ/B, only on the ratios {ρ/s2,p/s2}.
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Derivation of the profit function F. We have written the 
profit function F having the price gap g as its only argument. This 
is a simplification which provides lots of tractability. In Álvarez and 
others (2019), we work without this simplifying assumption and obtain 
essentially the same results.12 We describe here the assumptions so 
that we can use the simplified version. Let Q(p/W)z be the quantity 
demanded as a function of p/W, the ratio of the nominal price of the 
good p and the nominal price of the generic input W. In steady state 
we can write this relative price or the relative price with respect to 
some aggregate good without loss of generality. It also turns out that in 
the set-up described by Golosov and Lucas (2007), which is in no way 
pathological, this is a consequence of the general equilibrium structure. 
The variable z is a multiplicative shifter of the demand, which we use 
for two different illustrations. The nominal marginal cost is xW. We 
will proceed by steps. First we will derive the profit  with (g, z, x) as 
arguments. Then we will add assumptions to eliminate (x, z) from it. 

Let’s use m for the log of the optimal markup, i.e., let the nominal 
price that maximize instantaneous profits be: P*= emxW. Thus g is 
defined as:

. (3)

Now we are ready to write the profit function. The units of profits 
will be first in terms of the real value of the aggregate input. Profits 
in nominal terms are [P – xW]Q(P/W, z), i.e., nominal markup times 
quantity. By dividing this expression by W, we obtain profits in time 
t units of the aggregate input.

 (4)

Furthermore, assuming that Q is iso-elastic, with elasticity equal to 
η, so that Q(P / W) = A(P / W)ηz  for some constant A, then the optimal 
markup M, or its log m, will be constant and equal to m = log(η/(η–1)). 
In this case profits will be:

.

12. See the section on the model with random walk shocks and CES demands, which 
we refer to Kehoe and Midrigan (2015) version of the Golosov and Lucas (2007)’s model.
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It should be clear that, by definition, F is maximized when g = 0.
Adding the extra assumption that the demand shifter satisfies  

z = xη–1, then we obtain that  does not depend on (x, z). To be honest, 
this is a strange assumption; it requires the shock that increases cost 
to simultaneously push the demand up, so that the maximized profit 
remains the same for any value of x. On the other hand, it simplifies 
the algebra a lot! As mentioned above, in Álvarez and others (2019) we 
work out both versions of the models and find very small differences.

An alternative is to use a second order approximation of the 
function  (g, x, z) and to retain only the leading terms on g. In 
particular, we use a second order approximation of  (g, x, z) around  
g=0, x= x  and z= z . Using that g = 0 maximizes profits, and the 
multiplicative separable nature of the profit function into three terms, 
ignoring the terms that are higher than second order and the terms 
not involving g, we have

  (5)

where we are measuring profits relative to the maximized profit at  

x= x and z= z , which equals  . Of course, we 

can combine these assumptions too.
Lack of First-Order Strategic Complementarity. Finally, 

the result in equation (5) is useful because it states that in the model 
we focus on, there is no first-order strategic complementarity. This is 
because we can summarize the behavior of the rest of the firms in z. 
This will be the case in the standard New Keynesian model, where 
there will be at least two effects on the profit function coming from 
aggregate consumption: one is that with CES demand for each firm, 
higher output of each of the other firms shifts the demand up, and 
the other, in opposite sign, that higher output decreases the Arrow-
Debreu price of the good in the current period. But as we have seen, 
these effects—captured by z—are of third order in the profit function 
in the current set-up.13 Interestingly, this means that we can use as 
an accurate approximation the firm’s decision rules characterized by 
{ g , g∗, g} even if the rest of the economy is not at a steady state, as 
long as the firm expects constant growth rate of the aggregate input 

13. The general equilibrium version in Golosov and Lucas (2007) also makes the 
value of the nominal aggregate input, labor in their case, depend only on the path of 
nominal money.
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prices. We will rely heavily on this property to characterize the impulse 
response of prices to a one-time common shock to their cost.

2.2 Steady-State Distribution of Price Gaps and Price 
Changes

We let f(g) be the steady-state density of the distribution of price 
gaps. This density has support [ g , g]. It solves a simple ordinary 
differential equation, balancing the flows in and out when a price 
change occurs. Its shape depends on the parameters { g , g∗, g ,p/s2}. Of 
course, g , g∗, g  depend on all the parameters that define the steady-
state problem of the firm described above, namely {ψ/B,ρ/s2,π/s2} or, 
using the simplification described in appendix B, it is described by 
just {ψ/B,p/s2}. The equations that determine the steady-state density 
given the decision rules and parameters are:

with boundary conditions:

. (6)

The first line is the Kolmogorov forward equation, and the second 
line has the three relevant boundary conditions. The solution is given 
by the sum of two exponential functions. The boundary conditions on 
the extreme of the inaction regions indicate that there is zero density 
in those points. Intuitively, this is because they are exit points, so it is 
“hard” to accumulate density near them. This result will be important 
for some of the results below.

The shape of the density f depends on the inflation rate relative 
to the idiosyncratic variance p/s2, both through their direct effect 
as seen in equation (6), and indirectly through their effect on g , 
g∗and g . For finite p/s2, the distribution has zero density in its two 
boundaries, it is strictly increasing in ( g , g∗), non-differentiable at 
g∗, and strictly decreasing in(g∗, g). In particular for p/s2 = 0, the 
distribution is symmetric around g∗ = 0, and has a tent-shape, with 
f"(g )=0. As p/s2 increases, the value of g∗ becomes positive, and the 
shape of f becomes concave from [ g , g∗) and convex between (g∗, g]. As  
p/s2 → ∞, the distribution converges to a uniform distribution between 
[ g , g∗] and to a zero density everywhere else, as in the model of 
Sheshinski and Weiss (1979), which has s2 = 0 and finite p.
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The change in the shape of the invariant distribution f reflects, in 
a very intuitive way, the different strength of the idiosyncratic shocks 
(measured by s2), which are symmetric, and the effect of inflation 
(measured by p), which is asymmetric. As inflation increases, the 
price gaps g naturally tend to pile up in the left side, since the cost 
increase in expected value as the nominal price remains fixed. Indeed 
as p/s2 → ∞, this effect is so strong that price gaps essentially march 
deterministically from g∗ to g , and hence the distribution is uniform, 
as stated above. Lastly, the drastic change in shape of f around g∗is 
also intuitive, since after a price is changed, the new price of the 
product is set so that g = g∗, which explains why the mass is highest 
at this point and why it is not differentiable, since the behavior of f 
around this point is governed by mass coming from the boundaries of 
the range of inaction.

In steady state the size of price changes is given by a very simple 
formula of the thresholds of the sS rule. Price increases are given by 
g∗ – g , since the firm increases its price when the markup is very low, 
i.e., the first time g reaches g . Likewise, price decreases occur when 
the markup has reached the value g  and are of size g– g∗. Denoting 
the size price increases by D+

p and the size price decreases by D–
p , we 

have that: D+
p = g∗– g  and D–

p = g  – g∗.
We denote the average number of price changes per unit of time by 

λa. This can be easily computed as the reciprocal of the time between 
price changes, by the fundamental theorem of renewal theory. The 
expected time until a price change T(g) for a firm with current price 
gap g solves the following Kolmogorov backward equation:

0 = –pT '(g) + s2

2
 T"(g) for all g  [ g , g]with boundary conditions:  

0 = T( g) = T(g).

The boundary conditions are quite natural, at either g  or g  there 
will be a price change, and hence the expected time to reach them 
is zero! Since right after a price change g = g∗, then the expected 
time until the next price change is T(g∗), and hence the frequency of 
price changes λa = 1/T(g∗). Using a similar procedure we can find the 
frequency of price increases λ+

a and the frequency of price decreases  
λ–

a . For instance, letting T+(g )  be the expected time until a price 
increase, it is easy to see that it satisfies the same Kolmogorov 
backward equation than T . The difference is in the boundary 
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conditions, which are T+( g)  = T+(g∗) , since a price decrease will occur 
at g  but we need to keep counting; we also have T+( g) = 0, since a 
price increase occurs at g . The frequency of price increases is thus:  
λ+

a = 1/T+(g∗) . A similar argument holds for the expected time until a 
price decrease T –, i.e., it solves the same o.d.e. than T with boundary 
conditions T – ( g) = T – (g∗)  and T – ( g)=0. The frequency of price 
decreases is thus: λ–

a = 1/T –(g∗) .
We note that the length of the range of inaction equals the sum 

of the average size of price increases plus the average size of price 
decreases: g  – g  = D+

p + D–
p . This observation will become useful 

because these average sizes can be measured, and the length of 
the range of inaction is important to understand when a cost shock 
is large. Finally, the second moment of price changes is given by 

 .

In appendix C we give a simple alternative numerical procedure 
by using a discrete time and discrete state version of the model to 
compute the steady-state distribution and the frequency of price 
changes per unit of time.

2.3 Optimal Decision Rules and Inflation

This subsection analyzes how optimal pricing decisions vary with 
the rate of normalized inflation, p/s, keeping the normalized fixed 
cost, ψ/B, constant.14

For p/s ≈ 0, then the decision rules are approximately symmetric, 
with g∗= 0 and g  = – g  .15 This implies that around zero inflation, the 
price increases and price decreases have approximately the same size 
D+

p = D–
p   . Moreover, the frequency of price increases and price decreases 

is the same around zero inflation, so λ+
a = λ–

p .
For higher inflation rates relative to idiosyncratic volatility p/s2, 

the optimal return markup g∗ becomes larger. This is because due to 
inflation, during inaction markups decrease in expected value, and 
thus this expected effect, is compensated by starting with a higher 
markup. In Álvarez and others (2019) we show that for small inflation 
the main adjustment is not in the frequency of price changes λa, but 

14. Appendix B shows that, for a given fixed cost relative to the curvature of profits 
ψ/B, the optimal decision rules depend on the normalized level of inflation p/s2.

15. We say approximately because under the quadratic approximation at exactly 
p/s2 = 0 the decision rules are symmetric.
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instead in the difference between the frequency of price increases 
and decreases, i.e., the derivative of λa(p) with respect to inflation is 
zero at p/s2 = 0, but the derivative of λ+

a (p)  – λ–
a (p)  is strictly positive. 

We also show analytically that it accounts for 90% of the change in 
inflation at low inflation; the other 10% is explained by changes in  
D+

p   – D–
p. Summarizing, as we move from zero steady-state inflation  

(where frequency and size of price increases and decreases are 
symmetric) to positive steady-state inflation, the model predicts that 
the frequency of price increases λ+

a (p)  will be higher than the one of 
decreases λ–

a (p) , and that the size of price increases and decreases 
will be approximately the same, i.e., D+

p  
 ≈ D–

p . Nevertheless, while we 
show that the average size is similar, we also show that as we move 
from zero steady-state inflation, D+

p    > D–
p .

16

For very large inflation, λ+
a (p) → λa (p)  and λ–

a (p) → 0, as p → ∞, 
so most price changes are increases, and the model converges to 
Sheshinski and Weiss (1979), in the sense made precise in Álvarez 
and others (2019).

2.4 Impulse Response of the Price Level to Unexpected 
Cost Shocks

In this subsection we characterize the impulse response of the 
aggregate (log of the) price level to a once-and-for-all increase in the 
nominal price of the aggregate input of size δ, measured in logs. We will 
consider different inflation levels π and different sizes of the shock δ.

We start with an economy that is in the steady-state distribution 
of price gaps. This economy is characterized by parameters {ψ/B,ρ,s2} 
and p. Firms will face a once-and-for-all jump on the nominal price of 
the aggregate input and believe that, after this jump, the price of the 
inputs will rise at the same inflation rate π as before the jump. We are 
interested in computing the effect on the (log of the) aggregate price 
level of the goods produced by these firms. We will distinguish between 
the impact effect on the price level, i.e., the effect on the moment that 
the unexpected jump occurs, and the subsequent effects which lead 
the price level to adjust up to the full amount δ of the shock.

We can think of the price level just before the shock as the limit: 
. Likewise, we can let the value of the (log of the) price 

16. For a precise statement, see Propositions 1 and 3 in Álvarez and others (2019). 
Numerically, we find the changes given by these derivatives at zero inflation to be 
accurate even up to inflation rates of 30% per year.
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of the aggregate input just before the shock be . Of 
course, for the price of the aggregate input we have that the jump is 

. As mentioned above, we assume 

that dlogW(t)/dt = p for t ≠ 0. Throughout the exercise, the parameters 
{B, ψ, ρ, s2} and the invariant distribution implied by the optimal 
decision rules, { g , g∗, g} are fixed.

We will denote the price level t periods after the shock P(t; δ, p) 
for an economy that is hit by the shock of size δ when the inflation 
rate of the aggregate input before and after the cost shock is p. We 
will let the price level right before the shock to be denoted by P. We 
distinguish between the impact effect, which we denote by Q(δ, p), and 
the subsequent rate of change of the (log of the) price level, denoted 
by q(t; δ, p). Thus

 (7)

Whenever it is clear, we omit δ and p from the expression for P, Q 
and q. Also, while P is the log of the aggregate price level, whenever 
it is clear, we will refer to it as just the price level.

Since we are measuring P in logs, then q(s; δ, p) is the inflation 
rate of the CPI s periods after the shock δ has occurred in an 
economy with steady-state inflation rate p. In particular, after 
the impact effect at time t = 0, the term q(s; δ, p)ds yields the 
contribution to the average (log) price of the firms that are adjusting 
prices at times between s and s + ds. This contribution is equal to  
q(s; δ, p) = [D+

p   λ
+
a (s)  – D–

p  λ–
a (s) ]  where D+

p   and D–
p are the same as in 

steady state, but the frequency of price increases and decreases, λ+
a (s) 

and λ–
a (s) , are time-varying. The reason these frequencies are time 

varying is that the density of the distribution of firms indexed by 
their price gap g, denoted also by f (g,t), is time varying. This density 
changes through time because the cost shock δ and the price changes 
that occur right after the cost shock have displaced it from its steady 
state. Thus, even following the same time invariant decision rules as 
in steady state, it takes time for the density to return to its steady-
state level described by equation (6). See the appendix C for the 
discrete time and discrete state space analog computation of the path 
of the distribution and of λ’s, or see Álvarez and Lippi (2019) for the 
continuous time characterization of the impulse response by using an 
eigenvalue-eigenfunction decomposition.
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We will compare the path of the log of the aggregate price level 
P(t; δ, p) against the path for the price level of the aggregate input. 
Recall that the aggregate input grows at rate p before and after the 
shock, and jumps by δ log points at time t = 0. In the long-run prices 
will increase by as much as the shock to the aggregate input, so that

 (8)

Impact effect. We define the impact effect Q as the jump in the 
price level at t = 0, i.e.,

 (9)

To be clear, if prices are fully flexible, we will have P(t) = W(t) + m 
for some constant m at all times. With menu costs, after the jump in 
the aggregate input prices, we expect that Q ≤ δ and that over time the 
price level P(t) catches up with the increases in the path of W(t). Later 
we show that this is true for values of δ and p/s2 that are not too large.

The impact effect is simple to compute following this two-step 
procedure. First we shift the distribution of price gaps from the steady 
state to the one right after the shock but before the prices adjust, so 
the new density is f(g + δ) with support [ g– δ, g– δ]. This is so because 
with the common increase in cost, the price gap of each firm decreases 
by δ. Second, using the lack of first-order strategic complementarity, 
all the firms that end up with price gaps g below g  will increase their 
prices from their new value for g to g*. Thus:

 (10)

This yields the following derivatives:

.

Evaluating these expressions at δ = 0, and using that, by definition  
Q (0, p) = 0 and that at the exit points of the invariant density we have 
f ( g), we obtain the following expansion of Q on δ:

 (11)
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As argued elsewhere,17 if the shock δ is small, then the impact effect 
Q is very small. Mathematically speaking, Q is of second order in δ. We 
can also see that the leading coefficient of δ increases with inflation 
since, as explained above, as p/s2 increases, the density becomes more 
concave in the lower segment, until in the limit f '( g) → ∞ as p/s2 → ∞. 
Thus the impact effect is of smaller order than δ, but the coefficient of 
δ2 increases with inflation. Whether this is an important effect for the 
level of inflation rates for the period of Argentina under consideration 
is an important issue that we will discuss below.

Two extreme examples help to organize ideas: First, consider 
the case where p/s2 = 0, then f '(g) = 1/(D+

p   )
2 is constant, and thus for  

δ ≤ D+
p   , equation (10) becomes

 .

As in the general case, for small δ, the value of Q is very small. 
Yet when δ is large, say in the order of magnitude of D+

p   , the impact 
effect can be large. For instance, if δ = D+

p   we have Q (δ, p) = 2/3δ, 
which is smaller than δ, but of the same order of magnitude than δ. 
Second, consider the other extreme case, where p/s2 → ∞. In this case f 
converges to a uniform distribution between [g , g*] and thus equation 
(10) becomes

,

which is of order δ. Note that for small δ, this gives the same 
answer as the case of full price flexibility, i.e., Q≈δ, and indeed it 
converges to a version of Caplin and Spulber (1987)’s neutrality case. 
Interestingly, when δ is not infinitesimal, then Q > δ. In this case, since  
P(t)– P– pt → δ as t → ∞, there must be an overshooting in the short 
run, and thus prices should have an eco and oscillate as they converge 
to their path. Indeed if δ = D+

p   we have Q (δ, p) = 3/2δ > δ.

17. See Álvarez and Lippi (2014), Álvarez, Le Bihan, and Lippi (2016), and Álvarez, 
Lippi, and Passadore (2016).
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The stark difference between the cases with p/s2 ≈ 0 and p/s2 → 
∞ calls for an evaluation in the case of Argentina during the period 
of interest where inflation rate is quite high, but far away from 
hyper-inflationary levels, say on the order of 25% per year when we 
exclude the peaks. Is this closer to the p/s2 → ∞ limit, or is it closer 
to the p/s2 → 0 limit? Additionally, is the size of the cost changes for 
δ for this period in Argentina large enough that we have to go beyond 
the approximation in equation (11)? Note that a relevant theoretical 
comparison is how large δ is relative to Dp

+ . Motivated by these 
considerations, we will evaluate the relevant expressions for calibrated 
parameters values and compare them with the “observed” impact effects.

Initial slope of the impulse response. We now characterize the 
initial inflation rate, just after the impact effect. For this we consider 
a very short-time interval right after the shock, which we denote by D. 
On the one hand, we note that immediately after the shock, there is no 
density near the upper bound g . On the other hand, there is a strictly 
positive density at the lower-bound g . Recall that price increases will 
occur for the firms in the lower bound of the inaction region, which gets 
an idiosyncratic increase in cost, and hence a decrease in g. Using the 
assumption of the Brownian motion for the idiosyncratic shocks, it can 
be shown that about half of the firms at the lower bound will increase 
prices in the very small interval of time following the aggregate cost 
shock. This means that, for a very short interval immediately after the 
impact effect, there is an extremely large number of price increases 
and almost no price decreases.

In particular, after the shift due to the common cost shock, the 
density is zero in the upper interval g  [g  – δ, g]. Thus, λ–

a (D) → 0 
as D → 0. On the other hand, after the impact effect, and differently 
from what happens at steady state, there is a positive density at  
g = g . This density is equal to 0 < f ( g  + δ) < f '( g)δ, where the 
inequality holds due to the concavity of the steady-state density f 
in [ g , g*]. Consider the discrete-time discrete-state approximation 
developed in appendix C, where each step of the process for g and of 
the discretized steady-state distribution are of size Ds. The number 
of firms changing prices per unit of time λ+

a (D) equals the density 
at the boundary times the step size Ds times the probability that 
those firms have an increase in cost, denoted by pd, and divided by 
the length of the time period D. For a diffusion, as D → 0 then pd → 1/2. 
Thus the fraction of firms changing prices per unit of time is f (g  + δ)s/
(2 D). This implies that λ+

a (D) → ∞ as D → 0. We have then q(D) → λ+
a 
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(D)D+
p   → ∞ as D → 0. Yet, q(D)D → 0, as D → 0, so the integral for P(t) is 

still well defined. An alternative more general way to show that the 
slope of the impulse response is infinite is in Álvarez and Lippi (2019), 
who use an eigenvalue-eigenfunction decomposition of the relevant 
linear operator.

2.5 Comparative Static of Cost Shocks

In this subsection we compare the effect of a small and a large-cost 
shock, say δ = 0.01 and δ = 0.1 for three economies: a low inflation 
one p = 0.025, a large inflation one, p = 0.25 and one close to the 
hyperinflationary range, p = 2.5. Recall that cost shocks are measured 
in logs, so we are trying 1% and 10% once-and-for-all shocks. Inflation 
rates are measured as annually continuously compounded (c.c.), so 
we are trying 2.5%, 25% and 250%, but in the last two cases recall 
that continuously compounded and annually compounded can be 
meaningfully different.18

Calibration. We use the same parameters for all cases. The 
parameters for the firm problem are chosen so that at p = 0.25, i.e., 25% 
annual continuously compounded inflation, the steady-state statistics 
resemble the same statistics in Argentina for the period under study. 
We use η = 7, which has a markup of just above 15% and a fixed cost 
of ψ = 0.012 yearly frictionless profits. We use an annual discount rate  
ρ = 0.04 and an annual volatility of idiosyncratic shock of s = 0.20.

With these parameters the model implies D+
p   = 0.12 and D–

p   = 0.097. 
The average number of price changes per year are λ+

a = 2.88 and  
λ–

a = 0.89.19 These figures are similar to the averages for Argentina, 
when we omit periods of abnormal cost increases. The size of cost 
changes in the data is around 10%–11%.20 The annual number of 
price changes measured as the fraction of outlets changing prices in 
a “normal” month times 12 is λ+

a ≈ 0.24 × 12 = 2.88 and λ–
a ≈ 0.073 × 12 

= 0.88.21

We will discuss the effect of small (δ = 0.01 or 1%) and large  
(δ = 0.10 or 10%) cost shocks for each of the three continuously 

18. Continuously compounded yearly inflation at rate p implies that the ratio of 
prices (or cost) at the end of the year relative to prices at the beginning of the year is ep. 
For example, with p = 0.25, this ratio is e0.25 ≈ 0.28, and for p = 2.5, this ratio is e2.5≈ 12.2!

19. We use a time period D =1/365/12, so two hours.
20. See figure 8.
21. See figure 7.



30 Fernando Álvarez and Pablo Andrés Neumeyer

compounded annualized inflation rates we consider: p = 0.025, p = 0.25 
and p = 2.5. The plots corresponding to each of the inflation rates 
are in figures 3, 4, and 5, respectively. The small shock is of a size we 
consider in the upper bound of what a normal monetary shock is. The 
large-cost shocks are similar of the type of shocks we argue occurred 
in Argentina during the period under consideration, which we view as 
extremely large. The three inflation rates correspond to: (i) a “common” 
inflation rate for a developed economy (p = 0.025 or 2.5% c.c. per year), 
(ii) a high inflation rate which is about the average running inflation 
during the period of study for Argentina when we exclude the spikes 
we associate to the jumps in cost (p = 0.25 or 25% c.c. per year), and 
(iii) a very large inflation on the hyperinflation range of almost 23% 
monthly compounded inflation (p = 2.5 or 250% c.c. per year).22 For 
each of the inflation rates, we present three panels of plots: the first 
panel with the path of the log of the aggregate CPI level and with the 
path of the log of the price of the aggregate input, the second panel 
with the density of the invariant distribution right before and right 
after the cost shock, and the third panel with the path for the (monthly 
moving average of the) frequency of price increases and price decreases. 
Each panel displays two cases, corresponding to the small-cost change 
(1%) on the left side of the panel, and to the large-cost change (10%) 
on the right side of the panel. In total there are nine subplots for each 
of the three inflation rates.

Some general comments on the objects of figures 3, 4, and 5 are 
in the same order.

First, in the top panel for each figure, we have the path of the 
log of the nominal price for the CPI and of the path of the log of the 
nominal price of the aggregate input. We normalize the price of the 
nominal input so that, at the time of the cost shock, both the core 
CPI and the price of the aggregate input are equal. The time of the 
cost shock is labeled t = 1, and time is measured in years for the first 
and third panels. Second, in the middle panel for each figure we have 
the invariant distribution for the price gaps at steady state and its 
version right after the cost shock, but before the price changes. In 
the horizontal axis we have indicated the values of g , g*, g . The price 
gap is measured in log point deviations, so that g = 0.1 represents 
10% log point difference between the static maximizing markup and 

22. To be clear, for p =2.5 annual continuously compounded rate, we have that the 
monthly compounded rate is (e2.5 – 1)×100≈23.12
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the markup corresponding to that value of g. We have shaded in grey 
the distribution of price gaps right after the cost shocks. This shaded 
area measures the fraction of firms (or products) that change prices 
on impact, i.e., at the time of the cost shock. Third, the bottom panel 
displays the average number of price changes per year. This is defined 
as follows: we take the fraction of firms (or products) that change prices 
per model period and then we divide it by the length of the model 
period. In the plot we display a centered monthly moving average of 
this number.23 We take a monthly moving average for comparability 
with the Argentine data, which uses monthly frequency, and also to 
smooth out the large jump. Note that at the time of the increase of 
the cost, these frequencies increase smoothly for about a month due 
to the fact that we use a centered moving average.

We end this section with a brief discussion on how the pattern 
of the different statistics in these figures illustrates the analytical 
properties derived above. First we discuss the difference between the 
impact effect of the jump in the cost of the aggregate input on the 
price level and the rate of converge of the price to the cost. Let’s first 
concentrate on the case of low (p = 0.025) and high inflation (p = 0.25), 
i.e., figures 3 and 4, respectively. Even though the inflation rate that 
roughly corresponds to Argentina is the large case (p = 25% c.c. per 
year), the pattern for the passthrough is similar in figures 3 and 4. 
For both inflation rates, the instantaneous passthrough is larger for 
the large-cost shock (as can be seen by comparing the left and right 
subplots). Nevertheless, as expected, in the case of high inflation  
(p = 25%), the passthrough is higher and the convergence is faster, 
i.e., the half-life of the shock with high inflation is one half relative to 
the low inflation one. The convergence rates in the figures with large 
shocks are so high, with half-lives below two months, that we are very 
close to full price flexibility.

23. The centered moving average at time t takes an average of half of (1/∆)/12 model 
periods before the date t, and half of (1/D)/12 model periods after the date t, where D is 
the length—measured in years—of the model period. See section C for details on the 
computations.
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Figure 3. Passthrough of Nominal Cost Shocks for Low 
Inflation (π = 2.5% c.c.)
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annual inflation = 2.5%

Path of nominal levels, δ = 10%,  
annual inflation = 2.5%

0.045

0.035

0.025

0.04

0.03

0.95 1.25 1.451.05 1.151 1.1 1.2 1.351.3 1.4

L
og

 r
ea

lt
iv

e 
to

 t
=

0

Time (in years)

Price
Cost

0.95 1.25 1.451.05 1.15

0.03
0.04

0.06
0.05

0.08
0.07

0.11
0.12

0.1
0.09

0.13

1 1.1 1.2 1.351.3 1.4
L

og
 r

ea
lt

iv
e 

to
 t

=
0

Time (in years)

Price
Cost

Impact shock δ = 1% and  
invariant density, p = 2.5% year

Impact shock δ = 10% and  
invariant density, p = 2.5% year

-0.1 0.2-0.05 0
-0.005

0

0.005

0.015

0.01

0.025

0.02

0.03 f(g)

0.05 0.1 0.15

D
en

si
ty

Markup deviations g

density before shock f(g)
density right afer shock
fraction adjust on impact

gg
g

g*

f(g)

gg
g

g*

-0.2 0.2-0.15 -0.1
-0.005

0

0.005

0.015

0.01

0.025

0.02

0.03

-0.05 0 0.05 0.150.1

D
en

si
ty

Markup deviations g

density before
shock f(g)
density right
afer shock
fraction adjust
on impact

No. of price increases λ+

dt
 and decreases 

λ–

dt
 per year, δ = 1%, p = 2.5% year

No. of price increases λ+

dt
 and decreases 

λ–

dt
 per year, δ = 10%, p = 2.5% year

0 2.50.5
1.2

1.4

1.6

2

1.0

2.6

2.4

2.2

2.8

1 1.5 2

fr
ac

ti
on

/
le

n
gt

h
 p

er
io

d
, 

m
on

th
ly

 m
ov

. a
vg

Time (in years)

Increases
Decreases

0 2.50.5
0
1

3
2

5
4

9
8
7
6

10

1 1.5 2

fr
ac

ti
on

/
le

n
gt

h
 p

er
io

d
, 

m
on

th
ly

 m
ov

. a
vg

Time (in years)

Increases
Decreases

Source: Authors’ calculations.

The case of very large inflation of figure 5 with a continuously 
compounded inflation p = 250% per year is different. As anticipated in 
the theoretical section, large shocks in an inflationary economy induce 
an overshooting of the price level on impact as shown in figure 5b. 
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As inflation is very high, firms that adjust prices (and pay the menu 
cost) find it optimal to save on future menu costs by raising prices by 
more than the cost shock. The case of a small shock depicted in figure 
5a instead, is similar to Caplin and Spulber (1987), also as expected.

Now we turn to the middle panel of each of the three figures, which 
in itself is useful to understand the instantaneous passthrough of the 
top panel just discussed. Note that for low inflation (π = 2.5% c.c. per 
year), the invariant distribution is almost a tent-map, as it should be 
for exactly zero inflation. Indeed, it is theoretically known that the 
effect of steady-state inflation around zero inflation is very small. 
For high inflation (p = 25% c.c. per year), the invariant distribution is 
convex-concave, as explained in the theoretical section above. Also as 
explained in the theoretical section, by comparing the small (δ = 0.01) 
and large-cost shocks (δ = 0.1) corresponding to the left and right 
panels respectively, it is seen that the number of firms (or products) 
that change prices (i.e., the size of the grey-shaded area) increases 
more than proportionally as the shock increases from 1% to 10%. 
Alternatively, we can see that the approximation that the impact effect 
on prices is proportional to the square of the cost shock δ is accurate 
for this range of shocks. Moreover, the size of the grey-shaded area for 
the 10% shock in the low inflation rate p = 2.5% case is smaller than in 
the high inflation rate p = 25% case, due to the convex-concave nature 
of the invariant distribution for the higher inflation rates. Again, the 
case of very large inflation (π = 250% c.c. per year) is different. 

The share of firms changing prices on impact is much closer to be 
proportional to δ than in the cases of lower inflation, as can be seen 
in figure 5d.

Lastly we turn to the behavior of the frequency of price increases 
and decreases, the bottom panel of the figures for each inflation rate. 
First, note that for low inflation (p = 2.5% c.c. per year in figure 3) while 
the rise in the frequency of price increases is moderately larger than 
the decline in the frequency of price decreases for small-cost shocks  
(δ = 0.01 in the left panel), this difference is much larger for the case of 
high-cost changes (δ = 0.10 in the right panel). The pattern is similar 
in the case of high inflation (p = 25% c.c. per year in figure 4), except 
that the differences between increases and decreases are a bit more 
stark. Instead, again, the situation for very large inflation (p = 250% 
c.c. per year, or figure 5) is different. Since there are almost no price 
decreases, there is no detectable change in them. On the expected 
number of price decreases, the behavior is very different between 
small-cost shocks (δ = 0.01 in the left panel) and large-cost shocks  
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(δ = 0.1 in the right panel). For small-cost shocks, we have the one-time 
blip that is characteristic of the mechanism in Caplin and Spulber (1987). 
Instead, as explained in the theory above, for large-cost shocks, there is 
overshooting which leads to a subsequent echo effect, which is seen in 
the damped oscillations in the path of the frequency of price increases.

Figure 4. Passthrough of Nominal Cost Shocks for High 
Inflation (π = 25% c.c.)
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Figure 5. Passthrough of Nominal Cost Shocks for Very High 
Inflation (π = 250% c.c.)
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3. argeNtiNa’s evideNCe oN large-Cost shoCks aNd 
PriCe dyNamiCs

In the previous section we studied how firms facing menu costs 
of price adjustments react to unexpected shocks to nominal marginal 
costs. We then studied the aggregate behavior of prices, paying 
particular attention to the effect of these shocks on the average 
price level, on the size of price changes, and on the frequency of price 
adjustment, both on impact and over time. In this section we look at 
how prices in the city of Buenos Aires reacted to the large nominal 
shocks described in section 1 and draw conclusions on the applicability 
of the model.

Figure 6 provides an overview of the behavior of our proxy of the 
nominal cost and of core prices. We prefer to look at core inflation 
because, as it excludes seasonal and regulated goods, this measure of 
prices avoids the mechanical direct impact that changes in regulated 
prices have on the CPI.

Figure 6. Nominal Costs and Pricve Levels
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There are three large jumps in costs: one in early 2014, a second 
one in early 2016, and a third one in May–September 2018. The 
first one is mainly due to a 23% devaluation that took place in the 
second half of January. As our measure of costs is based on monthly 
averages, our cost proxy jumps in December 2013 and in January 
2014. The 40% weight of tradable goods in our cost measure implies 
that the jump in cost is slightly above 9%, roughly in synch with the 
size of price changes in the data24 and in the simulated examples in  
subsection 2.5. Figure 6 also shows that there is a spike in inflation 
associated to each spike in nominal costs. Between November and 
February 2013, the cost proxy increased by 12%, while the price level 
increased by 8%. The second shock took place in the first half of 2016. 
It consisted of a sequence of cost shocks stemming from the impact 
of the removal of capital controls on the exchange rate and from the 
change in the relative price of regulated energy prices as shown in 
table 1. The impact effect relative to the size of the shock is smaller 
than in the first shock. The persistence of the shocks is reflected in the 
persistence of the high inflation. Finally, in the first quarter of 2018, 
there are nominal shocks of about 4% related to regulated prices and, 
starting in May, there are two exchange-rate lead spikes in nominal 
costs with peaks of 7% in May and 12% in September.

Several issues prevent us from using the data underlying  
figure 6 to estimate the impulse response of core prices to cost shocks 
analyzed in subsection 2.4. (i) At the time a shock hits, prices might 
still be adjusting to previous shocks. (ii) The cost shock might have 
been partially anticipated.25 (iii) An aggregate shock might change the 
relative price between consumer goods and wholesale goods. (iv) There 
might be other aggregate cost or productivity shocks not captured by 
our cost proxy. Nevertheless, we can check if the frequency and if the 
size of price changes in the data are consistent with the theoretical 
analysis in 3, illustrated in figures 3 to 5.

Figures 7 and 8 show the frequency and the size of price changes. 
The figures are based on the data underlying the city of Buenos 
Aires core consumer price index (IPCBA-rest). The city collects 
approximately 70,000 prices per month for 628 goods and services.26  
 

24. See figure 8.
25. This issue is especially relevant for the devaluation of December 2015. See for 

example Neumeyer (2015) and Levy-Yeyati (2015).
26. The instructions to the enumerators and other methodological issues are 

described in Dirección General de Estadística y Censos (2013).
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The frequency of price changes is computed as the fraction of prices that 
either increased or decreased between two consecutive observations 
within the goods and services included in the core measure of inflation. 
The size of price changes is the geometric equally weighted average of 
the absolute value of price increases/decreases. The methodology for 
computing these statistics is described in Álvarez and others (2019), 
where we discuss the property of this simple estimator and perform 
robustness checks.

Figure 7 shows the fraction of outlets changing price each month, 
our proxy for costs, and the core inflation level. Observe first that the 
average level of the fraction of price increases in “normal” times is 
0.24 and the one for price decreases is 0.073. The magnitude of the 
frequency of price decreases is interesting because it indicates that, 
for the levels of underlying inflation during 2012–18 in Argentina, 
the benchmark menu-cost model of Sheshinski and Weiss (1979) is 
unlikely to be the appropriate one—something that we will also see 
as we examine other statistics. It rules out the case of p/s → ∞ in  
figure 5, pointing out the importance of idiosyncratic shocks that 
induce some firms to lower prices even when costs are rising at a 
cruising speed of 2% per month.

Figure 7. Cost Shocks and the Frequency of Price Changes
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Second, the three cost shocks identified in our narrative in 2014, 
2016, and 2018 are large in the sense that their size is similar to the 
size of the price changes in normal times. In these three cases, the 
reaction of the frequencies of price changes is consistent with the 
predictions of the model for the case of a large shock with high inflation, 
illustrated in figure 4f. The shock at the beginning of 2014 is short-lived 
and of a magnitude similar to the δ = 0.1 in the simulated example. As 
suggested by the theory, the data shows a contemporaneous spike of 
the fraction of outlets raising prices to 0.45. The transitory decrease 
in the fraction of outlets lowering prices seems to be in the data, but 
it is hard to distinguish it from noise. The second episode corresponds 
to the sequence of cost shocks that took place in the first half of 2016. 

These shocks also induced an increase in the fraction of outlets 
raising prices that is less pronounced and more persistent than the 
one in 2014. The frequency of price increases peaks at 0.38 in January 
2016 and at 0.35 in May 2016. There seems to be a fall in the fraction 
of outlets lowering prices in the period leading to the devaluation 
but, again, it is hard to distinguish it from noise in the data. Finally, 
the fraction of outlets raising prices rises throughout 2018 reacts to 
the cost shocks, with peaks of 0.43 in June and 0.57 in September, 
coinciding with important jumps in the exchange rate.

Figure 8 describes the absolute size of price changes conditional 
on a price change taking place. In “normal” times, the absolute size of 
positive and negative price changes is similar, around 10–11%. This is 
consistent with the theory. However, the fact that the absolute value 
of price decreases is sometimes higher than the one for price increases 
after 2014 is inconsistent with the theory.27

The reaction of the size of price changes to the cost shocks also 
gives empirical support to the menu-cost model. In the theory, when 
there is a large-cost shock, many firms end up with a markup that is 
outside the inaction range, as shown is figure 4d. This implies that 
the magnitude of price increases has to grow in the presence of large 
unanticipated shocks. The magnitude of price decreases, on the other 
hand, should not change as a result of increases in nominal marginal 
costs, as no firm’s markups are pushed above the upper band, g
. These two predictions of the theory are observed in the data. For 
the three shocks, we observe significant increases in the magnitude 
of price increases in figure 8, which reach 1.5 times “normal” values.  

27. These differences may just be noise.
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Figure 8. Cost Shocks and the Size of Price Changes
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Also, the magnitude of price decreases does not show abnormal 
patterns around the time of cost shocks.

We conclude this section by saying that the behavior of the 
frequency and of the size of price changes supports the passthrough 
of costs shocks to prices predicted by the menu-cost model of price 
adjustment. In “normal” times with small shocks, the frequency and the 
size of price changes are consistent with the simulations for p = 0.25 
and δ = 0.01 in subsection 2.5, thus supporting the choice of parameter 
values for ψ/B and p/s used in the simulations. The frequency of price 
decreases of 0.073 and the fact that the size of price increases and 
decreases imply that idiosyncratic firm shocks are important. The 
expected duration of prices, computed as (λ+ + λ–)–1, is 3.2 months, 
thus supporting the importance of price rigidities. For the episodes 
that we interpret as large unanticipated cost shocks, the frequency and 
the size of price adjustments react as the theory predicts with large 
increases in the size and in the frequency of price increases, and with 
no discernible effects on these variables for the case of price decreases. 
This leads us to conjecture that the fast passthrough of costs to prices, 
predicted by the theory but hard to estimate in our dataset, is likely 
to be present in the data.
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aPPendix a

Derivation of the Profit Function

Define

.

Thus

and evaluating it at g = 0 

.

Likewise

and evaluating it at g = 0

.

The level of the optimized value of Π is:

.
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A second order expansion of  around (0, x , z ) gives:

Since P'(0) = 0, we have:

.

Finally, ignoring the terms that are smaller than second order, or 
that do not involve g, and dividing by (0, x , z ), the maximum profit 
at x , we have:
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aPPendix B

Value Function and Optimal Decision Rules

The value function V(·) and the optimal decision rules { g , g∗, g} 
solve the following system of o.d.e. and boundary conditions:

as well as value matching and smooth pasting at the boundary of the 
range of inaction as well as optimality of g∗:

As explained in Álvarez and others (2019), the decision rules 
depend on ψ/B, p/s2 and ρ/s2. One can further simplify the problem 
by considering the case in which ρ → 0, the so called “ergodic” control 
case. Indeed the solutions are very insensitive to ρ when it takes 
small values—one can show that the derivative of them with respect 
to ρ is zero when evaluated at ρ = 0. The appendix in Álvarez and 
others (2019) describes the limit that defines the ergodic control case 
and characterizes its solutions. One can also compare the solutions 
obtained numerically with the method described in appendix C, which 
requires ρ > 0; they are almost identical. Hence, to simplify, we will 
parametrize the solutions by two ratios: ψ/B and p/s2.
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aPPendix c

Numerical Solution of Value Function and Simulated 
Statistics

An alternative way to compute both the value function and the 
optimal policies, as well as the effect of cost shocks of the price level, 
is to discretize time as well as the state space. We consider there a 
discrete time and discrete state version of the problem. We let D be 
the length of the time period. We will let Ds be the distance between 
any two points in the state space. For this purpose, we represent the 
Brownian motion during the range of inaction as:

so that  and . Thus 
we can let the state space be  with typical element  
gk  G. The value function is just a vector . The discretized 
version solves the following Bellman equation:

for k = –K, –K + 1,..., K – 1, K. The choice of K should be large enough 
so that the range on inaction is well in the interior of G. The choice of 
D should be small enough so that it approximates well the continuous 
time limit. The solution of this problem will give the thresholds g  and 
g , as well as k* =  argmaxk{Vk} so that g* = gk*.

We let f be a 2K + 1 positive vector containing the fraction of 
firms with different price gaps. For instance, fk will be the fraction 
of firms with price gap gk. The law of motion for the vector with 
the distribution of firms f(t + 1) can be represented by a square 
stochastic matrix L of 2K + 1 × 2K + 1 dimensions, so f (t + D) = Lf 

(t), where we use f (t) for the column vector of 2K + 1 values of the 
fractions of firms fk

 (t) at time t with price gap gk. The matrix L can 
be thought as the sum of two matrices. The first matrix has zeros 
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in all the entries, except in the entries next to the diagonal where 
it has either pu or pd, keeping tract of the mass of firms within the 
inaction region. The second matrix is also sparse—it has zeros and 
ones, with ones indicating that the firms that are outside the range 
of inaction will transit to optimal return point k* with probability 
one. Recall that we have: fj

 (t + D) = ∑k = –K,K Lj.k fk
 (t). Let k, k*and k 

be the indices of the elements of f that correspond to g , g∗and g , 
respectively.

The elements Li, j are zero, except in the following cases.
1. For k = –K,..., k – 1), then Lk*,k = 1,
2. For k = k + 1,..., K, then Lk*,k = 1,
3. For k = k+ 1,..., k – 1, then Lk,k+1 = pd and Lk,k–1 = pu, 
4. Lk,k+1 = pd and Lk,k–1  = pu, and
5. Lk*,k  = pd and Lk*,k  = pu.
As it is well known, the invariant distribution can be obtained by 

computing the powers of LT for a large value of T. Alternatively, the 
invariant distribution is the eigenvector associated with the eigenvalue 
equal to one of matrix L.

The fraction of price changes per period of length D is given a  
λ+

a (t) = 1
D

 l+f (t), where l+ is a vector that adds the components of the 

vector f(t) with values below g . In particular, the row vector l+ has:
1. l+

k  = 1 for k = –K,..., k–1,
2. l+

k = pd, and
3. l+

k  = 0 for k = k + 1,..., K.
We can define λ–

a (t) = 1
D

 l– f (t) in an analogous way. The row vector  
l– has:

1. l–
k  = 1 for k = k + 1,..., K,

2. l–
k
= pu, and

3. l–
k  = 0 for k = –K,..., k – 1.

Thus, the fraction of firms that change prices between t and t + D 
per unit of time is λa (t) = λ+

a (t) + λ–
a (t). Note that the definition of λa 

, λ+
a  and λ–

a , divides the fraction of firms that adjust prices by D so 
that it is comparable, at least for small D, to the continuous time 
expressions. Hence, if we multiply the expressions for λa (t), λ

+
a (t), or  

λ–
a (t) by D, we will obtain fraction of firms that change prices during 

the interval t and t + D. 
Discrete-time – discrete-state impulse response. We can write 

the equivalent of the impulse response on prices using the matrix L.  
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We start with f  given by the invariant distribution implied by L. Then 
we let f  (0; δ) be the 2K+1 vector of the displaced initial conditions. 
This is a shift of the mass to the left by an amount equal δ. This vector 
is given by:

 (12)

and where  which, for simplicity, we assume to be an 
integer. Now we can compute the impact effect Q:

. (13)

Then we compute the sequence of distribution of firms indexed 
by their price gap as:

f (D) = [L] j f  (0; δ) for j = 1, 2,...

With these elements we compute the rate of increase in prices q’s:

 (14)

where

 (15)

and

 (16)

The analog of the continuous time impulse response is:

where  is the price level in steady state just before the cost shock, 
or  = P(– D).

To simplify the exposition we have not taken into account the 
regular idiosyncratic shocks that also occur during the period between 
t = 0 and t = D. To correct for this effect we have included pD to the 
initial value of , which is the correct value, since we are starting with 
the invariant distribution. This has the interpretation that the shock 
δ occurs at the end the discrete period, but before the next period. As 
D → 0, these effects can be neglected.




