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Abstract


This paper discusses two sources of ideas that influence monetary policy makers today.
The first is a set of analytical results that impose the rational expectations equilibrium
concept and do ‘intelligent design’ by solving Ramsey and mechanism design problems.
The second is the adaptive learning process that first taught us how to anchor the price
level with a gold standard, then how to replace the gold standard with a fiat currency
wanting nominal anchors. Models of out-of-equilibrium learning tell us that such an
adaptive evolutionary process will converge to a self-confirming equilibrium (SCE). In
an SCE, a government’s probability model is correct about events that occur under
the prevailing government policy, but possibly wrong about the consequences of other
policies. That causes mistakes absent from a rational expectations equilibrium and
enlarges the role of learning.
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1 Introduction


. . . the ideas of economists and political philosophers, both when they are right


and when they are wrong, are more powerful than commonly understood. Indeed


the world is ruled by little else. Practical men, who believe themselves to be quite


exempt from any intellectual influences, are usually the slaves of some defunct


economist. Madmen in authority, who hear voices in the air, are distilling their


frenzy from some academic scribbler of a few years back. Keynes (1936, p. 383)1


Today leading practical men and women at important institutions in my field, the central


banks, are distinguished academic economists. They have used prevailing academic ideas to


choose policies. Some designed new institutions. For example, in 1997 Mervyn King and


others created new decision-making protocols for Britain’s monetary policy committee.


This essay is about two important sources of prevailing ideas in macroeconomics. The


first is a collection of powerful theoretical results and empirical methods described in sections


2, 3, and 4 that apply the rational expectations equilibrium concept to estimate models and


design optimal macroeconomic policies intelligently. The second is an adaptive evolutionary


process, modelled in section 5 and illustrated in sections 6 and 7, that has left us an historical


economic record littered with discarded ideas and policies.


The rational expectations equilibrium concept equates all subjective distributions with


an objective distribution. It is useful to distinguish the step of equating all subjective distri-


butions from the step of equating subjective distributions to the objective distribution that


actually governs outcomes. By equating subjective distributions for endogenous variables to


an equilibrium distribution implied by a model, the rational expectations hypothesis makes


agents’ beliefs disappear as extra components of a theory and sets the stage for a variety


1A younger Keynes was less optimistic about the influence of economists’ ideas:


Financiers of this type [Lord Rothschild, Lord Avebury, Lord Swaythling] will not admit the
feasibility of anything until it has been demonstrated to them by practical experience. It follows,
therefore, that they will seldom give their support to what is new. Keynes (1913, pp. 24-25)
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of powerful theoretical results and intelligent policy design exercises described in section 2.


Section 3 describes theoretical and practical reasons for equating subjective distributions to


an objective one and how it facilitates the rational expectations econometrics described in


section 4.


The assumption that agents share common beliefs underpins influential doctrines about


whether observed inflation-unemployment dynamics can be exploited by policy makers, the


time inconsistency of benevolent government policy, the capacity of reputation to substitute


for commitment, the incentives for one type of policy maker to emulate another, and the


wisdom of making information public. The common beliefs assumption is especially stressed


in modern theories of optimal macroeconomic policy that focus on how a benevolent gov-


ernment optimally shapes expectations. This intelligent design approach to macroeconomic


policy perfects an older econometric policy evaluation method that Lucas (1976) criticized


because it imputed different beliefs to the government and the other agents.


Intelligent design is normative (‘what should be’) economics, but when it influences policy


makers, it becomes positive (‘what is’) economics, as asserted in the epigraph from Keynes.


Some researchers in the intelligent design tradition ignore the distinction between positive


and normative economics from the start. Thus, a standard tool for understanding observed


time series properties of government debt and taxes is to apply a normative analysis, e.g.,


Barro (1979), Lucas and Stokey (1983), and Aiyagari et al. (2002). It is also true that some


policy advisors have enough faith that evolution produces good outcomes to recommend


copying best practices (for example, see Keynes (1913)). If only good things survive the


tests of time and practice, evolution produces intelligent design.


Theories of out-of-equilibrium learning tell us not always to expect that.2 Section 5


extends a disturbing possibility that emerges from recent developments in the rational ex-


pectations econometrics of section 4 to describe how a system of adaptive agents converges


to a self-confirming equilibrium in which all agents have correct forecasting distributions for


2Nevertheless, subsection 7.2 identifies special features of a model of Primiceri (2006) that makes outcomes
converge to the best of all possible worlds.


2







events that occur often enough along an equilibrium path, but possibly mistaken views about


policies and outcome paths that are not observed. This matters because intelligent design


of rational expectations equilibria hinges on knowing and manipulating expectations about


events that will not be observed. Self-confirming equilibria allow models to survive that im-


ply mistaken policies even though they match historical data. Section 6 mentions examples


from a millenium of monetary history. To tell some stories about the emergence of U.S.


inflation in the 1970s and its conquest under Volcker and Greenspan, section 7 uses adaptive


models in which the government solves intelligent design problems using probability models


that are misspecified, either permanently or temporarily. While these stories differ in many


interesting details, they all say that choices of the monetary authorities were determined


by misunderstandings that do not occur within a rational expectations equilibrium.3 Sec-


tion 8 concludes by commenting on some of the reasons that policy makers and students of


macroeconomic history have thought in terms of adaptive processes that are beyond rational


expectations equilibria.


2 Intelligent design with common beliefs


By solving Pareto problems in which a planner and all agents optimize in light of informa-


tion and incentive constraints and a common probability model, what I call intelligent design


is a coherent response to Lucas’s (1976) indictment of pre-rational expectations macroeco-


nomic policy design procedures. Lucas accused those procedures of incorporating private


agents’ decision rules that were not best responses to government policy under an equilib-


rium probability measure. The cross-equation restrictions of common belief models fix that


problem.


I use f to denote a probability density and xt to denote a history xt, xt−1, . . . , x0. Partition


xt = [yt vt]
′, where vt is a vector of decisions taken by a government and yt is a vector of


3These adaptive models make room for a ‘law of unintended consequences’ cited by Friedman (1991) that
is excluded from rational expectations equilibria.
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all other variables. Let f(y∞, v∞|ρ) be a joint density conditional on a parameter vector


ρ ∈ Ωρ. Government chooses a sequence h of functions


vt = ht(x
t|ρ), t ≥ 0, (1)


to maximize a Pareto criterion that can be expressed as expected utility under density


f(x∞|ρ): ∫
U(y∞, v∞|ρ)f(y∞, v∞|ρ)d(y∞, v∞). (2)


Modern intelligent design in macroeconomics solves government programming problems (2)


with models f that impute common beliefs and best responses to all of the agents who


inhabit the model. The common beliefs assumption used to construct the macroeconomic


model makes parameters describing agents’ beliefs about endogenous variables disappear


from the vector ρ.


The common beliefs assumption underlies a long list of interesting results in modern


macro. The following four have especially influenced thinking within central banks.


1. Expected versus unexpected government actions. Lucas (1972b) drew a sharp distinc-


tion between the effects of foreseen and unforeseen monetary and fiscal policies when


the government and the public share a probability model. That idea defines the terms


in which central bankers now think about shocks and systematic policies.


2. Optimal fiscal and monetary policy cast as Ramsey and mechanism design problems.


A literature summarized and extended by Clarida et al. (1999) and Woodford (2003)


uses dynamic macroeconomic models with sticky prices to design monetary policy rules


by solving Ramsey plans like (2) and finding good ways to represent and implement


them. New dynamic models of public finance refine Ramsey plans by focusing on


a tradeoff between efficiency and incentives that emerges from the assumption that


each individual privately observes his own skills and effort, a feature that imposes


constraints on the allocations that the planner can implement relative to ones he could
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achieve if he had more information.4


3. Time consistency. The availability of the rational expectations equilibrium concept


enabled Kydland and Prescott (1977) and Calvo (1978) to explain how alternative


timing protocols affect a benevolent government’s capacity to manipulate and then


confirm prior expectations about its actions.5 The time consistency ‘problem’ is the


observation that equilibrium outcomes in a representative-agent economy depend on


the timing protocol for decision making that nature or the modeler imposes. Better


outcomes emerge if a government chooses a history-contingent plan once-and-for-all


at time 0 than if it chooses sequentially. By choosing future actions at time 0, the


government can take into account how expectations about its actions at times t > 0


influence private agents’ actions at all dates between 0 and t. A government must


ignore those beneficial expectations effects if it is forced to choose sequentially.


4. Reputation can substitute for commitment. Under rational expectations, a govern-


ment strategy plays two roles, first, as a decision rule for the government and, second,


as a system of private sector expectations about government actions that the gov-


ernment always wants to confirm.6,7 A system of expectations is a history-dependent


4See for example Golosov et al. (2003), Kocherlakota (2005), and Golosov et al. (2007).
5While technical treatments of the time consistency problem rely heavily on the rational expectations


equilibrium concept, all that is needed to spot the problem is that private agents care about future govern-
ment actions. In a discussion at the U.S. Constitutional Convention about whether the Federal government
should be prohibited from fiduciary currency on August 16, 1787, Gouverneur Morris, Oliver Ellsworth, and
James Madison recognized a time consistency problem, while Edmund Randolph and George Mason raised
doubts about tying the hands of the government because no one can foresee all contingencies. See Madison
(1987, pp. 470-471).


6The theory is silent about who chooses an equilibrium system of beliefs, the government (after all, it is


the government’s decision rule) or the public (but then again, they are the private sector’s expectations).
This and the multiplicity of equilibria make it difficult to use this theory to formulate advice to policy makers
about actions that can help it to earn a good reputation. Instead, the theory is about how a government
comes into a period confronting a set of private sector expectations about its actions that it will want to
confirm. Blinder (1998, pp. 60-62) struggles with this issue when he describes pressures on the Fed not
to disappoint the market. While Blinder’s discussion can be phrased almost entirely within the rational
expectations paradigm, the account by Bernanke (2007) of the problems the Fed experiences in anchoring
private sector expectations cannot. Bernanke argues in terms of objects outside a rational expectations
equilibrium.


7The theory of credible public policy seems to explain why some policy makers who surely knew about
better decision rules chose instead to administer ones supporting bad outcomes. Chari et al. (1998) and
Albanesi et al. (2002) interpret the big inflation of the 1970s and its stabilization in the 1980s in terms of the
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government strategy like (1). A credible public policy is an equilibrium system of ex-


pectations that gives a government incentives to confirm prior expectations about its


future actions, actions to which to it cannot commit because it chooses sequentially.8


There are multiple equilibrium strategies, i.e., multiple systems of common expecta-


tions that a government would want to confirm, with incentive constraints tying good


and bad equilibria together.


These theoretical rational expectations results have influenced the way monetary policy


is now discussed within central banks. Because central banks want to implement solutions


of Ramsey problems like (2) in contexts like (1) in which the distinction between the effects


of foreseen and unforeseen policy actions is important, a time consistency problem like (3)


arises, prompting them to focus on ways like (4) of sustaining good reputations.9


3 Justifications for equating objective and subjective


distributions


These and many other theoretical results hinge on the part of the rational expectations


equilibrium concept that equates subjective distributions for endogenous variables to an


equilibrium distribution. To gain empirical content, rational expectations models also takes


the logically distinct step of equating the equilibrium distribution to the data generating


distribution. I shall use asset pricing theory to illustrate two justifications for taking that


step, one based on an argument that agents with beliefs closer to the truth will eliminate


others, another on empirical convenience.


actions of benevolent and knowledgeable policy makers who became trapped within but, thanks to a sunspot,
eventually managed to escape expectations traps within subgame perfect or Markov perfect equilibria.


8See the credible public policy models of Stokey (1989, 1991) and Chari and Kehoe (1993b,a). By making
an intrinsically ‘forward-looking’ variable, a promised discounted value for the representative household, also
be a ‘backward-looking’ state variable that encodes history, Abreu et al. (1986, 1990) tie past and future
together in a subtle way that exploits the common beliefs equilibrium concept. For some applications, see
Chang (1998), Phelan and Stacchetti (2001), and Ljungqvist and Sargent (2004, ch. 22).


9See Blinder (1998) and Bernanke et al. (2001).
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Hansen and Singleton (1983) and many others have generated restrictions on the co-


variation of consumption and a one-period return Rj,t+1(xt+1) on asset j by starting with


consumer i’s Euler equation


1 = β


∫
xt+1


u′
i(ci,t+1(x


t+1))


u′
i(ci,t(xt))


Rj,t+1(xt+1)fi(xt+1|xt)dxt+1 (3)


where fi(xt+1|xt) is consumer i’s subjective one-step-ahead transition density for a state vec-


tor xt+1 that determines both returns and time t+1 consumption, ci,t+1, and u′
i(ci,t+1(x


t+1))


is consumer i’s marginal utility of consumption.


3.1 Complete markets and survival


In a finite-horizon setting, Harrison and Kreps (1979) showed that when there are complete


markets, the stochastic discount factor


mt+1 = β
u′


i(ci,t+1(x
t+1))


u′
i(ci,t(xt))


fi(xt+1|xt)


f(xt+1|xt)
(4)


is unique. Here f(xt+1|xt) is a common physical conditional density. Because offsetting


differences in marginal utility functions and probabilities leave the left side of (4) fixed, the


uniqueness of the stochastic discount factor allows different densities fi. Suppose that den-


sity f actually governs outcomes. Then Blume and Easley (2006) showed that in complete


markets economies with Pareto optimal allocations and an infinite horizon, for the subset


of agents with positive wealths in the limit, all fi(x
∞)’s merge to the density that is clos-


est to the truth f(x∞).10 Merging means that the densities agree about tail events.11 If


fi(x
∞) = f(x∞) for some i, then for an infinite horizon complete markets economy with a


Pareto optimal allocation, this survival result implies the rational expectations assumption,


10Closest as measured by Kullback and Leibler’s relative entropy.
11In the context of a complete markets economy with a Lucas tree, Sandroni (2000) argued that a dis-


agreement about tail events would present some consumers with arbitrage opportunities that cannot exist
in equilibrium.
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provided that agents have access to an infinite history of observations at time 0.


3.2 Incomplete markets


Grossman and Shiller (1981), Hansen and Singleton (1983), and Hansen and Richard (1987)


wanted an econometric framework for incomplete markets, in which case it is not enough to


appeal to Blume and Easley’s market survival justification for assuming that beliefs are com-


mon or eventually common. Hansen and Singleton (1983) and Hansen and Richard (1987)


did not let that stop them. They simply imposed rational expectations directly and made


enough stationarity assumptions to validate a Law of Large Numbers that gives GMM or


maximum likelihood estimators good asymptotic properties. Under the rational expectations


assumption, (3) imposes testable restrictions on the empirical joint distribution of returns


and either individual or aggregate consumption.


3.3 An empirical reason to allow belief heterogeneity


Many have followed Hansen and Singleton (1983) and Hansen and Richard (1987) by im-


posing rational expectations, letting u(c) = c1−γ


1−γ
, and defining the stochastic discount factor


as the intertemporal marginal rate of substitution


mt+1 =
βu′(ct+1)


u′(ct)
. (5)


The aggregate consumption data have treated (5) and


1 =


∫
xt+1


mt+1(x
t+1)Rj,t+1(xt+1)f(xt+1|xt)dxt+1 (6)


badly. One reaction has been to stick to rational expectations but to add backward-looking


(see Campbell and Cochrane (1999)) or forward-looking (see Epstein and Zin (1989)) con-


tributions to time t felicity. Another reaction has been to let disparate beliefs contribute to


the stochastic discount factor. Hansen and Jagannathan (1991) opened the door to such an
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approach when they treated the stochastic discount factor mt+1 as an unknown nonnegative


random variable and deduced what observed returns Rj,t+1 and restriction (6) imply about


the first and second moments of admissible stochastic discount factors (with incomplete


markets, there exist multiple stochastic discount factors). Their idea was that before spec-


ifying a particular theory about the utility function and beliefs linking m to real variables


like consumption, it could be useful to characterize the mean and standard deviation that


an empirically successful m must have. This approach leaves open the possibility that a


successful theory of a stochastic discount factor will assign a role to a fluctuating probability


ratio fi(xt+1|xt)
f(xt+1|xt)


6= 1 even for an economy in which agent i is a single representative agent.


The likelihood ratio creates a wedge relative to the Euler equation that has usually been fit


in the rational expectations macroeconomic tradition originating in Hansen and Singleton


(1983) and Mehra and Prescott (1985). Likelihood ratio wedge approaches have been inves-


tigated by Bossaerts (2002, 2004), Hansen (2007), and Hansen and Sargent (2006), among


others. The art in Hansen (2007) is to relax rational expectations enough to understand the


data better while also retaining the econometric discipline that rational expectations models


acquire by economizing on free parameters that characterize agents’ beliefs.12


3.4 Another empirical reason to allow belief heterogeneity


Applied macroeconomists know that data can be weakly informative about parameters and


model features. Ultimately, this is why differences of opinion about how the economy works


can persist. The philosophy of Hansen (2007) is to let agents inside a model have views that


diverge from the truth in ways about which the data speak slowly and quietly.


12Hansen (2007) bears only one new free parameter that governs how much a representative agent’s beliefs
are exponentially twisted vis-a-vis the data generating mechanism.
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4 Rational expectations econometrics


Ideas from rational expectations econometrics will help me to set the stage for some stories


and models that feature gaps between an objective distribution and the temporary subjective


distributions used by a government that solves a sequence of intelligent design problems. I


review econometric methods that allow an outsider to learn about a rational expectations


equilibrium and introduce some objects and possibilities that are in play in about models


containing agents who are learning an equilibrium.


A rational expectations equilibrium is a joint probability distribution f(xt|θo) over his-


tories xt indexed by free parameters θo ∈ Θ that describe preferences, technologies, endow-


ments, and information. For reasons that will become clear, I have called the parameter


vector θ rather than ρ as in section 2. Rational expectations econometrics tells an econome-


trician who is outside the model how to learn θ. The econometrician knows only a parametric


form for the model and therefore initially knows less about the equilibrium joint probability


distribution than nature and the agents inside the model. The econometrician’s tools for


learning θ are (1) a likelihood function, (2) a time series or panel of observations drawn from


the equilibrium distribution, and (3) a Law of Large Numbers, a Central Limit Theorem, and


some large deviations theorems that can be used to characterize limits, rates of convergence,


and tail behaviors of estimators. With enough data and a correct likelihood function, an


econometrician can learn θo.


A likelihood function is another name for a rational expectations equilibrium evaluated


at a particular history is


L(θ|xt) = f(xt|θ) = f(xt|xt−1; θ)f(xt−1|xt−2; θ) · · · f(x1|x0; θ)f(x0|θ). (7)


The most confident and ambitious branch of rational expectations econometrics recommends


maximizing a likelihood function or combining it with a Bayesian prior p(θ) to construct a
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posterior p(θ|xt).13 In choosing θ to maximize a likelihood function, a rational expectations


econometrician in effect searches for a system of expectations that prompts the forward-


looking artificial agents inside the model to make decisions that best fit the data.14 Taking


logs in (7) gives


log L(θ|xt) = `(xt|xt−1; θ) + `(xt−1|xt−2; θ) + · · · + `(x1|x0; θ) + `(x0|θ) (8)


where `(xt|xt−1; θ) = log f(xt|xt−1; θ). Define the score function as st(x
t, θ) = ∂`(xt|xt−1,θ)


∂θ
. In


population, the first-order conditions for maximum likelihood estimation are the conditional


moment conditions


E[st|xt−1] = 0, (9)


which imply that the score vector is a martingale difference sequence, the starting point for


a theory of statistical inference. By replacing the mathematical expectation E in equation


(9) with its sample analogue T−1
∑T


t=1, an econometrician finds a θ that allows him to


approximate the equilibrium density very well as T → +∞.


4.1 Using a misspecified model to estimate a better one


Lucas (1976) warned researchers not to use non-structural models for policy analysis. But


the first-order conditions for estimating a good fitting nonstructural model can help to make


good inferences about parameters of a structural economic model.


Indirect estimation assumes that a researcher wants to estimate a parameter vector ρ of


a structural rational expectations model for which (1) analytical difficulties prevent directly


evaluating a likelihood function f(xt|ρ), and (2) computational methods allow simulating


time series from f(xt|ρ) at given vector ρ. See Gourieroux et al. (1993), Smith (1993),


and Gallant and Tauchen (1996). Indirect estimation carries along two models, a model


13For early applications of this empirical approach, see Sargent (1977), Sargent (1979), Hansen and Sargent
(1980), Taylor (1980), and Dagli and Taylor (1984).


14As the econometrician searches over probability measures indexed by θ, he imputes to the agents inside
the system of expectations implied by the θ under consideration.
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of economic interest with an intractable likelihood function, and an auxiliary model with


a tractable likelihood function that fits the historical data well. The parameters of the


economist’s model ρ are interpretable in terms of preferences, technologies, and information


sets, while the parameters θ of the auxiliary model f(xt|θ) are data fitting devices. The idea


of Gallant and Tauchen (1996) is first to estimate the auxiliary model by maximum likeli-


hood, then to use the score functions for the auxiliary model and the first-order conditions


in equation (9) to define a criterion for a GMM estimator that can be used in conjunction


with simulations of the economic model to estimate the parameters ρ. Thus, let the auxiliary


model have a log likelihood function given by equation (8) and, for the data sample in hand,


compute the maximum likelihood estimate θ̂. For different ρ’s, simulate paths xτ (ρ) for


τ = 1, . . . , N from the economic model. Think of using these artificial data to evaluate the


score function for the auxiliary model st(x
t(ρ), θ̂) for each t. Gallant and Tauchen estimate


ρ by setting the average score for the auxiliary model15


1


N


N∑
τ=1


sτ (x
τ (ρ), θ̂) (10)


as close to zero as possible when measured by a quadratic form of the type used in GMM.


If the auxiliary model fits well, this method gives good estimates of the parameters ρ of the


economic model. In particular, the indirect estimator is as efficient as maximum likelihood


in the ideal case that the economic and auxiliary models are observationally equivalent.


4.2 A troublesome possibility


This ideal case raises the following question: what happens if macroeconomic policy makers


incorrectly use what from nature’s point of view is actually an auxiliary model? Data give the


government no indication that it should abandon its model. Nevertheless, the government


can make major policy design mistakes because its misunderstands the consequences of poli-


15This description fits their Case 2.
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cies that it has not chosen.16 The possibility that the government uses what, unbeknownst


to it, is just an auxiliary model, not a structural one, sets the stage for the self-confirming


equilibria that play an important role in the adaptive learning models of the following section


and in the stories to be told in sections 6 and 7.


5 Adaptive learning models and their limits


Section 3 described Blume and Easley’s demonstration that a survival argument for equat-


ing objective and subjective distributions falls short in many economies. This section takes


up where that discussion left off by describing transient and limiting outcomes in models


in which agents make decisions by using statistical models that at least temporarily are


misspecified. I summarize findings from a literature that studies systems of agents who


use forward-looking decision algorithms based on temporary models that they update using


recursive least squares algorithms (see Marcet and Sargent (1989a), Evans and Honkapohja


(1999, 2001), Woodford (1990), and Fudenberg and Levine (1998)).17 These adaptive sys-


tems can have limiting outcomes in which objective and subjective distributions are equal


over commonly observed events, but not over rarely observed events. That causes problems


for intelligent macroeconomic policy design. I shall use examples of such adaptive systems


to tell some stories in section 7. It is useful to begin by defining some population objects


that suppose that agents have finished learning.


5.1 Self-confirming equilibrium


.


A true data generating process and an approximating model, respectively, are


f(y∞, v∞|ρ) and f(y∞, v∞|θ). (11)


16See Lucas (1976), Sargent (1999, ch. 7), and Fudenberg and Levine (2007).
17Appendix A describes a related literature on learning in games.
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A decision maker has preferences ordered by


∫
U(y∞, v∞)f(y∞, v∞|θ)d(y∞, v∞) (12)


and chooses a history-dependent plan


vt = ht(x
t|θ), t ≥ 0 (13)


that maximizes (12). This gives rise to the sequence of decisions v(h|θ)∞. The difference


between this choice problem and the canonical intelligent design problem in section 2 is the


presence of the approximating model f(y∞, v∞|θ) in (12) rather than the true model that


appeared in in (2). I call maximizing (12) a “Phelps problem” in honor of a government


control problem that Phelps (1967) solved and that will play an important role in section 7.


Definition 5.1. A self-confirming equilibrium (SCE) is a parameter vector θo for the ap-


proximating model that satisfies the data-matching conditions


f(y∞, v(h|θo)
∞|θo) = f(y∞, v(h|θo)


∞|ρ). (14)


An SCE builds in, first, optimization of (12) given beliefs indexed by θo, and, second, a


θ = θo that satisfies the data matching conditions (14). Data matching prevails for events


that occur under the equilibrium policy v(h|θo)
∞, but it is possible that


f(y∞, v∞|θo) 6= f(y∞, v∞|ρ) (15)


for v∞ 6= v(h|θ)∞. In an SCE, the approximating model is observationally equivalent with


the true model for events that occur under the policy implied by equilibrium decisions, but


not necessarily under other policies.
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5.2 Learning converges to an SCE


An SCE is a possible limit point an adaptive learning process. Bray and Kreps (1987)


distinguish between learning about an equilibrium and learning within an equilibrium.18 By


saying about and not within, Bray and Kreps emphasize that the challenge is to analyze how


a system of agents can come to learn an endogenous objective distribution by using adaptive


algorithms that do not simply apply Bayes’ law to a correct probability model.19 We can’t


appeal to the same econometrics that lets a rational expectations econometrician learn an


equilibrium because an econometrician is outside the model and his learning is a side-show


that does not affect the data generating mechanism. It is different when the people learning


about an equilibrium are inside the model. Their learning affects decisions and alters the


distribution of endogenous variables over time, making them aim at moving targets.


Suppose that an adaptive learner begins with an initial estimate θ̂0 at time 0 and uses a


recursive least squares learning algorithm


θ̂t+1 − θ̂t = eθ(θ̂t, y
t, vt, t). (16)


As in the models of learning in games of Foster and Young (2003) and Young (2004, ch. 8),


we assume that decision makers mistakenly regard their time t model indexed by θ̂t as


permanent and form the sequence of decisions20


18A difficult challenge in the machine learning literature is to construct an adaptive algorithm that learns
dynamic programming. For a recent significant advance based on the application of the adjoint of a resolvent
operator and a law of large numbers, see Meyn (2007, ch. 11).


19Bray and Kreps’s ‘about’ versus ‘within’ tension also pertains to Bayesian theories of convergence to Nash
equilibria. Marimon (1997) said that a Bayesian knows the truth from the beginning. Young (2004) pointed
out that the absolute continuity assumption underlying the beautiful convergence result of Kalai and Lehrer
(1993, 1994) requires that players have substantial prior knowledge of their opponents’ strategies. Young
is skeptical that Kalai and Lehrer have answered the question “. . . can one identify priors [over opponents
strategies] whose support is wide enough to capture the strategies that one’s (rational) opponents are actually
using, without assuming away the uncertainty inherent in the situation?” Young (2004, p. 95)


20Cho and Kasa (2006) create a model structure closer to the vision of Foster and Young (2003). In
particular, Cho and Kasa’s model has the following structure: (1) one or more decision makers take actions
at time t by solving a dynamic programming problem based on a possibly misspecified time t model, (2) the
actions of some of those decision makers influence the data-generating process; (3) the decision maker shows
that he is aware of possible misspecifications of his model by trying to detect them with an econometric
specification test, (4) if the specification test rejects the model, the decision maker selects an improved
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v̂(h)t = ht(x
t|θ̂t) (17)


where ht(x
t|θ) is the same function (13) that solves the original Phelps problem (12) under the


model f(y∞, v∞|θ). Under this scheme for making decisions, the joint density of (y∞, v∞, θ̂∞)


is


f(y∞, v̂(h)∞, θ̂∞|ρ). (18)


The learning literature states restrictions on the estimator e and the densities f(·|θ) and


f(·|ρ) that imply that


θ̂t → θo, (19)


where convergence can be either almost surely or in distribution, depending on details of the


estimator e in (16).21


5.3 Uses of adaptive learning models in macroeconomics


One important use of adaptive models in macroeconomics has been to select among multiple


rational expectations equilibria (see Evans and Honkapohja (2001) for many useful exam-


ples). Another has been to choose among alternative representations of policy rules from


Ramsey problems, a subset of which are stable under adaptive learning (see Evans and Honkapohja


(2003)). Another has been to improve the fits of models of asset pricing and big inflations


by positing gaps between the objective density and asset holders’ subjective densities (e.g.,


Adam et al. (2006) and Marcet and Nicolini (2003)). In the remainder of this paper, I focus


on yet another application, namely, to situations in which a government solves an intelligent


model, while (5) if the current model is not rejected, the decision maker formulates policy using the model
under the assumption (used to formulate the dynamic programming problem) that he will retain this model
forever. Cho and Kasa define useful mathematical senses in which the same stochastic approximation and
large deviations results that pertain to a least-squares learning setup also describe the outcomes of their
model-validation setup.


21For example, so-called ‘constant gain’ algorithms give rise to convergence in distribution, while estimators
whose gains diminish at the proper rates converge almost surely. See Williams (2004). A few papers have
studied rates of convergence. There are examples in which convergence occurs at a


√
T rate, but also


examples where convergence occurs markedly more slowly.
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design problem by using a misspecified model.


5.4 REE or SCE?


Some builders of adaptive models have specified an approximating model to equal a true


one, meaning that there exists a value θo for which f(y∞, v∞|ρ) = f(y∞, v∞|θo) for all plans


v∞, not just equilibrium ones. This specification prevails in adaptive models in which least


squares learning schemes converge to rational expectations equilibria, like those used by


Woodford (1990) and Marcet and Sargent (1989b). When f(y∞, v∞|ρ) 6= f(y∞, v∞|θo) for


some choices of v, the most that can be hoped for is convergence to an SCE.22


5.5 SCE-REE gaps and policy design


Why is a gap between a rational expectations equilibrium and a self-confirming equilibrium


important for a macroeconomist? Macroeconomists build models with many small agents


and some large agents called governments. Small agents can take aggregate laws of motion


as given within a recursive competitive equilibrium. It doesn’t matter to a small agent that


his views may be incorrect views off the equilibrium path.


But it can matter very much when a large agent like a government has incorrect views


off an equilibrium path because in designing its policy we suppose that a government solves


a Ramsey problem in which it contemplates the consequences of off-equilibrium path exper-


iments. Wrong views about off-equilibrium path events shape government policy and the


equilibrium path.


22Sargent (1999, ch. 6) works with a weaker notion of an SCE that Branch and Evans (2005, 2006) call a
misspecification equilibrium. Branch and Evans construct misspecification equilibria in which agents i and
j have different models parameterized, say, by θi and θj , and in which f(xt|θi) 6= f(xt|θj) 6= f(xt|ρ), where
again ρ parameterizes the data generating mechanism. A misspecification equilibrium imposes moment condi-
tions on agents’ approximating models that imply parameters θi that give equal minimum mean square error
forecast errors Eθj


[(xt+1 −Eθj
(xt+1|xt))(xt+1 −Eθj


(xt+1|xt))′] for all surviving models. Branch and Evans
model equilibria in which beliefs and forecasts are heterogeneous across agents, though they have equal
mean squared errors. They provide conditions under which recursive least squares learning algorithms con-
verge to a subset of the possible misspecification equilibria. The models of Brock and Hommes (1997) and
Brock and de Fontnouvelle (2000) are early versions of misspecification equilibria.
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As my laboratory, I focus on more or less formal descriptions of some processes that have


taught central bankers. Section 6 is a literary account of a millenium of monetary theory and


experiments. I see self-confirming equilibria lurking in this story, for example, in the way a


commodity money standard hid the quantity theory of money from empiricists by suppressing


the variation in price levels and money supplies needed to identify it. That story takes us to


the threshold of the 20th century experiment with fiat currency. Section 7 fast-forwards to


the 1960s and 1970s and uses statistical models to describe how the U.S. monetary authorities


struggled to understand inflation-unemployment dynamics as they sought to meet their dual


mandate of promoting high output growth and low inflation.


6 Learning monetary policy over a millenium


Central bankers are preoccupied with nominal anchors.


6.1 From commodity to token to fiat money


Appendix B describes a 700 year process of theorizing and experimenting that transformed


the European commodity money system from one with many nominal anchors – mint-melt


price pairs (i.e., gold or silver points) for full bodied coins of all denominations – to a one


nominal anchor system that retained gold points for only one standard full bodied coin and


used government-issued convertible token coins and notes for other denominations.23 After


another 100 years, governments abolished the gold points for the standard coin too, leaving


the nominal anchor to be the monetary authorities’ good intentions and their knowledge of


the quantity theory of money. The appendix notes how a commodity money system concealed


the quantity theory of money because the gold and silver points made the price level a low


variance, small trend exogenous variable by making the money supply into a low variance,


small trend endogenous variable. Eventually, some atypical policy experiments generated


23Fetter (1978, p. 16) and Friedman (1991, pp. 150-151) discuss how concerns about small denomination
coins shaped the gold standard.
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data with sufficient variance in price levels and money supplies to reveal the quantity theory


to empiricists, a theory that eventually induced monetary experts like Keynes and Fisher to


advocate a well-managed fiat system.


6.2 Two threats to a well managed fiat money system


Friedman (1991, pp. 249-252) said that our present fiat money system is historically unprece-


dented and repeated the warning of Fisher (1926, p.131) that “Irredeemable paper money


has almost invariably proved a curse to the country employing it” because two obstacles


obstruct the path to managing a fiat currency well: (1) political pressures to use fiat money


to finance the government expenditures, and (2) temptations to exploit a Phillips curve


(Friedman (1991, p. 207)). Empirical learning models have been used to interpret mon-


etary authorities’ struggles to understand and avoid these obstacles. Marcet and Nicolini


(2003) and Sargent et al. (2006a) constructed adaptive models that focus on (1) and feature


private agents’ learning. Those papers both select among rational equilibria and modify


their outcomes enough to fit data from big inflations in Latin America. In the remainder


of this paper, I focus on statistical models that feature monetary authorities’ struggles with


Friedman’s obstacle 2.


7 Learning inflation-unemployment dynamics


This section describes three stories about how the U.S. monetary authorities learned about


inflation-unemployment dynamics after World War II. These stories accept that a monetary


authority can control inflation if it wants.24 Then why did the U.S. monetary authority


allow inflation to rise in the late 1960s and 1970s, and why did it bring inflation down in


the 1980s and 1990s? If we assume that its purposes did not change, and that it always


disliked inflation and unemployment, then it is natural to focus on changes over time in


24Appendix C discusses a monetary policy rules literature that focuses on the gap between the monetary
authorities’ instruments and inflation outcomes.
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the monetary authority’s understanding of inflation-unemployment dynamics. I’ll describe


stories associated with three empirical models that feature either temporary or permanent


discrepancies between a government’s model and a true data generating mechanism, and a


government that each period solves a misspecified intelligent design problem and revises its


parameter estimates to align them with new data.25


It is natural to impute popular contemporary models to the government. The ‘revisionist


history’ of the U.S. Phillips curve by King and Watson (1994) provides a good source for


these. King and Watson studied how econometric directions of fit (i.e., should you regress


inflation on unemployment or unemployment on inflation?) affect government decisions. To


make contact with studies from the 1970s, King and Watson call inflation on unemployment


the Keynesian direction of fit and unemployment on inflation the classical direction.26 I


impute stripped down versions of more completely articulated models to the government.27


These simplified models can capture the substantially different operating characteristics that


drive our stories.


The three stories have monetary authorities solve adaptive intelligent design problems


with misspecified models that induce them to make decisions that are influenced by erroneous


views about taking decisions other than the ones they actually take. The stories differ in the


nature of those misunderstandings. In the first story, the monetary authority’s misspecified


model misses a chain of causation linking its decisions first to the private sector’s expectations


of inflation and then to the position of an unemployment-inflation trade-off. In the second


story, there exists a parameter vector θo = ρ that aligns the monetary authority’s model with


the data generating mechanism on and off the chosen stochastic monetary policy path, but


25For testimony that policy authorities in the U.S. are concerned about related issues, see Bernanke
(2007) and Mishkin (2007). See Evans and Honkapohja (2003), Orphanides and Williams (2005, 2007), and
Bullard and Mitra (2007) for applications of models of this type to evaluating the stability and performance
of alternative monetary policy rules. See Cogley (2005) and Piazzesi and Schneider (2007) for applications
to the yield curve.


26Sargent (1999, ch. 7) described how those specification decisions can affect self-confirming equilibrium
outcomes.


27Some economists nowadays use the slang ‘reduced form’ to refer to such incompletely articulated models.
I prefer to reserve ‘reduced form’ for its original meaning in Cowles commission econometrics, namely, a
particular statistical representation associated with a well articulated structural model.


20







except in the limit as t → ∞, the government’s temporary misestimates θ̂t of θo induce it to


misunderstand the consequences of policies that it chooses not to implement. In the third


model, the government mixes across submodels with operating characteristics that give very


different readings about the consequences of following a no-feedback low inflation policy.


7.1 The (temporary) conquest of U.S. inflation


This story is about generating sufficient variation in the data to allow a government’s mis-


specified model to detect that there is no exploitable trade-off between inflation and unem-


ployment. The story is that the only way the government’s model let’s it discover that there


truly is no exploitable tradeoff is for it falsely to infer that there is no tradeoff whatsoever.


That imperfection dooms any stabilization of inflation to be at best temporary.


This story uses specifications f(y∞, v∞|ρ) 6= f(y∞, v∞|θ) to capture how a monetary


authority misrepresents how its decisions impact on private agents’ expectations about in-


flation and, therefore, on the joint distribution of unemployment and inflation. I illustrate


the forces at work with the following simplified version of the type of model that Sims


(1988), Cho et al. (2002), and Sargent and Williams (2005) have studied and that Chung


(1990), Sargent (1999), and Sargent et al. (2006b) have fit to U.S. data. The true model is


U = ρ0 − ρ1σ2w2 + σ1w1, (20)


π = v + σ2w2 (21)


where U is the unemployment rate, π is the rate of inflation, v is the systematic part of


the inflation rate chosen by the monetary authority, w is a 2 × 1 Gaussian random vector


with mean zero and identity covariance, and ρ0 > 0, ρ1 > 0, where ρ0 is the natural rate


of unemployment and ρ1 is the slope of the Phillips curve. Through equation (20), which


is the aggregate supply curve proposed by Lucas (1973), the model captures a rational


expectations version of the natural unemployment rate hypothesis that asserts that the
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systematic component of inflation v does not affect the distribution of the unemployment


rate conditional on v. For an objective function −E(U 2 + π2), the government’s best policy


under the true model is v = 0.


The government’s approximating model denies the natural rate hypothesis by asserting


that v affects the probability distribution of U according to:


U = θ0 + θ1(v + σ2w̃2) + σ1w̃1 (22)


π = v + σ2w̃2, (23)


where the random vector w̃ has the same distribution as w. Under the true model and


the timing protocol that the government chooses target inflation before the private sector


sets its expectation of inflation, the government’s best policy is v = 0. However, under the


approximating model (22)-(23), the government’s best policy is


v = h(θ) =
−θ1θ0


1 + θ2
1


. (24)


There exists a self-confirming equilibrium in which


(θ0)o = ρ0 − ρ1h(θo) (25)


(θ1)o = −ρ1. (26)


The self-confirming equilibrium equals the time-consistent equilibrium of Kydland and Prescott


(1977).28 An adaptive government’s estimates θ̂t converge to the self-confirming equilibrium


vector θo, and the systematic part of inflation converges to v = h(θo).


The data-matching restriction (25) pinpoints how the government mistakenly ignores


the effect of its policy choice v, which equals the public’s expected rate of inflation, on the


28The same suboptimal outcome occurs, but for a different reason than the inferior timing protocol isolated
by Kydland and Prescott (1977). Here the source of sub optimality of the government’s choice originates in
its misunderstanding of the economic structure. The timing protocol is such that if the government knew
the correct model, it would attain Ramsey outcomes, in the language of Stokey (1989).
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position of the Phillips curve. If v were generated randomly with enough variance, then even


though it fits the wrong model, the government would estimate a Phillips curve slope θ1 of


approximately zero and according to (24) would set v approximately to its optimal value


of 0 under the true model. But within an SCE, v doesn’t vary enough for the government


to estimate a θ1 close enough to zero for that to happen. Furthermore, the outcome that


θ̂t → θo means that the variation of vt that occurs along transient paths converging to an


SCE is insufficient to allow the government’s model to approximate the data in a way that


tells it to implement the optimal policy under the true model.


However, that is not the end of the story because the adaptive model’s endogenous


stochastic dynamics occasionally make v vary enough for the government to discover a (too


strong) version of the natural rate hypothesis, too strong because it mistakenly asserts


that there is no tradeoff whatsoever between π and U . The adaptive system is destined


to experience recurrent episodes in which ‘a most likely unlikely’ sequence of w’s lowers


the unconditional correlation between U and π, which in turn prompts the government’s


estimates θ̂t to induce the government to push vt downward from its self-confirming value.29


This process generates data that further weakens the unconditional correlation between


inflation and unemployment and drives v even lower. The ultimate destination of this ‘escape’


from a self-confirming equilibrium is that the government estimates that θ1 is 0, prompting


it to set vt at the optimal value 0. These escapes are more likely when the government’s


estimator (16) discounts past data more heavily, for example, by using a so-called constant


gain algorithm. An escape is temporary because the mean dynamics that drive the system


toward the SCE vector θo are bound to reassert themselves and push inflation back toward


the suboptimal SCE value of h(θo). If this is a good parable for the Volcker-Greenspan


stabilization, we should be worried.


29See Cho et al. (2002) for an explanation of ‘most likely unlikely’ sequences of shocks.
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7.1.1 Details


Simulations of Sims (1988) generated sample paths that seemed promising for explaining a


Volcker-like stabilization prompted by the government’s being able to learn a good enough


version of the natural rate hypothesis. However, formal econometric attempts to implement


the model by Chung (1990) and Sargent (1999) failed to fit the U.S. data well, mainly be-


cause the government’s adaptive algorithm catches on to the adverse shifts in Phillips curve


so quickly in the early 1970s that the Phelps problem tells the government to stabilize infla-


tion much earlier than actually occurred. Sargent et al. (2006b) replaced the constant gain


algorithm used in the earlier models with the Bayesian updating procedure implied by a


drifting coefficients model with a covariance matrix V for the innovations in the drifts to


the coefficients. By estimating V along with the parameters of nature’s model by maximum


likelihood, they reverse engineered a drifting set of government beliefs that, when put into


the Phelps problem each period, produce a sequence of first period Phelps policy recommen-


dations that do a good job of matching the actual inflation data. The estimated V makes


the intercept in the Fed’s model quite volatile and thus makes contact with descriptions of


Arthur Burns’s Fed, which according to Hetzel (1998), attributed much of the inflation of the


1970s to special factors akin to dummy variables that capture intercept drift in regressions.


The maximum likelihood estimate of V is large and conveys the image of a government that


expects coefficients to drift so much that it discounts past data heavily. The model’s con-


juring up a Fed that over fits its models to recent data is food for thought for Fed watchers.


The synthesized government beliefs succeed in rationalizing inflation ex post as a response


to these government beliefs, and the beliefs themselves do a good job of forecasting inflation,


thus capturing what seems to have been a remarkably good record of inflation forecasting


by the Fed (see Bernanke (2007)).30


30But relative to available alternatives, the imputed beliefs do a poor job of forecasting unemployment, a
deficiency of the model that hints that the reverse-engineering exercise may be imputing unrealistic views
about joint inflation-unemployment dynamics to the Phelps problem in order to rationalize observed inflation
outcomes. Carboni and Ellison (2007) also note this deficiency in the model and make substantial progress
in repairing it while also reducing the estimated V by conditioning estimates on greenbook forecasts.
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7.1.2 Best of all possible worlds?


In this story, policy choices recurrently revisit ones that are optimal under the correct model,


but they don’t stay there because the mean dynamics attracting them to the suboptimal SCE


are destined to reassert themselves. Thus, this story at best only temporarily supports the


optimism expressed by Sims (1988) that the government’s misspecified model can approxi-


mate the lack of an exploitable U − π tradeoff well enough to induce the government to do


what would be the right thing if it actually knew the true model. For the misspecified model


to reveal the lack of a tradeoff, the government has to induce adequate variation in inflation,


which it doesn’t within an SCE. So the first story stops short of being one in which evolution


converges to ‘the best of all possible worlds.’ However, a more optimistic outcome prevails


in our next story, which hard wires things to make the government’s misunderstandings of


off-equilibrium-path choices eventually vanish.


7.2 A Keynesian account


The previous story is about how the troublesome possibility raised in subsection 4.2 plays


out. The model of Primiceri (2006) envisions a world in which that possibility is off the table


because f(y∞, v∞|ρ) = f(y∞, v∞|θo) for all v∞ and an SCE equals an REE. All of the action


in Primiceri’s model comes from calibrating an initial θ̂0 6= θo that leads to a stochastic path


that converges to an SCE presided over by Greenspan and whose transient dynamics mimic


the post WWII U.S.


Primiceri’s model has a time invariant true data generating model featuring (i) an ex-


pectations augmented Phillips curve, (ii) a Cagan (1956)-Friedman (1956) adaptive expec-


tations scheme that describes how the public forms the expectations of inflation that appear


in (i)31; and (iii) an aggregate demand equation that describes how the time t value of an


31Primiceri assumes that a fraction of agents form expectations this way, while the remainder have rational
expectations. Primiceri’s specification imposes that the sum of weights on lagged inflation equals unity. Lucas
(1972a) and Sargent (1971) argued that, except in a special case, the sum of the weights on lagged inflation
being one is not a valid characterization of the natural rate hypothesis. See King and Watson (1994) and
Sargent (1999).
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Figure 1: Evolution of policy-maker’s beliefs about: (a) the natural rate of unemployment;
(b) the persistence of inflation in the Phillips curve; and (c) the slope of the Phillips curve in
King and Watson’s Keynesian direction. (Primiceri 2006, p. 882)


uninterpreted government policy instrument vt affects current and future gaps between the


unemployment rate ut and a natural rate of unemployment uN
t .32 The model neatly al-


lows the government’s misperception of the natural rate to influence policy, as advocated by


Orphanides (2002, 2003). It also allows other potentially important government mispercep-


tions to influence policy. Primiceri shows that the lower is the sum of the weights on lagged


inflation in the expectational Phillips curve, and therefore the less persistent is inflation un-


der a passive government policy, the less counterinflationary is the policy that emerges from


the Phelps problem. A lower estimated persistence of inflation indicates to the government


that mean reverting inflation will evaporate soon enough on its own. Coefficients that mea-


sure the strength of the feedback from unemployment to inflation also influence how actively


counterinflationary is the policy called for by the time t Phelps problem.


Primiceri calibrates initial government beliefs by using data between 1948 and 1960 to


estimate the model’s parameters.33 These calibrated beliefs feature a level of persistence


32Feature (ii) of Primiceri’s model embraces a Keynesian spirit of assuming that the authority influences
output directly through the aggregate demand function, then inflation indirectly through the expectations-
augmented Phillips curve. Contrast this with the classical specification adopted by Sims (1988), Chung
(1990), Sargent (1999), Cho et al. (2002), and Sargent et al. (2006b).


33Primiceri calibrates initial beliefs for the government about the value of the natural rate of unemployment
and the coefficients in a reduced-form Phillips curve. The reduced form is derived by substituting the adaptive


26







of inflation in the Phillips curve that is much lower than what prevails in the estimated


model’s self-confirming equilibrium. In addition to these initial conditions, Primiceri sets


two constant gain parameters, one for the natural rate, another for all other coefficients


in the government’s beliefs. These calibrated objects, the data, and the parameters of the


structural relations pin down the government’s beliefs. Primiceri uses maximum likelihood to


estimate parameters appearing in the government’s objective function and the time-invariant


structural equations.


Primiceri accounts for the acceleration of inflation in the 1960s and 1970s, then the fall in


the 1980s in terms of the government’s initial underestimates of the natural unemployment


rate as well as a temporal pattern of underestimates of the persistence of inflation and


overestimates of the costs of disinflation coming from its estimated inflation-unemployment


tradeoff. Figure 1 reproduces Primiceri’s figure II, which shows his estimates of the evolution


of the Fed’s estimates of the natural rate of unemployment, the persistence inflation, and the


slope of the Phillips curve. The Phelps problem attributes the acceleration of inflation to the


monetary authority’s initial underestimates of both the natural rate and the persistence of


inflation. After inflation had risen, the Phelps problem attributes the monetary authority’s


reluctance to deflate to its overestimation of the costs of disinflation as captured by the slope


of the Phillips curve. We will return to this point in subsection 7.3, where we link it to the


conceptual issues about direction of fit raised by King and Watson (1994).34


Under-estimates of the natural unemployment rate and over-estimates of the sacrifice


ratio are connected. When the Fed under-estimates the natural rate and over-estimates the


unemployment gap, it over-predicts the amount of disinflation. That causes it to revise its


estimate of the slope of the Phillips curve towards zero. Thus, Orphanides’s story about the


consequences of missestimating the natural rate of unemployment complements Primiceri’s


expectations scheme into the expectations augmented Phillips curve.
34Among many interesting features of Primiceri’s results are his estimate of k, a parameter in the govern-


ment objective function that allows Primiceri to evaluate the government’s temptation to deviate from the
natural rate (he finds that the temptation is small) and the time series that he extracts for vt, which tracks
a real interest rate very well after 1980.
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story about sacrifice ratio pessimism.


7.3 An eclectic account


The models in the previous two sections take stands on what both the true and the govern-


ment’s approximating models are. Cogley and Sargent (2005) performed an exercise that


did not require them to specify a true data generating mechanism, it being enough for their


purposes to consult the empirical distribution. But the government’s views about policy


choices not made play a key role. The government’s model f(y∞, v∞|θ) is a mixture of three


submodels and θ̂t includes Bayesian posterior probabilities that the government uses to mix


the three submodels.


A government entertains three models that Cogley and Sargent chose to capture promi-


nent specifications from the literature about U.S. unemployment-inflation dynamics de-


scribed by King and Watson (1994). The models are (1) a Samuelson-Solow Phillips curve


with King and Watson’s Keynesian direction of fit, a model that implies a long-run ex-


ploitable trade-off between inflation and unemployment; (2) a Solow-Tobin model with a


Keynesian direction of fit that features a short-run but no long-run trade-off between infla-


tion and unemployment (albeit according to what Lucas (1972a) and Sargent (1971) claimed


was a dodgy notion of long-run); and (3) a Lucas specification with a classical direction of


fit that implies no exploitable trade-off between inflation and unemployment. If probabil-


ity one is put on the Lucas model, the Phelps problem gives the trivial solution that the


government should set the systematic part of inflation equal to zero. If probability one is


put on either of the other models, the systematic part of inflation is a linear function of the


state variables appearing in those exploitable dynamic Phillips curves. The government puts


positive probability on all three models, so the Phelps problem brokers a compromise among


the recommendations of the three models. But what kind of compromise? It depends on


submodel probabilities times value functions.


The government starts with a prior with non-zero weights on all three models in 1960,
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Figure 2: Top panel: CPI inflation. Bottom panel: Bayesian posterior model weights on the
Samuelson-Solow (SS), Solow-Tobin (ST), and Lucas (L) models.


estimates each sub model using Bayesian methods, and updates its prior over the three sub


models.35 In each period, the government solves a Phelps problem that penalizes inflation


and unemployment and that uses its time t submodel probabilities to average over its time


t estimates of its three submodels. Cogley and Sargent put prior probabilities in 1960 of


.98 on the Samuelson-Solow model and .01 each on the Solow-Tobin and the Lucas model.


We put those low prior probabilities on the Lucas and Solow-Tobin models because only the


Samuelson-Solow model existed in 1960.36 Putting U.S. inflation-unemployment data into


this machine, Cogley and Sargent computed time series of (1) the posterior model weights


αi,t, and (2) the systematic part of the inflation rate set by the government in the Phelps


problem.


Figures 2 and 3 taken from Cogley and Sargent (2005) frame the following puzzles. By


35See Cogley et al. (2007b) for a related setup that has only two submodels, each of which has known
coefficients, and in which the government designs purposeful experiments because it includes the submodel
probabilities in the state vector. By way of contrast, the model being discussed in the text has the government
making decisions as if its temporary mixture of models will prevail forever and therefore excludes purposeful
experimentation. Cogley et al. (2007a) study purposeful experimentation when a government trusts neither
its submodels nor its Bayesian posterior over submodels.


36We have to put positive probabilities on the yet-to-be invented models in 1960 in order to launch our
story. Foster and Young (2003) introduce new models randomly.
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Figure 3: CPI inflation and recommendation from Phelps problem.
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Figure 4: Loss from SS model (*) and ST model (◦). When value is 1, it denotes infinite
loss under Lucas zero inflation policy. When value is 0, it denotes finite loss.
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the early 1970s, the data had moved the government’s prior to put probability approaching


1 on the Lucas model (see figure 2). Since the Lucas model recommends zero inflation,


why nevertheless was actual inflation so high and variable in the 1970s? And why was the


systematic part of inflation that emerges from the Phelps problem (see figure 3) even higher


and more variable? Why does the Phelps planner seem to disregard the recommendations


of the Lucas model despite its high posterior probability?


The answer is to be found in what the Samuelson-Solow and Solow-Tobin models say


would happen if the Lucas zero-target-inflation policy were to be adopted, as summarized


in figure 4. The Phelps problem weights the submodel posterior probabilities against losses


associated with various off-taken-path recommendations. In the early 1970s, their Keynesian


direction of fit moved the coefficients in those submodels in ways that pointed to very high


sacrifice ratios. Despite their low posterior probabilities, those models implied very high


expected discounted losses if the Lucas policy recommendation were to be implemented


immediately. In contrast, the high-probability Lucas model implied less adverse consequences


if the recommendations of the Samuelson-Solow or Solow-Tobin models were allowed to


prevail. So the Cogley and Sargent story is that the Lucas models policy recommendation


did not prevail in the 1970s because there remained a low probability that it would be


disastrous. In order for a low-inflation recommendation to emerge from the Phelps problem,


it was necessary that the estimated coefficients in the Samuelson-Solow and Solow-Tobin


models adjust in ways that would moderate the consequences of a low-inflation policy. That


happened by the mid 1980s.37


The direction-of-fit issue discussed by King and Watson (1994) helps understand how


37The data also indicate that Bayes’ law sponsors comebacks for the Samuelson-Solow and Solow-Tobin
models in the 1980s and 1990s. One reaction that a true believer in the Lucas model might have is that Bayes’
law is just too forgiving in still putting positive probability on those other models after the early 1970s data
had come in, and that the inflation problem of the 1970s would have been solved by driving a stake through
those other models. But no one has the authority to drive stakes, and models with operating characteristics
much like those two survive today. The dispute between the fallacious (according to Friedman and Schwartz
(1963, p. 191)) real bills doctrine and the quantity theory of money is mottled with repeated episodes having
one of these doctrines being disposed of in favor of the other, then the other making a comeback. The real
bills doctrine rides high in times like these when the Fed pegs a short term interest rate.
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some of Primiceri’s results relate to Cogley and Sargent’s. Both models emphasize how


monetary policy changed as the authorities updated their estimates, and Primiceri also


attributes the inflation of the 1970s to the high perceived sacrifice ratio that Keynesian


Phillips curve models presented to policy makers. But Primiceri assumes that the Fed


relied exclusively on a version of the Solow-Tobin model and is silent about why the Fed


disregarded the recommendations of the Lucas model. The central element of his story –


the high perceived cost of disinflation or sacrifice ratio – is not a robust feature across the


three submodels used by Cogley and Sargent because it depends critically on the direction


of fit, as documented by Cogley and Sargent (2005, p. 546-547). The sacrifice ratios differ


so much across submodels because of how the submodels interpret the diminished, near-


zero contemporaneous covariance between inflation and unemployment that had emerged


by the mid 1970s. In a Keynesian Phillips curve, this diminished covariance flattens the


short-term tradeoff, making the authorities believe that a long spell of high unemployment


would be needed to bring inflation down, prompting Keynesian modelers to be less inclined


to disinflate. But for a classical Phillips curve, the shift toward a zero covariance steepens


the short-term tradeoff, making the authorities believe that inflation could be reduced at


less cost in terms of higher unemployment. Thus, a classically-oriented policy maker was


more inclined to disinflate.


8 Concluding remarks


Sawhill (1995) also began by citing Keynes (1936) but disagreed with him by lamenting that


politics, not good economics, drives decision making in Washington. In monetary economics


today, the relationship between Washington policy makers and economists is so much easier


than it was for Sawhill that I think it acceptable to summarize the case for adaptive models


by quoting one “academic scribbler” who is now a monetary authority:


The traditional rational-expectations model of inflation and inflation expecta-
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tions has been a useful workhorse for thinking about issues of credibility and in-


stitutional design, but, to my mind, it is less helpful for thinking about economies


in which (1) the structure of the economy is constantly evolving in ways that are


imperfectly understood by both the public and policymakers and (2) the policy-


makers’ objective function is not fully known by private agents. In particular,


together with the assumption that the central bank’s objective function is fixed


and known to the public, the traditional rational-expectations approach implies


that the public has firm knowledge of the long-run equilibrium inflation rate; con-


sequently, their long-run inflation expectations do not vary over time in response


to new information.


Although variations in the extent to which inflation expectations are anchored are


not easily handled in a traditional rational-expectations framework, they seem to


fit quite naturally into the burgeoning literature on learning in macroeconomics.


The premise of this literature is that people do not have full information about the


economy or about the objectives of the central bank, but they instead must make


statistical inferences about the unknown parameters governing the evolution of


the economy. Bernanke (2007)


It is easy to agree with a warning by Sims (1980) that leaving the rational expectations


equilibrium concept sends us into a “wilderness” because there is such a bewildering variety


of ways to put discrepancies between objective and subjective distributions.38 But the adap-


tive models described in this paper are very cautious departures from rational expectations


theories and from rational expectations econometrics. The timidity of the departure from


rational expectations reflects a desire to retain much of the discipline of rational expecta-


tions econometrics. I have focused some of the things that can happen when a government


solves an intelligent design problem while using a misspecified model. I view the very simple


statistical models in section 7 as a parable for the situation that we are always in, namely,


38There is an infinite number of ways to be wrong, but only one way to be correct.
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that our probability models are misspecified.39 By stressing the possibility that learning


has propelled us to a self-confirming equilibrium in which the government chooses an op-


timal policy based on a wrong model, the learning literature changes how we should think


about promoting the novel policies that will allow misguided governments to break out of


the lack-of-experimentation traps to which self-confirming equilibria confine them.


Milton Friedman was willing to use expected utility to explain why people simultaneously


gamble and buy insurance ((Friedman and Savage (1948)), but he refrained from using it to


form recommendations about macroeconomic policy. He also abstained from using rational


expectations models, though early applications of them to the consumption function and the


Phillips curve strengthened some of the policy recommendations that he had made. I do not


know why he resisted applying expected utility and rational expectations, but Friedman’s


works on monetary history are about the evolution of monetary authorities’ models, how


wrong models sometimes led to bad policies, and how arguments and evidence sometimes


improved models. Friedman said that evolution may not yet have taught everything we have


to learn about running a fiat money system:


. . . the world is now engaged in a great experiment to see whether it can fashion


a different anchor, one that depends on government restraint rather than on the


cost of acquiring a physical commodity . . . The verdict is far from in on whether


fiat money will involve a lower cost than commodity money . . . Friedman (1991,


p. 42).


Nonetheless, it remains an open question whether the temptation to use fiat


money as a source of revenue will lead to a situation that will ultimately force a


return to a commodity standard . . . The final answer will come only as history


unfolds over the next decades. What that answer will be depends critically


on our success in learning from historical episodes such as those that have been


39This is the starting point of calibration in macroeconomics, i.e., the refusal to use maximum likelihood
because the model builder views it as an approximation.
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examined in this book. Such a learning process has been under way for centuries,


ever since the first appearance of systematic analyses of money and monetary


institutions. It has entered a new and urgent stage as the world ventures into


hitherto unexplored terrain. Friedman (1991, pp. 259-260).
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Appendixes


A Learning in games


In a game, a Nash equilibrium is the natural counterpart of a rational expectations equi-
librium or a recursive competitive equilibrium. An extensive literature studies whether a
system of adaptive players converges to a Nash equilibrium. A range of plausible adaptive
algorithms have been proposed that are differentiated by how much foresight and theorizing
they attribute to the players.40 At one extreme are adaptive models that have naive players
who ignore strategic interactions and either play against histograms of their opponents past
actions (this is called fictitious play) or alter their moves in directions that ex post reduce
their regret at not having taken other actions in the past, given their opponents’ histories
of actions. At the other extreme are models in which players construct statistical theories
about their opponents’ behavior, use them for a while to make forward-looking decisions,
occasionally subject their theories to hypothesis tests, discard rejected ones and choose new
specifications.


This literature has sought plausible and robust algorithms that converge to a Nash equi-
librium. Hart and Mas-Colell tell us that this is a tall order:


It is notoriously difficult to formulate sensible adaptive dynamics that guarantee
convergence to Nash equilibrium. In fact, short of variants of exhaustive search
(deterministic or stochastic), there are no general results. Hart and Mas-Colell
(2003, p. 1830)


Hart and Mas-Colell and Foster and Vohra (1999) show that the source of the difficulty is
that most adaptive schemes specify that adjustments in a player’s strategy do not depend on
the payoff functions of other players, an uncoupling of the dynamics that in general prevents
the system from converging to a Nash equilibrium. Many examples of the adaptive schemes
in the literature are uncoupled. Because many game theorists find uncoupled schemes de-
sirable, parts of the literature have lowered the bar by looking for convergence to something
weaker than Nash equilibria, namely, correlated equilibria or coarse correlated equilibria.
Hart and Mas-Colell (2003, p. 1834) observed that “It is thus interesting that Nash equilib-
rium, a notion that does not predicate coordinated behavior, cannot be guaranteed to be
reached in an uncoupled way, while correlated equilibrium, a notion based on coordination,
can.”41


Hart and Mas-Colell (2000, 2001, 2003) study adaptive schemes that are backward look-
ing. For example, some of the most interesting ones have a player construct counterfactual
historical payoffs that he would have received had he played other strategies, then compute


40For a critical survey of this literature, see Young (2004).
41Experimental economics has supplied data sets designed to check ideas from the literature on adaptive


learning in games. It is remarkable that laboratory experiments using macroeconomics are rarer than those
using microeconomics. See Duffy (2006) for an account of the existing experiments. I suspect that the main
reason for fewer experiments in macro than in micro is that the choices confronting artificial agents within
even one of the simpler recursive competitive equilibria used in macroeconomics are very complicated relative
to the settings that experimentalists usually confront their subjects with.
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a measure of regret, then adjust future play in directions that would have minimized regret.
These schemes impute little or no theorizing and foresight to the players.


For my present purposes, one of the most interesting contributions comes from part
of the literature that attributes more sophistication to players, in particular, the work of
Foster and Young (2003), which is also summarized in Young (2004, ch. 8).42 Their model
has the following components: (1) each player has a large set of potential models that
describe his opponents’ strategies; (2) players use a random device to select a particular
model; (3) after that model is selected, there is an ‘act and collect data’ period during which
a player (incorrectly) assumes that he will believe his current model forever; during this
period, each player chooses his actions via a smoothed best response to what his model tells
him about opponents’ actions (e.g., a quantal response function); (4) after a data collection
period, a player compares the empirical pattern of his opponents’ play with that predicted
by his model. He performs an hypothesis test that compares the theoretical and empirical
distributions. If he rejects his current model, he randomly draws a new model from his set
of models, then returns to step 2. If he accepts the model, he returns to step 3, waits a
random number of periods, and then begins another data collection period.


With suitable assumptions about the lengths of testing periods and the tolerances of the
hypothesis tests, Foster and Young (2003) show that behaviors eventually emerge that are
often close to Nash equilibria. Their notion of hypothesis tests is sufficiently broad to include
many plausible procedures. Their convergence result seems to be an uncoupled multi-agent
learning scheme that actually approaches Nash equilibria, not something weaker like the
coarse correlated equilibrium that the entirely backward-looking schemes mentioned above
can approach. They avoid the conundrum of Hart and Mas-Colell partly by weakening the
notion of convergence.


B From commodity to fiat money


My theme is the data and theorizing that helped inspire David Ricardo’s idea:


The introduction of the precious metals for the purposes of money may with
truth be considered as one of the most important steps towards the improvement
of commerce, and the arts of civilised life; but it is no less true that, with the
advancement of knowledge and science, we discover that it would be another
improvement to banish them again from the employment to which, during a less
enlightened period, they had been so advantageously applied. Ricardo (1816,
p. 65)


A long process with “much backing and filling and confusion about purpose and power”
led to Ricardo’s idea, 43 which led Keynes and others to propose a fiat currency.


42For a distinct but related approach, see Jehiel (1995, 1998). The Foster and Young (2003) model seems
to me to capture some of the flavor of the anticipated utility framework advocated by Kreps (1998). The
classifier models in Marimon et al. (1990) have a similar flavor.


43I borrowed the words in quotes from Friedman and Schwartz (1963, p.193), who used them to describe
the evolution of the beliefs and policies within the Federal Reserve.
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B.1 Learning to supplement a commodity currency with tokens


Redish (1990, 2000) and Sargent and Velde (2002) described how it took 800 years to un-
derstand and cope with two imperfections that marred an ideal self-regulating commodity
money system in which coins of all denominations were meant to exchange at values pro-
portional to silver (or gold) content. In the ideal system, a government instructed a mint to
offer to sell coins of different denominations for silver at prices proportional to their weights
in silver. The mint did not buy coins for silver, but citizens were free to melt silver coins
to recover silver. If minting and melting were costless, this self-regulating system would
automatically adjust the denomination structure of coins to suit coin holders’ preferences
by letting them melt coins of a denomination they wanted less of, then take the silver to
the mint to buy coins of the denomination they wanted.44 In the ideal system, a silver melt
point equaled a silver mint point, denomination by denomination.


In practice, two imperfections hampered this system: (1) it was costly to produce coins;
and (2) coins depreciated through wear and tear and sweating and clipping. The first
imperfection gave rise to nonempty intervals between melt and mint points for gold or silver
coins of each denomination – an upper point that indicated a melting point for that coin and
a lower one that prompted minting. The proportionate spreads between minting and melting
points differed because as a fraction of the value of the coin, it was cheaper to produce a
large denomination coin than a small denomination coin. Unless the government were to
subsidize the mint for producing low denomination coins, the spread between minting and
melting points would be proportionately wider for low denomination coins. The second
imperfection allowed underweight coins to circulate along side full weight coins.


A nonempty interval between melting and minting points allowed coins to circulate by
tale (i.e., by what is written on the coin rather than by weight) at an exchange value that
exceeded their value by weight. Indeed, as Adam Smith pointed out, in the presence of costs
of producing coins, the money supply mechanism provided incentives for people to purchase
new coins from the mint only when their value in exchange exceeded their value by weight
by enough to cover the mint’s brassage and seigniorage fees (Smith 1789, Book I, ch. 5).


Nonempty intervals with proportionately wider widths for lower denomination coins and
a consequent exchange rate indeterminacy allowed the intervals to shift over time and even-
tually to become so misaligned that they recurrently provided incentives to melt small de-
nomination coins. That created the recurring shortages of small coins documented by Cipolla
(1956, 1982).45


Cipolla (1956) described a temporary practical remedy for these shortages. The au-
thorities debased small denomination coins, thereby shifting their mint-melt intervals in a
direction that motivated citizens to purchase new coins from the mint. Monetary authorities
throughout Europe used this method for hundreds of years. There were repeated debase-
ments in small denomination silver coins and secular declines in rates of exchange of small
denomination for large denomination coins.


Many experiments, some inadvertent, others purposeful, were performed, and numerous


44Sargent and Velde (2002, p. 95) cited Bernando Davanzati, who in 1588 wrote that “metal should be
worth as much in bullion as in coin, and be able to change from metal to money and money to metal without
loss, like an amphibious animal.”


45This multi-interval commodity money system in which coins circulate by tale is taken for granted by
Smith (1789, book I, ch. 5).
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theoretical tracts were written and disputed before what Cipolla (1956) called the ‘standard
formula’ for issuing token small denomination coins was put into practice in the mid 19th
century.46 It solved the problem of misaligned mint-melt intervals for coins of different de-
nominations by, first, having only one large denomination full weight coin that the mint sold
for a precious metal, and, second, having the government issue difficult-to-counterfeit small
denomination token coins that it promised to convert on demand into the large denomination
coin. This required a technology for manufacturing coins that were difficult to counterfeit.47


As examples of inadvertent experiments, token monies were occasionally issued inside
besieged cities and sometimes they worked. A document that prefigured later arguments of
John Law, Adam Smith, and David Ricardo sparked a purposeful experiment. It advised
King Ferdinand II of Spain that he could issue token copper coins that Spanish residents
would voluntarily accept from the government in exchange for full bodied silver coins. It
described how this fiscal boon to the Spanish treasury could be attained in a noninflationary
way.48 Three successive Spanish Kings tried this experiment, which had all of the ingredients
of the 19th century standard formula except convertibility. For 25 years, the experiment
worked well, yielding the government substantial revenues without inflation. But eventually
excessive issues of copper coins caused inflation, in the aftermath of which the Spanish
monetary authorities pursued a fascinating sequence of experiments. They restamped copper
coins and manipulated the unit of account in order either to adjust the price level or raise
revenues for the Spanish government.


The quantity theory can operate only in the limited interval between the mint and melt
points for the precious metal, so a commodity money system conceals the quantity theory.
When the Spanish broke through those restrictions, they gave the British statistician Sir
William Petty data that he used to discover a quantity theory of money (see Hull (1899)).
Other episodes created more data to substantiate the quantity theory of money, for example,
the construction and collapse of John Law’s system (see Velde (2007)) and the overissuing
of French assignats after the sales of the church lands that had initially backed them were
suspended after war broke out in 1792 (see Sargent and Velde (1995)). But the episodes that
lent vivid empirical support to a quantity theory also brought evidence that government
monetary authorities could not be trusted to administer a pure fiat standard in ways that
stabilized prices.49


In 1660, the master of the British mint, Henry Slingsby, added an element missing from
the Spanish experiment, namely, convertibility of token coins, and recommended what in
the 19th century became the standard formula.50 But perhaps because the inflation accom-
panying the Spanish and similar experiments had given token coins a bad name, the British


46This process of shuttling through experiments, reformulations of theories, and further experiments re-
minds me of the hypothesis-testing learning models of Foster and Young (2003) and Cho and Kasa (2006),
but I might be imagining things.


47See Redish (1990, 2000) and Selgin (2003).
48See the document cited in Sargent and Velde (2002, pp. 231-232).
49I suspect that is why later advocates for replacing the gold standard with ‘more scientific’ systems of


managed currencies including Adam Smith and Ricardo to Keynes purposefully omitted references to some
of the historical experiments that generated the data that were sources for the quantity theory of money. For
example, Smith (1789) did not cite John Law’s theoretical writings as among the sources for his monetary
recommendations.


50See Sargent and Velde (2002, pp. 268-269).
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government ignored Slingsby’s recommendations. Many experts, including Locke (1691),
continued to insist that token coins of any denomination were dangerous and that a good
faith commodity money system required that coins of all denominations be full bodied. For a
long time, that sentiment convinced national governments not to issues tokens, but that did
not stop other entities from creating them. In seventeenth and eighteenth century Britain,
hundreds of private firms and municipalities issued small denomination tokens that formed
a substantial part of the country’s coinage. Between 1816 and 1836, the British government
implemented the standard formula by nationalizing a token coin industry that had long
existed.


B.2 Ricardo’s proposal


It required 156 years to take the short logical step from Slingsby’s 1660 standard formula for
issuing convertible token subsidiary coins to David Ricardo’s 1816 recommendation. Ricardo
proposed that a country’s domestic money supply should ideally consist of paper notes that
the government promises to exchange at a pegged price for gold bullion bars, but that no
gold coins should actually be minted. A variant of Ricardo’s scheme in which a government
promises to redeem domestic notes for gold, but only for foreign residents, came to be
practiced around 1900. This arrangement, by which “a cheap local currency [is] artificially
maintained at par with the international standard of value,” (Keynes 1913, p. 25) was called
the “gold exchange standard.” Keynes described how by 1913 this system had come to prevail
in India through a sequence of haphazard administrative decisions that eventually produced
a coherent system that no one had planned but that Keynes applauded. Keynes (1913, p. 25)
predicted that Ricardo’s scheme would be an essential part of “the ideal currency system of
the future.”51


The standard formula eliminates the gold or silver points for all coins except one standard
coin and uses the mint and melt points for that coin to regulate the total quantity of money,
while it uses its promise freely to convert tokens into that standard coin to produce the correct
denomination composition. It was one more step from the standard formula or Ricardo’s
proposal to the recommendation of Fisher (1920), Keynes, and others that well intentioned
government officials should administer a fiat currency in ways that stabilize the price level.
Doing that would allow them to to remove the mint and melt points for the one standard
coin too. Discovering the quantity theory of money was an essential step in learning the
conditions under which a fiat money system could be managed to provide greater price level
stability than could be achieved with a gold standard.


As Keynes wanted, in the twentieth century governments throughout the world carried
out the historically unprecedented experiment of managing currencies completely cut off


51Speaking of how a change in Indians’ preferences for holding gold could cause world-wide inflation in
prices:


The time may not be far distant when Europe, having perfected her mechanism of exchange
on the basis of a gold standard, will find it possible to regulate her standard of value on a more
rational and stable basis. It is not likely that we shall leave permanently the most intimate
adjustments of our economic organism at the mercy of a lucky prospector, a new chemical
process, or a change of ideas [preferences for holding gold] in Asia. (Keynes 1913, p. 71)
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Figure 5: Indices of prices in terms of unit of account in England, the United States, France, and
Spain. Sargent and Velde (2002, p. 35)


from gold backing (see Friedman (1991, p. 245)). Figure 5 documents that, at least until
very recently, the monetary authorities in four hard-currency countries failed to deliver the
kind of price stability that a commodity standard had achieved. Figures 6 and 7 show
price indexes for Istanbul and Argentina, places with softer currencies (compare the vertical
scales).


C A monetary policy rules literature


The adaptive models described in section 7 explain the rise and fall of post WWII U.S.
inflation in terms of monetary policy rules that drifted over time in response to drifts over
time in the monetary authorities’ models of the economy. All three models embed very
crude descriptions of the monetary policy rules and sidestep interesting questions about
monetary policy transmission mechanisms. It is appropriate to say a few words about a
related literature that uses time series data to infer the structure of post WWII U.S. monetary
policy rules and how they have changed over time. The bottom line is that this literature
has mixed evidence about whether monetary policy rules shifted enough to validate stories
along the lines of our three adaptive models.52


Bernanke and Mihov (1998) developed an SVAR methodology for measuring innovations
in monetary policy and their macroeconomic effects. They compared alternative ways of
measuring monetary policy shocks and derived a new measure of policy innovations based


52This mixed news partly reflects the fact that it is statistically difficult to detect drifts or shifts in the
systematic part of a vector autoregression and much easier to detect changes in volatilities.
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Figure 6: Indices of prices in Istanbul.
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on possibly time-varying estimates of the Fed’s operating procedures. They presented a
measure of the overall stance of policy (see Bernanke and Mihov (1998, Fig. III, p. 899))
that is striking in how the distribution of tight and loose policies seems not to have changed
much in the periods before and after 1980.


But Clarida et al. (2000) estimated a forward-looking monetary policy reaction function
for the postwar United States economy before and after Volcker’s appointment as Fed Chair-
man in 1979 and found substantial differences in the estimated rules across periods. They
found that interest rate policy in the Volcker-Greenspan period has been much more sensitive
to changes in expected inflation than in the pre-Volcker period. They then extracted impli-
cations of the estimated rules for the equilibrium properties of inflation and output in a new
Keynesian DSGE model and found that the Volcker-Greenspan rule is stabilizing, but that
the earlier rule was not. Lubik and Schorfheide (2004) estimated a new Keynesian model
like Clarida et al.’s in which the equilibrium is undetermined if monetary policy is passive
and constructed posterior weights for the determinacy and indeterminacy region of the pa-
rameter space as well as estimates for the propagation of fundamental and sunspot shocks.
They found that U.S. monetary policy post-1982 was consistent with determinacy but that
the pre-Volcker policy was not, and also that before 1979 indeterminacy substantially altered
the propagation of shocks.


In contrast, working in terms of less fully interpreted models, Sims and Zha (2006) esti-
mated a multivariate regime-switching model for monetary policy and found that the best
fit allows time variation in disturbance variances only. When they permitted the systematic
VAR coefficients to change, the best fit was with change only in the monetary policy rule.
They estimated three regimes that correspond to periods across which the folk-wisdom states
that monetary policy differed. But they found that those differences among regimes were
not large enough to account for the rise and decline of inflation of the 1970s and 1980s. Like-
wise, by estimating a time-varying VAR with stochastic volatility, Primiceri (2005) found
that both the systematic and non-systematic components of monetary policy had changed.
In particular, he found that the systematic responses of the interest rate to inflation and un-
employment exhibited a trend toward a more aggressive behavior, while also having sizeable
high frequency oscillations. But Primiceri concluded that those had small effects on the rest
of the economy and that exogenous non-policy shocks were more important than interest
rate policy in explaining the U.S. inflation and unemployment episodes of the 1970’s, thus
coming down more on the ‘bad luck’ than the ‘bad policies’ side of the argument. I hope
that conclusion is too pessimistic because we have learned to do better.
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Abstract
We consider robust stability under learning of alternative interest-


rate rules. By “robust stability” we mean stability of the rational ex-
pectations equilibrium, under discounted (constant gain) least-squares
learning, for a range of gain parameters. We find that many interest-
rate rules are not robust, in this sense, when operational forms of pol-
icy rules are employed. Rules are considered operational if they do not
depend on contemporaneous values of endogenous aggregate variables.
We consider a variety of interest-rate rules, including instrument rules,
optimal reaction functions under discretion or commitment, and rules
that approximate optimal policy under commitment. For some of the
rules that aim to achieve optimal policy, we allow for an interest-rate
stabilization motive in the policy objective. The expectations-based
rules proposed in Evans and Honkapohja (2003, 2006) deliver robust
learning stability. In contrast, many proposed alternatives become
unstable under learning even at small values of the gain parameter.


Key words: Commitment, interest-rate setting, adaptive learning,
stability, determinacy.


JEL classification: E52, E31, D84.


1 Introduction


Recently, the conduct of monetary policy in terms of interest rate rules has
been examined from the viewpoint of imperfect knowledge and learning by
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economic agents. In this literature stability of rational expectations equilib-
rium (REE) is taken as a key desideratum for good monetary policy design.1


Most of this literature postulates that agents use least squares or related
learning algorithms to carry out real-time estimations of the parameters of
their forecast functions as new data becomes available. Moreover, it is usu-
ally assumed that the learning algorithms have a decreasing gain; in the most
common case the gain is the inverse of the sample so that all data points have
equal weights. Use of such a decreasing-gain algorithm makes it possible for
learning to converge exactly at the REE in environments without structural
change. Convergence requires that REE satisfies a stability condition, known
as E-stability.
Decreasing-gain algorithms do not, however, perform well when occa-


sional unobservable structural changes take place. So-called constant-gain
algorithms are a natural alternative for estimating parameters in a way that
is alert to possible structural changes. If agents use a constant-gain algo-
rithm, then parameter estimates of the forecast functions do not fully con-
verge to the REE values. Instead, they remain random, even asymptotically.
However, for small values of the gain parameter the estimates remain for
most of the time in a small neighborhood of the REE, provided that the
REE is E-stable.2 Recently, constant-gain algorithms have been employed
in empirical work, e.g. see Milani (2005), Milani (2007), Orphanides and
Williams (2005) and Orphanides and Williams (2007).
It should be emphasized that the connection between convergence of


constant-gain learning and E-stability noted above is a limiting result for
gain parameters sufficiently small. For finite values of the gain parame-
ter, the stability condition for constant-gain learning is more stringent than
E-stability. In this paper we examine the stability implications of various in-
terest rate rules when agents use constant-gain learning rules with small but
positive values of the gain. We say that an interest rate rules yields robust
learning stability of the economy if stability under constant-gain learning
obtains for all values of the gain parameter in the range suggested by the
empirical literature
In this study we focus on interest rate rules that are operational in the


1For surveys see Evans and Honkapohja (2003a), Bullard (2006) and Evans and
Honkapohja (2007).


2See Chapters 3 and 7 of Evans and Honkapohja (2001) for the basic theoretical results
on constant-gain learning. See also Evans, Honkapohja, and Williams (2006) for references
on recent papers on constant-gain learning.
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sense discussed by McCallum (1999). He argues that monetary policy cannot
be conditioned on current values of endogenous aggregate variables. Thus,
the rules we consider assume that policy responds to expectations, formed
at the end of the preceding period, of contemporaneous (or future) values of
inflation and output and not on their actual values for the current period.
We consider robust learning stability for a variety of operational interest


rate rules that have been suggested in the recent literature. These include
Taylor rules and optimal reaction functions under discretion and commitment
when central bank policy aims for interest-rate stabilization in addition to the
usual motives for flexible inflation targeting. The reaction function may be
expectations-based in the spirit of Evans and Honkapohja (2003b) and Evans
and Honkapohja (2006), or of the Taylor-type fundamental form suggested
by Duffy and Xiao (2007). We also analyze two interest rate rules that ap-
proximate optimal policy under commitment and were suggested by Svensson
and Woodford (2005) and McCallum and Nelson (2004). Our results show
that expectations-based rules deliver robust learning stability, whereas the
proposed alternatives often become unstable under learning even at quite
small values of the constant gain parameter.


2 Constant Gain Steady-State Learning


2.1 Theoretical Results


In this paper we employ multivariate linear models. In this simplest case in
which the shocks are white noise and there are no lagged endogenous vari-
ables, the REE takes the form of a stochastic steady state. For convenience,
we set the REE value of the intercept to zero, so that the model is in deviation
form. Under learning agents will attempt to learn its value.
Next, we briefly review the basics of steady state learning in linear mod-


els.3 The steady state can be computed by postulating that agents’ beliefs,
called the “perceived law of motion” PLM), take the form


yt = a+ et,


where et ∼ iid(0, σ2). Using the model, one then computes the “actual law of
motion” (ALM), which describes the temporary equilibrium in the current


3See Chapter 8 of Evans and Honkapohja (2001) for a detailed discussion.
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period, given the PLM. We write the ALM using a linear operator T as


yt = Ta+ et,


where the matrix T depends on the structural parameters of the model.
(Examples of the T map will be given below.) An REE is a fixed point ā of
the T map, i.e.


ā = T ā.


We assume that T is non-singular, so that there is a unique solution ā. (Here
ā = 0 since the analysis is in deviation from mean form.)
Steady-state learning under decreasing gain is given by the recursive al-


gorithm
at = at−1 + γt(yt − at−1), (1)


where the gain γt is a sequence of small decreasing numbers such as γt = 1/t.
Assuming that yt = Tat−1 + et, i.e. that expectations are formed using the
estimate at−1 based on data through time t − 1, the convergence condition
of algorithm (1) is given by the conditions for local asymptotic stability of ā
under an “associated differential equation”


da


dτ
= Ta− a,


known as the E-stability differential equation. Here τ denotes notional or
virtual time. It is easily seen that the E-stability condition holds if and only
if all eigenvalues of the matrix T have real parts less than one.4


Under constant-gain learning, the estimate at of a is updated according
to


at = at−1 + γ(yt − at−1), (2)


where 0 < γ ≤ 1 is the constant gain parameter. The only difference to (1)
is constancy of the gain sequence. We now have


at = at−1 + γ (Tat−1 + et − at−1) , or
at = (γT + (1− γ)I) at−1 + γet.


This converges to a stationary stochastic process around the REE value a = 0
(in deviation from mean form) provided all roots of the matrix γT +(1−γ)I
lie inside the unit circle.


4Throughout, we rule out boundary cases in which the real part of some eigenvalue of
the T -map is one.
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It is evident that stability under constant-gain learning depends on the
value of γ, and we have the following result.


Proposition 1 For a given 0 < γ ≤ 1, the stability condition is that the
eigenvalues of T lie inside a circle of radius 1/γ and origin at (1 − 1/γ, 0).
This condition is therefore stricter for larger values of γ.


Proof. The stability condition is that the roots of γ(T + γ−1(1 − γ)I)
lie inside the unit circle centered at the origin. Equivalently, the roots of
(T +γ−1(1−γ)I) must lie inside a circle of radius 1/γ centered at the origin.
Since the roots of T + γ−1(1 − γ)I are the same as the roots of T plus
γ−1(1− γ), this is equivalent to the condition given.
Note that the right edge of the circle is at (1, 0) in the complex plane and


that as γ → 0 we obtain the standard (decreasing gain) E-stability condition
that the real parts of all roots of T are less than than one. Looking at the
other extreme γ = 1 gives the following:


Corollary 2 We have stability for all 0 < γ ≤ 1 if and only if all eigenvalues
of T lie inside the unit circle.


We remark that stability for all constant gains 0 < γ ≤ 1 is equivalent
to a condition known as iterative E-stability, sometimes called “IE-stability.”
Iterative E-stability is said to hold when T j → 0 as j →∞.
Note that when the stability condition holds, the parameter at converges


to a stationary stochastic process that we can fully describe. This in turn
induces a stationary stochastic process for yt = Tat−1 + et.


2.2 Application to Taylor Rules


Consider the standard forward-looking New Keynesian (NK) model,


xt = −ϕ(it − πet+1) + xet+1 + gt (3)


πt = λxt + βπet+1 + ut. (4)


For convenience we here assume that (gt, ut)0 are iid, so that the preceding
technical results can be applied. Later we will consider cases with AR(1)
shocks. We use xet+1 and π


e
t+1 to denote expectations of πt+1 and xt+1. Below


we will be precise about the information sets available to agents when forming
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expectations and throughout the paper we will be exploring the implications
of alternative assumptions.
Bullard and Mitra (2002) consider Taylor rules of various forms, including


the “contemporaneous data” rule


it = χππt + χxxt, (5)


and the “contemporaneous expectations” rule


it = χππ
e
t + χxx


e
t . (6)


In this section, when analyzing the contemporaneous expectations rule we
follow Bullard and Mitra (2002) in assuming that all expectations are based
on information at time t− 1, i.e. πet = Êt−1πt, xet = Êt−1xt, πet+1 = Êt−1πt+1
and xet+1 = Êt−1xt+1. Since we have iid shocks, forecasts are based purely on
the estimated intercept.
Bullard and Mitra (2002) show that the determinacy and E-stability con-


ditions are the same and are identical for both interest rate rules, and given
by


λ(χπ − 1) + (1− β)χx > 0. (7)


They considered this finding important because of the argument by McCal-
lum (1999) that it is not plausible that interest-rate rules can be conditioned
on contemporaneous observations of endogenous aggregate variables like in-
flation and output, whereas they could plausibly be conditioned on central
bank forecasts or “nowcasts” Êt−1πt, Êt−1xt.
We reconsider this issue from the vantage point of constant-gain learning.


For the interest-rate rule (6) the model takes the form


yt =M0y
e
t +M1y


e
t+1 + Pvt, (8)


where y0t = (xt, πt) and vt = (gt, ut), and where


M0 =


µ −χxϕ −χπϕ
−χxϕλ −χπϕλ


¶
and M1 =


µ
1 ϕ
λ β + ϕλ


¶
, (9)


and P =


µ
1 0
λ 1


¶
.


Since our shocks are iid the PLM is simply yt = a + et, and the corre-
sponding ALM is yt = (M0+M1)a+et, where et = Pvt. The usual E-stability
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condition is that the eigenvalues of M0 +M1 have real parts less than one,
which leads to the condition (7). Applying Corollary 2, for convergence of
constant-gain learning for all gains 0 < γ ≤ 1 we need that both eigenvalues
of M0 +M1 lie inside the unit circle.
We investigate stability of constant-gain learning numerically, using the


Woodford calibration of ϕ−1 = 0.157, λ = 0.024, β = 0.99. Setting χπ = 1.5,
eigenvalues with real parts less than −1 arise for χx > 0.31 and eigenvalues
with real parts less than −9 arise for χx > 1.57. This implies that when χπ =
1.5 and χx > 1.57 the equilibrium is unstable under learning for constant
gains γ ≥ 0.10. This is perhaps not a significant practical concern since
Taylor’s recommended parameters are χπ = 1.5 and (based on the quarterly
calibration of Woodford) χx = (0.5)/4 = 0.125. However, it does show a
previously unrecognized danger that arises if the Taylor rule has too strong
a response to Êt−1xt, and this finding foreshadows instability problems that
arise in more sophisticated rules discussed below.
Finally, we remark that the potential for instability under constant-gain


learning arises specifically because of the necessity to use forecasts Êt−1yt.
For the current data Taylor rule (5) it can be shown that the condition (7)
guarantees stability under learning for all constant gains 0 < γ ≤ 1.5


3 Optimal Discretionary Monetary Policy


We now consider optimal policy under constant-gain learning, starting in this
Section with optimal discretionary policy. We focus on homogeneous learning
by private agents and the policy-maker. We initially restrict attention to the
case of iid exogenous shocks, so that steady-state learning is appropriate.
However, we also analyze the more general case, where the observable shocks
follow AR(1) processes.
Consider the loss function


E0


∞X
t=0


£
(πt − π∗)2 + αx(xt − x∗)2 + αi(it − i∗)2


¤
, (10)


where π∗, x∗ and i∗ represent target values. For simplicity, we set π∗ = x∗ =
0. The weights αx, αi > 0 represent relative weights given by policy-makers


5The model now takes the form yt =M1Êtyt+1+Pvt and the required condition is the
same as the determinacy condition.
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to squared deviations of xt and it from their targets, compared to squared
deviations of πt from its target.
The first-order condition (FOC) for discretionary optimal policy is


λπt + αxxt − αiϕ
−1(it − i∗) = 0. (11)


We first consider a Taylor-type fundamentals-based rule proposed by Duffy
and Xiao (2007) and then discuss the expectations-based rule recommended
by Evans and Honkapohja (2003b).


3.1 Taylor-type Optimal Rules


Duffy and Xiao (2007) propose using the equation (11) directly to obtain a
Taylor-type rule that implements optimal discretionary policy. Solving the
FOC for it yields the rule


it =
ϕλ


αi
πt +


ϕαx


αi
xt,


where at this point we drop the intercept term i∗ since for brevity we are
suppressing all intercept terms. As discussed by Duffy and Xiao (2007),
this is formally a contemporaneous-data Taylor rule. They show that for
calibrated values of structural parameters and policy weights this leads to a
determinate and E-stable equilibrium.
Because it is problematical that the Central Bank can observe contem-


poraneous output and inflation,6 we instead examine the rule


it =
ϕλ


αi
Êt−1πt +


ϕαx


αi
Êt−1xt. (12)


where the information set for the “nowcasts” πet = Êt−1πt, xet = Êt−1xt is past
endogenous variables and exogenous variables. This again leads to a model
of the form (8) with coefficients (9), where χπ = ϕλ/αi and χx = ϕαx/αi.
We assume that private agents and Central Banks estimate the same PLM,
Since we are here assuming steady-state learning we also have πet = Êt−1πt+1
and xet = Êt−1xt+1.


6An alternative would be to assume that agents and the policymaker sees the contem-
poraneous value of the exogenous shocks but not the contemporaneous values of xt and
πt. This would not alter our results.
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We first note that for αi sufficiently large the model under this Taylor-
type rule will suffer from indeterminacy. This follows from the Bullard-Mitra
result that the determinacy condition is (7), from which the critical value of
αi can be deduced. The condition for determinacy is


αi < α̂i ≡ ϕλ+ (1− β)λ−1ϕαx. (13)


For example, using the calibrated parameter values of Table 6.1 of Woodford
(2003), with αx = 0.048, ϕ = 1/0.157, λ = 0.024, β = 0.99, we get approx-
imately α̂i = 0.28. Woodford’s calibrated values of αi are 0.077 or 0.233,
where the latter value is from Woodford (1999).
We next consider stability under learning. For the PLM yt = a + et we


again get the ALM yt = (M0 +M1)a+ et, and


T ≡M0 +M1 =


µ
1− α−1i αxϕ


2 ϕ− α−1i λϕ2


λ− α−1i λϕ2αx β + λϕ− α−1i λ2ϕ2


¶
.


It can be shown that


det(T ) = β(1− α−1i αxϕ
2).


For stability under all values 0 < γ < 1 we need¯̄
β(1− α−1i αxϕ


2)
¯̄
< 1,


and it is clear that for given β, αx, ϕ this condition will not be satisfied for
αi > 0 sufficiently small. Hence


Proposition 3 Let α̂i = β(1 + β)−1αxϕ
2. For 0 < αi ≤ α̂i there exists


0 < γ̂ < 1 such that the optimal discretionary Taylor-type rule renders the
REE unstable under learning for γ̂ < γ ≤ 1.


Thus, in addition to the indeterminacy problem with “large values” of αi,
the Taylor-type optimal rule suffers from a more serious problem of instability
under constant-gain learning for “small values” of αi. The severity of this
problem depends on the value of γ̂ in Proposition 3. Ideally, stability would
hold for all 0 < γ ≤ 1, though if γ̂ is high the problem might not be a major
concern.
We investigate the magnitude of γ̂ numerically by computing the eigen-


values of γT + (1 − γ)I. As an example, for the Woodford calibration


9







β = 0.99, ϕ = 1/0.157, λ = 0.024, we find that with αx = 0.048 and
αi = 0.077, the critical value γ̂ ≈ 0.04. Since estimates in the macro lit-
erature suggest gains in the range 0.02 to 0.06, this indicates that optimal
Taylor-type rules may not be stable under learning. The source of the prob-
lem is that with low αi the implied weights on Êt−1πt and especially Êt−1xt
are very high. Under constant-gain learning this can lead to instability unless
the gain parameter is very low. We will demonstrate later that this problem
is avoided by using a suitable expectations-based optimal rule.
One could instead make a different assumption about the information


that is available to the agents at the time of forecasting. One would replace
the expectations Êt−1πt, Êt−1xt, Êt−1πt+1 and Êt−1xt+1 in the model and
policy rule by Êtπt, Êtxt, Êtπt+1 and Êtxt+1 if agents see lagged and current
exogenous but not current endogenous variables. Both assumptions have
been used in the literature.7 We also generalize the model by assuming that
the exogenous shocks gt and ut follow AR(1) processes, i.e.


gt = μgt−1 + g̃t and ut = ρut−1 + ũt


where 0 < |μ| , |ρ| < 1 and g̃t ∼ iid(0, σ2g), ũt ∼ iid(0, σ2u) are independent
white noise processes. We write this in vector form as


vt = Fvt−1 + ṽt.


Under the new assumptions, the perceived law of motion of the agents is


yt = a+ cvt,


and the forecasts are now Êtyt = a+ cvt and Êtyt+1 = a + cFvt. Using the
general model (8), the actual law of motion is


yt = (M0 +M1)a+ (M0c+M1cF + P )vt,


and the E-stability conditions are that all eigenvalues of the matricesM0+M1


and I ⊗M0 + F 0 ⊗M1 have real parts less than one. Here ⊗ denotes the
Kronecker product of two matrices.
To examine stability under constant-gain learning, we simulate the model


under constant-gain recursive least squares (RLS) estimation of the PLM


7A third alternative, which is occasionally used in the literature, allows agents to see the
contemporaneous values of endogenous variables. However, this assumption runs against
the requirement of operationality that we want to emphasize here.
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Figure 1: Stability of optimal Taylor-type rule with γ = 0.02.


parameters a and c.8 Under constant-gain least squares agents discount old
data geometrically at the rate 1 − γ. This leads to estimates at, ct based
on data through t− 1. For the recursive formulation of (constant-gain) least
squares see the Appendix. Given these estimates, expectations are formed
as yet = Êtyt = at + ctvt and yet+1 = Êtyt+1 = at + ctFvt and the temporary
equilibrium is then given by (8) with these expectations.
We use the previous values for the structural parameters and also set


μ = ρ = 0.8. Simulations of the system indicate instability under constant-
gain RLS learning for gain parameters at or in excess of 0.024. Thus, with
regressors that include exogenous AR(1) observables instability arises at even
lower gain values than in the case of steady state learning. Figures 1 and
2 illustrate the evolution of parameters over time under constant-gain RLS
learning with the Taylor type rule (12) in stable and unstable cases.


3.2 Expectations-Based Optimal Rules


Assume now that at time t the exogenous shocks gt, ut and private-sector
expectations Êtπt+1 and Êtxt+1 are observed by the Central Bank. The
expectations-based (EB) rule is constructed so that it exactly implements
(11), the FOC under discretion, even outside an REE for given expectations,


8For formal details on RLS learning, see e.g. Chapter 10 of Evans and Honkapohja
(2001).
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Figure 2: Instability of optimal Taylor-type rule with γ = 0.04.


as suggested by Evans and Honkapohja (2003b). To obtain the rule, we
combine (3), (4) and (11), and solve for it in terms of the exogenous shocks
and the expectations.
The resulting EB-rule is


it =
(αx + λ2)ϕ


αi + (αx + λ2)ϕ2
Êtxt+1 +


βλϕ+ (αx + λ2)ϕ2


αi + (αx + λ2)ϕ2
Êtπt+1


+
(αx + λ2)ϕ


αi + (αx + λ2)ϕ2
gt +


λϕ


αi + (αx + λ2)ϕ2
ut.


This leads to a reduced form


yt =MÊtyt+1 + Pvt. (14)


Determinacy of the REE corresponding to optimal discretionary monetary
policy requires thatM has both eigenvalues inside the unit circle.9 We again
have the condition αi < α̂i, where α̂i is given by (13).
For stability under learning, first consider the case where the exogenous


shocks vt are iid and agents use steady state learning under constant gain.


9Equivalently we need |tr(M)| < 1 + det(M) and |det(M)| < 1.


12







For this reduced form the PLM yt = a + et gives the ALM yt = Ma + et
(where et = Nvt), as discussed in Section 2.1. Thus T = M and there is a
very close connection between determinacy and stability under learning. We
have:


Proposition 4 Assume αi < α̂i and the shocks are iid. Then the EB-rule,
which implements the FOC, yields a reduced form that is stable under steady-
state learning for all constant-gain rules 0 < γ ≤ 1.


Provided αi < α̂i, so that determinate optimal policy is possible, the EB-
optimal rule will successfully implement the optimal REE: under decreasing
gain learning there will be convergence to the REE, and under small con-
stant gain it will converge to a stochastic process near the optimal REE.
Furthermore, for all constant gains 0 < γ ≤ 1 there will be convergence to a
stationary process centered at the optimal REE.
Second, we examine numerically the case of AR(1) shocks with (constant-


gain) RLS learning. For the Woodford calibration β = 0.99, ϕ = 1/0.157, λ =
0.024, αx = 0.048 and αi = 0.077 (and ρ = μ = 0.8) we find that learn-
ing converges for gain values at or below γ = 0.925. In other words, the
expectations-based optimal discretionary rule is quite robustly stable under
learning. We also make a technical remark that when the agents have to
run genuine regressions, as in the current case, then the IE-stability condi-
tion does not imply convergence of constant-gain learning for all 0 < γ ≤ 1.
However, we see that stability does hold even for γ quite close to one.


4 Optimal Policy with Commitment


For brevity, in the remainder of the paper we assume that αi = 0, i.e. the
Central Bank does not have an interest rate stabilization objective.10 Given
the model (3)-(4) and the loss function (10) with αi = 0, it is well-known
that optimal monetary policy under commitment (in a timeless perspective)
is characterized by the condition11


λπt = −αx(xt − xt−1), (15)


10See Duffy and Xiao (2007) for the extension to the case where the Central Bank also
has an interest-rate stabilization motive.
11See e.g. Clarida, Gali, and Gertler (1999) and Woodford (1999). For the exposition,


we follow Evans and Honkapohja (2006).
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which is often called the optimal targeting rule. It can be shown that the
optimal rational expectations equilibrium of interest has the form


xt = bxxt−1 + cxut


πt = bπxt−1 + cπut,


where we choose the unique 0 < bx < 1 that solves the equation βb2x−(1+β+
λ2/αx)bx+1 = 0 and bπ = (αx/λ)(1−bx), cx = −[λ+βbπ+(1−βρ)(αx/λ)]


−1


and cπ = −(αx/λ)cx.
Different optimal reaction functions that implement the optimal targeting


rule (15) have been proposed in the literature. Under rational expectations
one obtains the fundamentals-based reaction function


it = ψxxt−1 + ψggt + ψuut, (16)


where


ψx = bx[ϕ
−1(bx − 1) + bπ]


ψg = ϕ−1


ψu = [bπ + ϕ−1(bx + ρ− 1)]cx + cπρ.


Evans and Honkapohja (2006) show that the reaction function (16) often
leads to indeterminacy and always leads to expectational instability. They
propose instead the expectations-based reaction function


it = δLxt−1 + δπÊtπt+1 + δxÊtxt+1 + δggt + δuut, (17)


where the coefficients are12


δL =
−αx


ϕ(αx + λ2)
, δπ = 1 +


λβ


ϕ(αx + λ2)
, δx = δg = ϕ−1, δu =


λ


ϕ(αx + λ2)
.


The optimal expectations-based reaction function (17) delivers a determinate
and E-stable optimal rational expectations equilibrium for all values of the
parameters, so that it is preferred to the fundamentals-based rule (16).
We also have the following partial result:13


12In the discretionary case with αi = 0 the same coefficients would obtain, except that
δL = 0.
13See the Appendix for a proof.
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Proposition 5 The EB-rule under commitment (17) yields a reduced form
for which the eigenvalues of the T−map are inside the unit circle for all
values of the structural parameters.


This result is partial in the sense that the eigenvalues condition is no
longer sufficient for stability of constant-gain learning for all 0 < γ ≤ 1.
This is because in the model the regressors include exogenous and lagged
endogenous variables.
We now examine numerically the performance of constant-gain RLS learn-


ing under the expectations-based optimal rule with commitment. Using
Woodford’s parameter values (but with αi = 0), we find that constant-gain
RLS learning converges for values of the gain parameter below γ̂ ≈ 0.25.
The inclusion of a lagged variable among the regressors appears to have a
significant effect on stability of learning for large gains. However, the rule is
still robust for all plausible values of the gain parameter.
As noted above, the Duffy and Xiao (2007) formulation under commit-


ment breaks down when αi = 0 (as it does in the discretionary case). One
might investigate numerically the performance of the Duffy-Xiao rule under
constant-gain RLS for calibrated values of αi. Based on the results in the
discretionary case, we are not optimistic about the robust learning stability
of the Duffy-Xiao rule with commitment.


5 Approximating Optimal Policy under Com-
mitment


5.1 Svensson-Woodford Rule


Given that the fundamentals-based optimal rules (without interest rate stabi-
lization) lead to problems of indeterminacy and learning instability, Svensson
and Woodford (2005) suggest a modification to such a rule. In this rule the
fundamentals-based rule (16) is complemented with a term that is based on
the commitment optimality condition. We also assume that contempora-
neous data are not available to the policy-maker, so that current values of
inflation πt and the output gap xt are replaced by their nowcasts Êtπt and
Êtxt. This results in the interest rate rule


it = ψxxt−1 + ψggt + ψuut + θ[Êtπt +
α


λ
(Êtxt − xt−1)]. (18)
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The full model is now given (3), (4) and (18). By substituting (18) into
(3) this model can be reduced to a bivariate model of the form


yt =M0Êtyt +M1Êtyt+1 +Nyt−1 + Pvt, (19)


where the information set in the forecasts and nowcasts includes current
values of the shocks but not of endogenous variables. It is also assumed for
convenience that vt = Fvt−1 + v̄t is a known and stationary process. The
coefficient matrices are


M0 =


µ −ϕαxθλ
−1 −ϕθ


−ϕαxθ −ϕθλ
¶
, M1 =


µ
1 ϕ
λ β + λϕ


¶
N =


µ −ϕψx + ϕαxθλ
−1 0


−λϕψx + ϕαxθ 0


¶
, P =


µ
0 −ϕψu


0 1− λϕψu


¶
.


The PLM now has the form


yt = a+ byt−1 + cvt


and the T−mapping takes the form


T (a, b, c) = ((M0 +M1(I + b))a,M1b
2 +M0b+N,M0c+M1(bc+ cF ) + P ).


The usual E-stability conditions are stated in terms of the eigenvalues of the
derivative matrices


DTa = M0 +M1(I + b̄)


DTb = b̄0 ⊗M1 + I ⊗M1b̄+ I ⊗M0


DTc = F 0 ⊗M1 + I ⊗M1b̄+ I ⊗M0,


where ⊗ is the Kronecker product and b̄ is the RE value of b.
We compute numerically the E-stability eigenvalues for the Woodford


calibration with αx = 0.048 and θ = 1.14 For this case the eigenvalues of
DTa are −9.570 and 0.99, while the eigenvalues of DTb are −10.605, −9.672,
0.878 and −0.0118. However, θ = 1 is very close to the lower bound on
theta needed for E-stability (since one root of DTa is almost one), and the


14We remark that the eigenvalues of the same model but with contemporaneous data
available would not deliver large negative eigenvalues in the E-stability calculation for this
parameterization.
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eigenvalues are sensitive to the value of θ. For example, for θ = 1.5 we
have DTa are −15.975 and 0.949, while the eigenvalues of DTb are −17.059,
−16.082, 0.842 and−0.0110. It is seen that large negative eigenvalues appear.
The calculation of the E-stability eigenvalues suggests that the interest


rate rule (18) can be subject to instability if learning is based on constant
gain. We now examine numerically the performance of the rule (18) under
different values of the constant gain using the Woodford calibrated values of
the model parameters and θ = 1.5. Numerical simulations show that under
the interest rate rule (18) constant-gain RLS learning becomes unstable for
values of γ at 0.019 or higher.
We also examine numerically the sensitivity of the stability upper bound


on γ for different values of αx, i.e. the degree of flexibility of inflation tar-
geting. Table 1 gives the approximate highest value γ̂ of the gain for which
stability under constant-gain learning obtains.


αx 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1
γ̂ 0.185 0.06 0.035 0.02 0.018 0.014 0.009 0.007


Table 1: Critical values of γ for stability


It is seen fromTable 1 that robust learning stability of the Svensson-Woodford
hybrid rule is very sensitive to the degree of flexibility in inflation targeting.
Robust stability obtains only when the Central Bank is an “inflation hawk”.


5.2 McCallum-Nelson Rule


McCallum and Nelson (2004) propose a different rule that approximates opti-
mal interest-rate policy in the timeless-perspective sense. They suggest that
the interest rate be raised above inflation whenever the timeless-perspective
optimality condition is above zero.
This rule is subject to the operationality problem that we have encoun-


tered several times: it presupposes that contemporaneous data on inflation
and the output gap is available. One way to overcome this problem is to
replace unknown contemporaneous data by nowcasts of the variables. In this
case the interest-rate rule becomes


it = Êtπt + θ[Êtπt +
α


λ
(Êtxt − xt−1)]. (20)
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The model is then given by equations (3), (4) and (20). The model can be
reduced to a bivariate model of the form (19), where the coefficient matrices
are


M0 =


µ −ϕαxλ
−1 −ϕ(1 + θ)


−ϕαx −λϕ(1 + θ)


¶
, M1 =


µ
1 ϕ
λ β + λϕ


¶
N =


µ
ϕαxλ


−1 0
ϕαx 0


¶
, P =


µ
1 0
λ 1


¶
.


Using the same parameter values as above in the case of the Svensson-
Woodford hybrid rule, with αx = 0.048, we obtain that for θ = 1 the eigenval-
ues of DTa are −9.719 and 0.869, while the eigenvalues of DTb are −10.780,
−9.833, 0.750 and −0.213. For θ = 1.5 the eigenvalues of DTa are −9.997
and 0.841, while the eigenvalues of DTb are −11.087, −10.138, 0.701 and
−0.213.
The results are very sensitive to αx. For αx = 0.1, we obtain that for


θ = 1 the eigenvalues of DTa are −22.954 and 0.912, while the eigenvalues
of DTb are −24.042, −23.033, 0.835 and −0.143.
It can be seen that the problem of large negative eigenvalues appears with


this rule, so that the potential of instability under constant-gain learning ex-
ists. We again examine this issue numerically. Using the Woodford calibra-
tion (including αx = 0.048) and choosing θ = 1.5, we find that constant-gain
RLS learning becomes unstable for values of the gain at or above 0.029.
Thus, although the stability performance of the McCallum-Nelson rule (20)
is somewhat better than that of the hybrid rule (18) for the same parameter
values, the rule is not robust to many plausible values of the gain parameter.
We remark that McCallum and Nelson (2004) suggest that a preferable


alternative to (20) is to use forward expectations in place of the nowcasts
as it delivers superior results under rational expectations. In this case, the
model has no lagged endogenous variables, i.e. N = 0 in (19). This case has
been analyzed numerically in Evans and Honkapohja (2003a) and Evans and
Honkapohja (2006). It was shown that determinacy and E-stability require a
small value of the parameter θ, while for small values of θ the welfare losses
for optimal policy can be significant. However, the problem of large negative
eigenvalues does not appear with this rule.
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6 Conclusions


A lot of recent applied research on learning and monetary policy has empha-
sized discounted (constant-gain) least-squares learning by private agents. We
have examined the stability performance of various operational interest-rate
rules under constant-gain learning for different values of the gain parameter.
Since estimates of the gain parameter tend to be in the range of 0.02 to 0.06
for quarterly macro data, ideally there should convergence of learning for
gain parameters up to 0.1. Based on this criterion, we have found that many
proposed interest-rate rules are not robustly stable under learning in this
sense. An exception to this finding is the class of expectations-based optimal
rules in which the interest rate feeds directly back on private expectations in
an appropriate way.
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A Appendix


Constant-gain RLS Algorithm


Suppose the economy is described in terms of a multivariate linear model,
which includes possible dependence on lagged endogenous variables.
Under least-squares learning agents have the PLM


yt = a+ byt−1 + cvt + ηt, (21)


where a, b and c denote parameters to be estimated. Here yt is a p×1 vector
of endogenous variables. vt is k× 1 vector of observable exogenous variables,
and et is a vector of white noise shocks. If the model does not have lagged
endogenous variables, then the term byt−1 is omitted.
At time t agents compute their forecasts using (21) with the estimated


values (at, bt, ct) with data up to period t− 1. Constant-gain RLS takes the
form


ξt = ξt−1 + γR−1t Zt−1(yt−1 − ξ0t−1Zt−1)0,


Rt = Rt−1 + γ(Zt−1Z 0t−1 −Rt−1)


where ξ0t = (at, bt, ct), Z
0
t = (1, y


0
t−1, v


0
t) and 1 > γ > 0. The algorithm starts


at t = 1 with a complement of initial conditions. We remark that the only
difference from standard RLS is that the latter assumes a decreasing gain
γt = 1/t.
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Proof of Proposition 5


We now sketch a proof of Proposition 5. We examine the formulas given
in equations (A7)-(A9) on p. 36 of Evans and Honkapohja (2006). Two of
the eigenvalues of DTb are 0, while the remaining eigenvalues are those of
the matrix


Kb =


Ã −λβbπ
αx+λ


2
−λβbx
αx+λ


2


αxβbπ
αx+λ


2
αxβbx
αx+λ


2


!
15The formal analysis of recursive least squares (RLS) learning in linear multivariate


models is developed e.g. in Evans and Honkapohja (1998) and Chapter 10 of Evans and
Honkapohja (2001).
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The eigenvalues of Kb are 0 and −1 < αxβ(2bx−1)
αx+λ


2 < 1. Likewise, two of
the eigenvalues of DTc are 0 while the other two eigenvalues of those of the
matrix


Kc =


Ã −λβbπ
αx+λ


2
−λβρ
αx+λ


2


αxβbπ
αx+λ


2
αxβρ
αx+λ


2


!
,


and the eigenvalues of Kc are 0 and
αxβ(bx−1+ρ)


αx+λ
2 , which is inside the unit circle


unless ρ is negative and large in magnitude. Finally,


DTa =


Ã −λβbπ
αx+λ


2
−λβ
αx+λ


2


αxβbπ
αx+λ


2
αxβ


αx+λ
2


!


and its eigenvalues are 0 and 0 < αxβbx
αx+λ


2 < 1.
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Macroeconomic and monetary policies


from the "eductive" viewpoint.
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1 Introduction


The �quality�of coordination of expectations is a key issue for monetary policy.
The question involves di¤erent, but interrelated channels, involving the �credi-
bility�of the Central Bank intervention and the ability of decentralized agents
to coordinate on a dynamical equilibrium.
Unsurprisingly, the understanding of the learning process of the agents is a


key ingredient of the analysis of the quality of expectational coordination. Many
studies focus attention on �evolutive�, real time learning rules (adaptive learning
rules, etc. . . ). The �eductive� viewpoint, as illustrated in many references of
this bibliography and in my 2005 MIT Press book, partly abstracts from the
real time dimension of learning, with the aim of exhibiting more directly the
systems�characteristics that are coordination-friendly.
The objective of the paper is to confront the methods and philosophy of


analysis of expectational coordination, that refer to what I just called the
"eductive" viewpoint and the actual method and philosophy that underly most
present studies of learning in the context of macroeconomic and monetary pol-
icy. The paper aims primarily at giving a synthetical �avour of the "eductive"
viewpoint as well as presenting a brief review of existing results in the context
of dynamical systems Existing applications of the "eductive" method to macro-
economics bear on general equilibrium (2) or dynamical systems (3) 1but not
directly on monetary policy issues. The exploration of the di¤erences between
the traditional viewpoint and this other viewpoint in standard monetary policy
models is extremely tentative, although it seems to me potentially promising
This text will hopefully generate new re�ection in the directions stressed
The paper will proceed as follows:


1See in particular, Guesnerie R. (2001) �"Short run expectational coordination: Fixed
versus �exible wages." Quarterly Journal of Economics, p. 1115,1147, Evans G., R. Guesnerie
(2005) "Coordination on saddle path solutions: the eductive viewpoint, 2 - Linear multivariate
models, Journal of Economic Theory, 2005, p.202-229.
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- It will recall the logic of the �eductive�viewpoint and stress di¤erences
as well as complementarities with the �evolutive�viewpoint.
- It will contrast the viewpoints for the theory of abstract dynamical


systems, emphasizing the problem of heterogeneity of expectations.
- It will select a sample of models for which it will start comparing the


standard learning viewpoint and the so-called �eductive�approach.


2 Expectational stability : the "eductive view-
point".


The notion of "eductively stable" equilibrium or "strongly rational equilibrium"
relies on considerations that have a game-theoretical underpinning, and refer
to "rationnalizability", "dominance solvability", "Common Knowledge" ideas.
This provides a "high tech" justi�cation of the expectational stability criteria
that are proposed. I �rst put emphasis on this "high tech" approach for propos-
ing global concepts of expectational stability (2-A). I turn then to the local
transposition of the global ideas and stress that the criteria have now, besides
the previous "high tech" justi�cation a low tech, intuitive interpretation (2-B).
I �nally comment on the connections between the "eductive" viewpoint and the
standard "evolutive" learning viewpoint (2-C).


2.1 Global "eductive" stability.


We are in a world populated of rational economic agents, (in all the follow-
ing, I shall assume that these agents are in�nitesimal and associated with a
continuum2), rationality of the agents is Common Knowledge and so are the in-
teractions between them (the model is Common Knowledge, from now on CK).
The state of the system is denoted E and belongs to some subset E of some
vector space. An equilibrium of the system is a state E* such that if everybody
believes that it prevails, it does prevail. (Note that this implies in particular
that the assertion it is CK that E=E* is not absurd).
Note that E can be a number, (the value of an equilibrium price in Guesnerie


(1992) or quantity Guesnerie (2001) or a growth rate, in Evans-Guesnerie(2003)),
a vector (of equilibrium prices, or quantities, in Guesnerie (2005), Chapter
6), a function, (the equilibrium demand function in many �nance models see
Desgranges (2000), Heinemann (2004), Desgranges-Heinemann (2005), Ben Po-
rath(2006) or an in�nite trajectory of states, (in Evans-Guesnerie (2005), a
probability distribution.in Desgranges-Gauthier(2003)
Let us make a presentation which is both abstract (although not fully ex-


plicit) and synthetical


2The mathematical di¢ culties and speci�cities of the continuum, and the connection of
rationalizability in this setting and in standard game theoretical setting is analysed in Jara
(2007).
Guesnerie-Jara (2007) also àbtainrather genereal results on global "eductive" stability.
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We say that E* is "eductively" stable of "strongly rational" iif Assertion A
implies assertion B.
Assertion A : It is CK that E 2 E (and implicitely that Bayesian rationality


and the model are CK)
Assertion B : it is CK that E=E*.


The mental process that leads from Assertion A to Assertion B is the fol-
lowing.
1- As every body knows that E 2 E , everybody knows that everybody limits


its responses to actions that best responses to some probability distributions
over E . It follows that everybody knows that the state of the system will be in
E(1) � E
2- If E(1) is a proper subset of E , the mental process goes on as in step 1,


but with E(1) instead of E .
3- etc...
We then have a (weakly) decreasing sequence E(n) � E(n � 1) � :::: �


E(1) � E . When the sequence converges to E*, the equilibrium is strongly,
rational or "eductively" stable. When it is not the case, the limit set is the set
of rationalizable equilibria of the model. (See Guesnerie-Jara-Moroni (2007)).
Global "eductive" stability is clearly very demanding, although it can be


shown to hold under plausible economic conditions in a variety of models, either
partial equilibrium (Guesnerie (1992)), general equilibrium (Guesnerie (2001)),
�nance and transmission of information through prices (Desgranges-Geo¤ard-
Guesnerie (2002)), or in general settings involving strategic complementarities
or substitutabilities (Guesnerie-Jara-Moroni(2007).


2.2 Local "eductive" Stability


Local "eductive stability may be de�ned through the same �high tech" or hy-
perrationality view (2B-1). However, the local criterion has also a very intuitive
and low tech and boundedly rational interpretation (2B-2).


2.2.1 Local "eductive" stability as a CK statement.


We say that E* is locally "eductively" stable or locally "strongly rational" iif
one can �nd some non trivial neighbourhood of E*, V (E) such that Assertion
A implies assertion B.
Assertion A : It is CK that E 2 V (E)
Assertion B : it is CK that E=E*.
Hypothetically, the state of the system is assumed to be in some non-trivial


neighbourhood of E*, and this hypothetically CK assumption implies the CK
of E*.
In other words, the deletion of non-best responses, starts under the assump-


tion that the state of the system is close to the equilibrium state. In that sense,
the viewpoint refers to the same hyper-rationality view as referred to before.
However, the statement can be read in a simpler way.
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2.2.2 Local "eductive" stability as a common sense requirement.


It seems intuitively plausible to de�ne local expectational stabilty as follows :
there exists a non trivial neighbourhood of the equilibrium such that if every-
body believes that the state of the system is in this neighbouhood, whatever
the speci�c form taken by eveybody�s belief, it is the case that the state is in
the stressed neighbouhood. Intuitively absence of such a neighbourhood signals
some tendancy to instability : there can be facts falsifying any conjecture on
the set of possible states, unless this set reduces to the equilibrium itself.
Naturally, it is easy to check, and left to the reader, that the failure of


getting local �expectational stability� is a failure of the above local intuitive
requirement.


2.3 "Eductive" versus "evolutive" learning stability.


There is an informal argument, due to Milgrom-Roberts (1990), according to
which, in a system that repeats itself, non best responses to existing observations
will be deleted after a while, initiating a �real time� version of the notional
time deletion of non-best responses underlying �eductive� reasoning. Let us
focus here on the connections between local �eductive stability�and the local
convergence of �evolutive�learning rules. What the �eductive stability�involves
is that once, for whatever reasons, the (possibly stochastic) beliefs of the agents
will be trapped in V (E), they will remain in V (E), as soon as the updating
process is let us say, Bayesian. Although it is not quite enough to be sure
any �evolutive�learning rule will converge, it is the case that in many settings,
one can show that local �eductive� stability involves that every �reasonable�
evolutive real time learning rule converges asymptotically (see Guesnerie (2002)
, Gauthier-Guesnerie (2005), ). Furthermore, it should be clear that the failure ot
�nd a set V (E) for which the the equilibrium is locally strongly rational, signals
a tendancy for reasonable states of beliefs, close to the equilibrium, and then
probably compatible with some reasonable evolutive updating, to be triggered
away in some cases, a fact that threatens the convergence of the corresponding
learning rule.
Hence, our very abstract and hyper-rational criterion, provides a short cut


for understanding the di¢ culties of expectational coordination, without enter-
ing into the business of specifying the real time, bounded rationality consider-
ations that may matter. Naturally, the �eductive� criterion is in general more
demanding than most fully speci�ed �evolutive�learning rules one can think of
(see previous references).


In cases of models with �extrinsic uncertainty�, the equilibrium is a proba-
bility distribution, a state of the system in the sense of the word taken here is
a probability distribution. An observation is not an observation on the state in
our sense, but an information on the state in the standard sense of the word.
�Evolutive and �eductive learning may di¤er signi�cantly..
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3 "Eductive" versus "evolutive" learning in in-
�nite horizon models.


Models used for monetary policy generally adopt an in�nite horizon approach.
This section reviews existing results on "eductive" stability in in�nite hori-
zon models. It is based on Desgranges-Gauthier (2002) Gauthier (), Evans-
Guesnerie (), Gauthier-Guesnerie (). The review will allow to confront the game-
theoretically oriented viewpoint stressed here with the standard macroeconomic
approach to the problem as reported in Evans-Honkappohja (2001).


3.1 Standard expectational analysis in one-dimensional one
step-forward memory one models.


3.1.1 The model


Consider a one-dimensional model in which the state of the system to-day is
determined form its value yesterday and its expected value to-morrow, according
to the linear (for the sake of simplicity) equation :


E [x(t+ 1) j It] + x(t) + �x(t� 1) = 0;


where x is a one-dimensional variable  and � are real parameters (; � 6= 0).3 .
A perfect foresight trajectory is a sequence (x(t); t � �1) such that


x(t+ 1) + x(t) + �x(t� 1) = 0


in any period t � 0, given the initial condition x(�1).
Assume that the equation g1 = �g21 � � has only two real solutions �1 and


�2 (which arises if and only if 1�� � 0) with di¤erent moduli (with j�1j < j�2j
by de�nition). Therefore, given an initial condition x(�1), there are two perfect
foresight solutions : x(t) = �x(t�1);i.e x(t) = �1x(t�1). and x(t) = �2x(t�1).
The steady state sequence (x(t) = 0; t � �1) is a perfect foresight equilib-


rium if and only the initial state x(�1) equals 0. The steady state is a sink if
j�2j < 1, a saddle if j�1j < 1 < j�2j, or a source if j�1j > 1. We focus attention
here on the so-called saddle-path case : the solution x(t) = �1x(t�1), generally
called the saddle path has been stressed for a long time by economists as the
focal solution, on the basis of arguments that refer to expectational plausibility.
We review, �rst, the standard expectational criteria that are used and con�rm
that the saddle-path solution �t them.


3.1.2 The standard expectational criteria.


Determinacy. The �rst criterion is determinacy. Determinacy means that
the equilibrium under consideration is locally isolated. In our in�nite horizon
setting, determinacy has to be viewed as a property of trajectories : a trajectory


3Such dynamics obtain from linearized versions of overlapping generations models with
production, at least for particular technologies (Reichlin (1986)), etc....
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(x(t); t � �1) is determinate if there is no other trajectory (x0(t); t � �1) that
is close to it. This calls for a re�ection about the notion of proximity of trajec-
tories, i.e to the choice of a topology. Yet the choice of the suitable topology is
open. The most natural candidate is the C0 topology, according to which two
di¤erent trajectories (x(t); t � �1) and (x0(t); t � �1) are said to be close when-
ever jx(t)� x0(t)j < ", for any " > 0 arbitrarily small, and any date t � �1. In
fact, with such a concept of determinacy, the saddle-path solution, along which
x(t) = �1x(t� 1) when j�1j < 1 < j�2j, is the only non-explosive solution to be
locally determinate in the C0 topology.


Growth rates determinacy. In the present context of models with memory,
a saddle solution is characterized by a constant growth rate of the state variable
This suggests that determinacy should be applied in terms of growth rates,
in which case closedness of two trajectories (x(t); t � �1) and (x0(t); t � �1)
would require that the ratio x(t)=x(t � 1) be close to x0(t)=x0(t � 1) in each
period t � 0. This is an ingredient of a kind of C1 topology, as advocated by
Evans and Guesnerie (2003a). In this topology, two trajectories (x(t); t � �1)
and (x0(t); t � �1) are said to be close whenever both the levels x(t) and x0(t)
are close, and the ratios x(t)=x(t�1) and x0(t)=x0(t�1) are close, in any period.
As stressed for example by Gauthier (2002), the examination of proximity in


terms of growth rates leads consideration of the dynamics with perfect foresight
in terms of growth rates.
De�ne


g(t) = x(t)=x(t� 1);


For any x(t�1) and any t � 0, then the perfect foresight dynamics implies :


x(t) = � [g (t+ 1) g (t) + �]x(t� 1)


Or
g (t) = � [g (t+ 1) g (t) + �]


Associated with the initial perfect foresight dynamics, is then a perfect fore-
sight dynamics of growth rates. The growth factor g (t) is determined at date t
by the correct forecast of the next growth factor g (t+ 1) : This new dynamics
is non-linear, and it has a one-step forward looking structure, without predeter-
mined variable.
We have then reassessed the problem in terms of one-dimensional one step


forward looking models which are more familiar


Sunspots on growth rates Maintaining the focus on growth rates, let us
now de�ne a concept of sunspot equilibrium, in the neighborhood of a constant
growth rate solution. Suppose that agents a priori believe that the growth factor
is to be perfectly correlated with sunspots (sunspots are generated by a Markov
process)
Namely, if the sunspot event is s at date t, they a priori believe that g(t) =


g(s), that is x(t) = g(s)x(t� 1).
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Thus, their common forecast is


E [x(t+ 1) j It] = �(s; 1)g(1)x(t) + �(s; 2)g(2)x(t),
where �(s; 1) and �(s; 2) are the sunspot transition probabilities. As shown by
Desgranges and Gauthier (2003), this consistency condition is written g(s) =
� [ [�(s; 1)g(1) + �(s; 2)g(2)] g(s) + �].
When g(1) 6= g(2);the formula de�nes a sunspot equilibrium on the growth


rate, as soon as the stochastic dynamics of growth rates is extended as g (t) =
�E [g (t+ 1) j It] g (t)� �. 4


Evolutive learning on growth rates. It makes sense to learn growth rates
from past observations. Agents then update their forecast of the next period
growth rates from the observation of past or present actual rates.
Reasonable learning rules in the sense of Gauthier-Guesnerie (2005) consist


of adaptive learning rules that are able to �detect cycles of order two�.


Iterative Expectational Stability. (IE Stability) We shall refer here to
IE-stability criterion (see Evans (1985), de Canio, (1978). Lucas (1979)), and
apply it to conjectures on growth rates


Let agents a priori believe that the law of motion of the economy is given
by


x(t) = g(�)x(t� 1);
where g(�) denotes the conjectured growth rate at step � in some mental


reasoning process. Then, they expect the next state varaible to be g(�)x(t), so
that the actual value is x(t) = ��x(t � 1)=(g(�) + 1). Assume that all the
agents understand that the actual growth factor is ��=(g(�) + 1) when their
initial guess is g(�), they should revise their guess as


g(� + 1) = � �


g(�) + 1


This is the IE-stability criterion. By de�nition, IE-stability obtains whenever
the sequence (g(�); � � 0) converges toward one of its �xed point, a fact that is
interpreted as re�ecting the success of some mental process of learning. Since
this dynamics is the time mirror of the perfect foresight dynamics of growth
rate, a �xed point �1 or �2 is locally IE-stable if and only if it is locally unstable
in the previous growth rates dynamics, that is locally determinate.


3.1.3 Standard criteria versus �eductive stability�.


This is, within a simple model, a somewhat careful reminder of the four possible
and more or less standard viewpoints on �expectational stability�. We want to
compare their viewpoints with the so called �eductive viewpoint� emphasized
here. The comparison is made easier when one notes that it turns out that here
these a priori di¤erent approaches of the problem lead to the same result.


4Clearly this equivalence relies on special assumptions about linearity and certainty equiv-
alence.
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An equivalence theorem on standard �expectational criteria� Propo-


sition . Equivalence principle in one-step forward, memory one, one-dimensional
linear systems.
Consider a one-step forward looking model (with one lagged predetermined


variable, where ; � 6= 0. Assume that we are in the saddle-path case. Then the
following four statements are equivalent:
1. A constant growth rate solution is locally determinate in the perfect fore-


sight growth rate dynamics and equivalently here in determinate in the C1 topol-
ogy of trajectories.
2. A constant growth rate solution is locally immune to (stationary) sunspots


on growth rates.
3. For any a priori given �reasonable� learning rules bearing on growth


rates,constant growth rate solution is locally asymptotically stable.
4. A constant growth rate solutiona is locally IE stable.
In particular, a saddle-path solution meets all these requirements.This is


shown in Gauthier-Guesnerie (2005),using previous �ndings The fact that "rea-
sonable" learning processes converge relies on a de�nition of reasonableness inte-
grating the suggestions of Grandmont-Laroque (1991) and results of Guesnerie-
Woodford (1991).


4 Multidimensional one-step forward looking lin-
ear models with memory one


4.1 The framework


We now consider a multidimensional linear one-step forward looking economy
with one predetermined variable, formalized as : GE (x(t+ 1) j It) + x(t) +
Dx(t� 1) = o,
where x is a n� 1 dimensional vector, G and D are two n�n matrices, and


o is the n� 1 zero vector.
A perfect foresight equilibrium is a sequence (x(t); t � 0) (a trajectory)


associated with the initial condition x(�1), and such that : Gx(t+ 1) + x(t) +
Dx(t� 1) = o.
The dynamics with perfect foresight is governed by the 2n eigenvalues �i


(i = 1; :::; 2n) of the following matrix (the matrix associated with the dynamics
(x(t+ 1);x(t)) as a function of (x(t);x(t� 1))


A =


�
�G�1 �G�1D
In 0


�
,


where 0 is the n-dimensional zero matrix.
Let by de�nition j�ij < j�j j whenever i < j (i; j = 1; :::; 2n). From now, we


focus attention on the generalized saddle-point case, where j�nj < 1 < j�n+1j.
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In what follows, we consider the perfect foresight dynamics restricted to a
n-dimensional eigensubspace, and especially in one spanned by the eigenvectors
associated with the n roots of lowest modulus.
Let ui denote the eigenvector associated with �i (i = 1; :::; 2n). Assuming


that all the eigenvalues are distinct, the n eigenvectors form a basis of the
subspace associated with �1; :::; �n. Let:


ui =


�
~vi
vi


�
where vi and ~vi are of dimension n. We check that if ui is an eigenvector, then
~vi = �ivi.
Hence, if we pick up some x(0), then if the n-dimensional subspace generated


by (u1; :::;un)is in general position, we can �nd a single x(1) =
P
ai�i in the


subspace and generate a sequence (x(t); t � 0); (x(2) =
P
ai�iui following the


just de�ned dynamics. This generates a solution, which is converging in the
saddle path case.
The methodology proposed for constructing constant growth rates solution


in the previous Section can be replicated to obtain what is called minimum order
solutions. Assume that


x(t) = Bx(t� 1) (1)


in every period t, and for any n-dimensional vector x(t�1) (B is an n:n matrix).
Also, x(t + 1) = Bx(t). Thus, it must be the case that B = �(GB + In)�1D,
or equivalently (GB + In)B +D = 0. A matrix �B satisfying this equation is
what Gauthier (200) calls a stationary extended growth rate. 5


4.1.1 The expectational plausibility of Extended Growth Rates so-
lutions according to standard criteria.


We will concentrate on three of the above criteria : determinacy, immunity to
sunspots, and IE-stability.


Determinacy. Determinacy is viewed through a dynamics of perfect foresight
extended growth rates that extends the dynamics of growth rates previously
introduced. Consider for every t, B(t) a n-dimensional matrix whose ijth entry
is equal to �ij(t) and x(t) = B(t)x(t� 1):
B(t) is a time variable, non-stationnary extended growth rate.
As x(t+1) = B(t+1)x(t);the dynamics with perfect foresight of the endoge-


nous state variable x(t) induces a dynamics with perfect foresight of extended
growth rates B(t) that is obtained by considering


GB(t+ 1)x(t) + x(t) +Dx(t� 1) = o
5 It is shown in Evans and Guesnerie (2003b) that �B = V�V


�1, where � is a n�n diagonal
matrix whose iith entry is �i (i = 1; : : : ; n) and V is the associated matrix of eigenvectors.
In what follows, we focus attention on the saddle-point case, where j�nj < 1 < j�n+1j.
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, x(t) = �(GB(t+ 1) + In)�1Dx(t� 1)
,provided that GB(t + 1) + In is a n-dimensional regular matrix. Then, the
perfect foresight dynamics is de�ned by a sequence of matrices (B(t); t � 0)
such that :


B(t) = �(GB(t+ 1) + In)�1D, (GB(t+ 1) + In)B(t) +D = 0


.This de�nes the extended growth rates perfect foresight dynamics. Its �xed
point are the stationary matrices �B such that B(t) = �B in whatever t. De-
terminacy of the matrix �B; is standardly de�ned as the fact that �B is locally
isolated, i.e that there does not exist a sequence B(t) of perfect foresight ex-
tended growth rates converging to �B.


Sunspot equilibrium. A sunspot equilibrium on extended growth rates, is
de�ned in the same spirit as for the one-dimensional system. Then, the whole
matrix B(t) that links x(t) to x(t�1) has to be exactly correlated with sunspots.
If sunspot event is s (s = 1; 2) at date t, so that


E (x(t+ 1) j s) = [�(s; 1)B(1) + �(s; 2)B(2)]B(s)x(t� 1):
x(t) = � [G [�(s; 1)B(1) + �(s; 2)B(2)]B(s) +D]x(t� 1).


In a sunspot equilibrium, the a priori belief that B(t) = B(s) is selful�lling
whatever x(t� 1); so that :


B(s) = � [G [�(s; 1)B(1) + �(s; 2)B(2)]B(s) +D] .


Iterative Expectational Stability. What about here, the IE-stability cri-
terion ?


At virtual time � of the learning process, let assume that agents believe
that, whatever t:


x(t) = B(�)x(t� 1),
where B(�) is the �th estimate of the n-dimensional matrix B. Their forecasts
are accordingly:


E (xt+1 j It) = B(�)xt.
The actual dynamics is obtained by reintroducing forecasts into the temporary
equilibrium map (??):


GB(�)xt + xt +Dxt�1 = o, x� = �(GB(�) + In)�1Dx��1.


As a result, the dynamics with learning is written:


B(� + 1) = �(GB(�) + In)�1D. (2)


Comparing this set of equations with the previous one, a stationary egr �B is
locally IE-stable if and only if the above dynamics is converging when B(0) is
close enough to �B.
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4.1.2 The dynamic equivalence principle


We can state the following proposition :
Proposition 4. Equivalence principle in one-step forward, memory one, multi-
dimensional linear systems.
Consider a stationary egr
The following three statements are equivalent:
1. The egr solution is determinate in the perfect foresight extende growth


rates dynamics.
2. The egr solution is immune to sunspots, that is, there are no neighbour


local sunspot equilibria on extended growth rates with �nite support, as de�ned
above.
3. The egr solution is locally IE-stable.
In particular, the saddle-path like solution (that exists when the n smallest


eigenvalues of A have modulus less than 1, the (n+1)th has modulus greater
than 1) meets all these conditions.
Again, this is proved in Gauthier-Guesnerie (2005)
The �avour of this statement is very close to that of the statement obtained


in the one dimensional case.
Note however, that the connection between �evolutive�learning and �educ-


tive� learning is less crystal clear. Adaptive learning processes bearing on the
multi-dimensional object extended growth rates is less easy to assess that in the
one-dimensional case of previous section.


4.2 �Eductive Stability�


4.2.1 The underlying strategic framework.


The discussion of the basic viewpoint of eductive learning requires that some
game theoretical �esh be given to the dynamical model under scrutiny, i.e
that embed the dynamic model in a dynamic game as in Evans and Guesnerie
(2003b).
We repeat, for the sake of completeness, the presentation of the construct of


Evans and Guesnerie (2003).
An OLG context is assumed. At each period t, there exists a continuum of


agents. A part of the agents �react to expectations�., another part uses strategies
that are not reactive to expectations (in the evoked OLG context, these are the
agents, who are at the last period of their lives), The former are denoted !t
and belong to a convex segment of R; endowed with Lebesgue measure d!t:
It is assumed that an agent of period t is di¤erent from any other agent


of period t
0
; t


0 6= t: More precisely, agent !t has a (possibly indirect) utility
function that depends upon
1) his own strategy s(!t);
2) su¢ cient statistics of the strategies played by others i.e. on yt = F (�!t fs(!t)g ; �);


where F in turn depends �rst, upon the strategies of all agents who at time t re-
act to expectations, and second, upon (�), which is here supposed to be su¢ cient
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statistics of the strategies played by those who do not react to expectations, and
that includes but is not necessarily identi�ed with �see below �yt�1,
3) �nally upon the su¢ cient statistics for time t + 1; as perceived at time


t: i.e. on yt+1(!t), which may be random and, now directly, upon the su¢ cient
statistics yt�1:
Here, strategies played at time t can be made conditional on the equilibrium


value of the of the t su¢ cient statistics yt: If we denote (�) both (the product of)
the probability distribution of the random random subjective forecasts held by
!t of yt+1; ~yt+1(!t) and yt�1 Let then G(!t; yt; �) be the best response function
of agent !t:
Noting that the su¢ cient statistics for the strategies of agents who do not


react to expectations is (�) = (yt�1; yt); we obtain the time t equilibrium equa-
tions :


yt = F [�!t fG(!t; yt; yt�1; ~yt+1(!t))g ; yt�1; yt]
:Note that when all agents have the same point expectations denoted yet+1; the
equilibrium equations determine a kind of temporary equilibrium mapping


Q(yt�1; yt; y
e
t+1) = yt � F


�
�!t


�
G(!t; yt; yt�1; y


e
t+1)


	
; yt�1; yt


�
:


Also assuming that all ~yt+1 have a very small common support �around�
some given yet+1; as well as the existence of adequate derivatives, decision theory
suggests that G, to the �rst order, depends on the expectation of the random
variable ~yt+1(!t) that is denoted yet+1(!t) (and is close to y


e
t+1); we are able to


linearize around any initially given situation, denoted (0); as follows


yt = U(0)yt + V (0)yt�1 +


Z
W (0; !t)y


e
t+1(!t)d!t;


where yt; yt�1; yet+1(!t) now denote small deviations from the initial values of
yt; yt�1; y


e
t+1, and U(0); V (0);W (0; !t) are n� n square matrices.


If such a linearization is considered in a neighbourhood of the steady state,
yt; yt�1; etc., will denote deviations from the steady state and U(0); V (0);W (0; !t)
are simply U; V;W (!t):
Adding an, invertibility assumption, we arrive at reduced form :
The temporary equilibrium reduced form, associated with homogeneous ex-


pectations,


yet+1(!t) = y
e
t+1; yt = By


e
t+1 +Dyt�1;


And the reduced form associated with stocahstic beliefs


yt = Dyt�1 +B


Z
Z(!t)y


e
t+1(!t)d!t


;where Z
Z(!t)d!t = I:
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and t = 1; 2; 3; : : :, (initial conditions y0 being given)
In the present context, this reduced form allows to analyse "eductive" sta-


bilty


4.2.2 �Eductive Stability�


One-dimensional setting. First, consider the one-dimensional system


From the above analysis, it seems natural to make beliefs indexed with
growth rates (as underlined in Evans and Guesnerie (2003), beliefs on the prox-
imity of trajectories in the C0 sense have not enoug grip on the agents�actions.
The hypothetical Common Knowledge assumption, to be taken into account


then concerns growth rates.(the C1 topology).
(Hypothetical) CK Assumption. The growth rate of the system is between


�1 � � and �1 + �
Such an assumption on growth rates triggers a mental process that, in suc-


cessful case, progressively reinforces the initial restriction and converges toward
the solution. The mental process takes into account the variety of beliefs associ-
ated with the initial restriction: common beliefs with point expectations is then
a particular case, and it is intuitively plausible that convergence of the general
mental process under consideration implies convergence of the special process
under examination when studying IE-stability. It is intuitive and in fact quite
straightforward in the one-dimensional context that IE-stability is a necessary
condition of eductive stability . It follows :
Proposition :(Evans and Guesnerie (2003))
A constant growth rate solution is locally �eductively stable� or �locally


strongly rational�then it is determinate in growth rates, locally IE stable, locally
immune to susnpots, and attracts all reasonable evolutive learning rules.
Hence �Eductive Stability� is more demanding in general than all the pre-


vious equivalent criteria. The fact that it is strictly more is illustrated in the
quoted paper, as well as the fact that in the present model it is equally demand-
ing under a behavioural homogeneity condition.


Multi-dimensional setting. In a natural way, the hypothetical Common
Knowledge assumption, to be taken into account has to bear on extended growth
rates.
(Hypothetical) CK Assumption. The extended growth rate of the system


B belongs to V (B).
where V (B) is a neigbourhood in the space of matrices (that may be de�ned


with respect to some distance evaluated from some matrix norm)
As we said earlier, if B 2 V (B). ) B = B; then the solution is localy


�eductively�stable or locally Strongly Rational.
As in the one-dimensional case, one can show
Proposition :(Evans-Guesnerie(2005)
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If a stationnary extended growth rate solution is locally �eductively stable�
or �locally strongly rational� then it is determinate, locally IE stable, locally
immune to susnpots.
Again, �Eductive Stability�is more demanding in general than all the pre-


vious standard (and as stressed earlier equivalent) criteria.
The reason is that the "eductive" analysis takes into account
1- the stochastic nature of beliefs,
2- the heterogeneity of beliefs, both dimensions which are neglected in the


Iterative Expectational stability construct.
In fact, as soon as local �eductive� stability is concerned, the results of


Guesnerie-Jara-Moroni (2007), although obtained in a somewha tdi¤erent con-
text suggest that point-expectations and stochastic expectations do not make
so much di¤erence Hence, locally at least, the key di¤erences between Strong
rationality and standard expectational stability criteria would come from the
heterogeneity of expectations.


4.3 Standard expectational coordination approaches and
the �eductive�viewpoint : a tentative conclusion.


First remark. Our attempt at comparing the standard expectational coordi-
nation criteria, determinacy, absence of neighbour sunspot equilibria, Iterative
Expectational stability, has been limited to a limited class of models. An ex-
haustive attempt would have to extend the class of models under scrutiny in
di¤erent directions.


- Introduce uncertainty (intrinsic uncertainty) in the models of previous
sections. The analysis should extend, with some technical di¢ culties, the appro-
priate objects under scrutiny being then respectively, probability distributions
on growth rates (numbers) or extended growth rates (matrices). It is reasonable
to conjecture that the above �ndings would hold somewhat una¤ected in the
new setting, although the concept of susnpot equilibria should be adapted and
extended to take in to account a richer set of extrinsic uncertainty.


- Introduce longer memory lags and/or more forward looking periods.
The theory seem applicable although the concept of �extended growth rate�
becomes more intricate. (see Gauthier (2004))
Second remark that brings us to the models used in monetary theory.
A number of these models have a structure analogous to the ones under


scrutiny before (see next section), although they most often involve intrinsic
uncertainty.
This suggest two provisional conclusions that will be put under scrutiny.
1- The standard criterion used in monetary theory for assessing expectational


coordination, local determinacy, is less demanding than the �eductive�criterion,
because it neglects a dimension of heterogeneity of expectations that is present
in the problem.
2- However, the connections between the �evolutive viewpoint� and the


�eductive� one is less clearcut than in our prototype model. Di¤erences have
three sources :
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- the theoretical connection between the two types of learning is less well es-
tablished in the multidimensional case than in the one-dimensional one. (Propo-
sition 1-3 has no counterpart in Proposition 2)
- In a noisy system, agents do not observe at each step, a state of the


system, as de�ned in our construct, i.e as a probability distribution, but a
random realisation drawn from this probability distribution. Learning rules, to
be e¢ cient have to react slowly to new information. Intuitively, IE stability and
consequently eductive stability will be more demanding local criteria than the
criterion of success of, necessarily slow, evolutive learning.
- However, the question of homogeneity of expectations versus heterogeneity


and randomness remains.
This is however a conclusion that holds within the framework of truly over-


lapping generations models. The equations from which the expectational coor-
dination aspects of monetary policy are examined are of the overlapping form
but come from in�nite horizon models. Their interpretation in an �eductive�
analysis is hence di¤erent. We will stress this sometimes considerable di¤erence
in the next and �nal Section.


5 Eductive Stability in monetary models.


I will introduce here very simple versions or models that are used for the discus-
sion of monetary policy and of the Central Bank policy. I �rst introduce a new
Keynesian model. I will pursue the discussion in a simpler setting of a cashless
economy, in the sense of Woodford (2003).


5.1 Preliminaries on "eductive" stability in a new Keyne-
sian model.


I consider here a new keynesian model, in a linearized reduced form close, but
not identical, to that of Woodford (2003), where I forget about noise.


�t = bEt(�t+1) + lxt


and
xt = it � f(�Et(�t+1)) + Et(xt+1)


Where
it = a�t�1 + cx


or
it = a�t + cxt


Once the interst rate rule is brought into the second equation, the system
becomes a one-step forward looking two dimensional model, with or without
memory.
The expectational criterion that is used, which leads to stress the Taylor


rule a > 1; is "determinacy", i.e the fact that there does not exists an in�nite
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sequence meeting the above equations and close to the steady state sequence
Previous conditions apply (in the no memory case, the previous condition turn
out into a condition on the modulus of the eigenvalues of the relevant matrix,
that has to be smallet than one).
The conclusion seems simple.
- The "eductive" viewpoint is in spirit the same as the standard criterion. It


is however more demanding since it leads to consider deviations of expectational
coordination that relate with the heterogeneity of expectations.
- If, then, one comes back to the underlying model and not to its reduced


form, one may wonder whether the agents are"essentially identical in the sense
of Evans-Guesnerie (2005), in which case heterogeneity of beliefs may be locally
forgotten. I conjecture it is not the case, i.e that a one direction mistake of price
setting �rms (which are essentially identical) and another direction mistake of
the consumershave to be added (this is intuitively why heterogenity matters),
but this brings us to the underlying model, and the question is open in the
absence of theorem on this issue.
There is however a more basic issue on which I now come.
The equivalence theorems previously stressed are formally proved in an OLG


framework. The same holds true for our analysis of the connections between
"eductive" stability and standard "expectational" stability. In particular, the
"eductive" argument used both for evaluating IE-stability and proving strong
rationality take place in "people�s minds" but in "OLG people�s minds". In a
sense, the fact that agents, in the initial model have in�nite horizon expecta-
tions, so that the "eductive" analysis of expectational coordination must refer
to in�nite horizon beliefs, has been dropped from the analysis. The main issue
is then the following : is it the case that the implicit reduction of beliefs to OLG
like beliefs is legitimate from the more basic viewpoint under consideration. In
order to clarify this issue, I now focus attention on a model simpler to analyse,
a model of a cashless economy, in the spirit of Chapter 2 of Woodford (2003).


5.2 A random walk into "eductive stability�in a cashless
economy :


I consider an economy populated by a continuum of identical agents, living for
ever. Each agent � receive y units of a perishable good at every period. There is
money and the good has a money price Pt at each period, The agents have an
identical utility function U =


P
�tu(Ct), where u(Ct) will be most often taken


as iso-elastic u(Ct) = [1=(1� �)](Ct)(1��):
First order conditions are (1 + it) = (1=�)[u0(Ct+1)=u


0(Ct)](Pt=Pt+1)
�1 =


(1=�)(Pt+1=Pt)[
Ct
Ct+1


]�


The Central bank decides on a nominal interest rate according to a Wick-
sellian rule imt = �(Pt=P


�
t );where � is increasing.


As in Woodford, I assume (P �t+1) = � > � and 1 + �(1) = �=�
We note that the path Pt = P �t ; Ct(�) = y; de�ne a Rational Expectations,


here a perfect foresight, equilibrium.
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Is this equilibrium determinate ? It should be noted that, since all agents are
similar and face the same conditions in any equilibrium, any equilibrium has to
meet Ct(�) = y: It follows that any other equilibrium P 0t has to meet :
(1+�(P 0t=P


�
t ))� = (P


0
t+1=P


0
t ): which can be written (1+�(P


0
t=P


�
t ))(P


0
t=P


�
t )� =


(P 0t+1=P
�
t )Assume that the other equilibrium is close to the initial one and call


�Pt = (P
0
t �P �t )=P �t : Then, to the �rst order : �(1+�0+�)�Pt = �Pt+1: Hence


if � > 1; there can be no sequence �Pt meeting this condition and remaining
close to P �t : The equilibrium is locally determinate.
Note that :
- This may not mean that there are no other perfect foresight equilibria,


although the one under scrutiny is the only stationnary one
- If we accept to view the equations as coming from an OLG framework,


we would argue that the equilibrium is locally IE-Stable, or even here locally
"eductively" stable : the assertion it is CK that a departure in price expectations
of �Pt+1 involves a departure in period t price of �Pt such that �(1+�


0+�)�Pt =
�Pt+1 and if it were CK that P �t + �Pt remains for ever in a neighbourhood of
the equilibrium P �t ; then a variant of existing argument would involve that the
equilibrium * is CK, i.e that it is locally "eductively stable".
However, the �rst assertion of the just sketched argument, which is a core


element of its construction in an OLG framework, makes nos sense here, because
the equilibrium condition has to refer to the whole trajectory of beliefs of the
agents. To say it in another way, the fact that price expectations to-morrow
in period t;is P �t + �Pt+1 has no �nal bite on what the equilibrium price may
be to-day in period t + 1 It has in an OLG framework, wher the period t
equilibrium is entirely determined by the beliefs of agents living in period t; on
the the characteristics of period t+ 1, the only part of the future inwhich they
will live. It is di¤erent here : indeed, demand of an agent at period t; as seen
from period 0 is :


Ct(�) = C1(�)
h
�t=��t1[(1 + is)(Ps=Ps+1)]


1=�
i
: It does depend on the whole


agents beliefs over the period and not only on their beliefs over the next period
!
The rigth question is then the following : assume that it is the case that


hypothetically it is CK that Ps is close to P �s then is it the case that the equilib-
rium is CK. To make the computation easier, I change slightly the Wicksellain
rule, replacing imt = �(Pt=P


�
t ) by i


m
t = �(Pt=Pt�1)


The argument has to proceed as follows.
- Express the change of consumption program of an individual as a func-


tion of its expectations, for expectations in a neighbourhood of the equilibrium
expectations P �t = �


t+1
P �0 : Indeed, di¤erentiation of the above formula leads


to


dCt=C = dC1=C + (�=�)
tX


s=1


d[1 + �(Ps=Ps�1)](Ps=Ps+1)


-To start the "edcutive satbility argument, assume that all agents believe
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that in�ation in the future will be �+ �; and let us check waht will happen in
period 1, given these beliefs. (I denote �0 = v)
We have


dCt=C = dC1=C + (�=�)[v(P1=P0) +
tX


s=2


1=�(v � 1=�)�


= dC1=C + (�=�)[v(P1=P0) + (t� 1)(1=�(v � 1=�)�
An enveloppe argument (the fact that the utility of agents is una¤ected to


the �rst order by this change of beliefs) implies


dC1 + [v=�(P1=P
�
0 )]


+1X
t=1


(�t+1) + [(1=��)(v � 1=�)�]
+1X
t=1


(t� 1)(�t+1) = 0


i.e


dC1 + [v=�(P1=P
�
0 )](�=(1� �) + �3=(1� �)2[(1=��(v � 1=�)�] = 0


Now equilibrium on the �rst period market, given these beliefs involve :


[(P1=P
�
0 )=�] + �


2=(1� �)[((1� 1=�v)�] = 0
The formula suggest that �rst period realised in�ation goes the other way,


but much outside the conjectured band of increased in�ation. This suggests that
the in�nite horizon equilibrium is not "eductively" stable, for every positive v at
least from a somewhat mechanical, too mechanical, view of the mental process
(the best v seems to be 1=�) .
Note also, that contrarily to what happens in a standard RBCmodel, (Evans,


Guesnerie, Mc Gough, (2007), work in progress) the intertemporal elasticity of
substitution does not play a role


5.3 Conclusion.


The conclusion is necessarily provisonial, since the outsider�s random walk in
monetary models although from a well delineated basis, has to be confronted
with the criticism and enriched by an intuition somewhat missing in the present
state of my understanding of the specialized issues that have been touched.
It seems however that this otusider�s walk may raise interesting questions


for insiders and then opens new fronts of thinking. It is at least a reasonable
hope at this stage.
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1 Introduction


Following the influential work of Christiano, Eichenbaum, and Evans (2005) and Smets and


Wouters (2003), many central banks are building and estimating dynamic stochastic general


equilibrium (DSGE) models with nominal rigidities and using them for policy analysis. This


new generation of sticky price (and wage) models typically emphasizes that relative price


distortions caused by firms’ partial inability to respond to changes in the aggregate price


level lead to an inefficient use of inputs and in turn to welfare losses. In such an environment


monetary policy can partially offset these relative price distortions by stabilizing aggregate


inflation. In an open economy environment the policy problem is more complicated because


domestic price movements are tied to exchange rate and terms-of-trade movements.


DSGE models can be used at different stages of the policy making process. If the


structure of the theoretical model is enriched up to a point that the model is able to track


historical time series, DSGE model can be used as a tool to generate multivariate macroeco-


nomic forecasts. Monetary policy is typically represented by an interest rate feedback rule


and the innovations in the policy rule can be interpreted as modest, unanticipated changes


in monetary policy. These impulse response can then be used to determine, say, what in-


terest rate change is necessary to keep inflation rates near a target level over the next year


or two. Finally, one can use DSGE models to qualitatively or quantitatively analyze more


fundamental changes in monetary policy, i.e., inflation versus output targeting, fixed versus


floating exchange rates.


An important concern in the use of DSGE models is that some of the cross-equation


restrictions generated by the economic theory are misspecified. This misspecification poten-


tially distorts forecasts as well as policy predictions. In a series of papers (Del Negro and


Schorfheide (2004), Del Negro, Schorfheide, Smets, and Wouters (2007), and Del Negro and


Schorfheide (2007)), we developed an econometric framework that allows us to gradually


relax the cross-coefficient restrictions and construct an empirical model that can be regarded


as structural vector autoregression and retains many of the features of the underlying DSGE


model, at least to the extent that they are not grossly inconsistent with historical time series.


We refer to the empirical model as DSGE-VAR.


Based on a small open economy model developed by Gali and Monacelli (2005) and


modified for estimation purposes by Lubik and Schorfheide (2007), we present estimation


results for such a DSGE-VAR in this paper for the Chilean economy, using data on out-


put growth, inflation, interest rates, exchange rates, and terms of trade. Throughout the
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1990’s monetary policy transitioned toward an inflation targeting regime. This transition


was completed only in 1999, which leaves a fairly short sample for the estimation of an


empirical model for monetary policy analysis. An important advantage of the DSGE-VAR


framework is that it allows us to estimate a vector autoregressive system with a short time


series. Roughly speaking, this estimation augments actual observations by hypothetical


observations, generated from a DSGE model, to determine the coefficients of the vector au-


toregression. Over time, as more actual observations become available, our procedure will


decrease or increase the fraction of actual observations in the combined sample, depending


on whether or not the data contain evidence of model misspecification.


The empirical analysis is divided in four parts. We begin by estimating both the DSGE


model as well as the DSGE-VAR. The DSGE-VAR produces estimates of the coefficients


of the underlying theoretical model along with the VAR coefficients. Our discussion first


focuses on the monetary policy rule estimates. Starting from a prior that implies a strong


reaction of the Central Bank to inflation movements, we find that since 1999 the central


bank did not react in a significant way to exchange rate or terms of trade movements,


which is consistent with the official policy statements. In the second part, we study the


fit of our small scale DSGE model. Not surprisingly based on our earlier work, the fit


of the empirical vector autoregressive model can be improved by relaxing the theoretical


cross-coefficient restrictions. More interestingly, due to the short sample size the fraction


of DSGE model generated observations in the mixed sample that is used for the estimation


of the VAR is much higher, than, say in estimations that we have conducted for the U.S.


As a consequence, the dynamics of the DSGE-VAR closely resemble those of the underlying


DSGE model, which is documented in the third part of the empirical analysis. Here, we are


focusing specifically in how the various structural shocks affect inflation movements.


In the final part of the empirical analysis we study the effect of changes in the monetary


policy rule. Conceptually, this type of analysis is very challenging. If one beliefs that the


DSGE model is not misspecified, then one can determine the behavioral responses of firms


and households, by resolving the model under alternative policy rules. Empirical evidence of


misspecification of cross-equation restrictions, on the other hand, raises questions about the


reliability of the DSGE model’s policy implications. In Del Negro and Schorfheide (2007)


we have developed tools that allow us, under particular invariance assumptions, to check


for the robustness of the DSGE model conclusions to presence of misspecificaton. We apply


some of these tools to ask what would happen the variability of inflation if the central bank


would respond more or less to inflation as well as terms of trade movements.
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There is a substantial amount of empirical literature on the Chilean economy (Chu-


macero 2005, Céspedes and Soto 2006; these two papers also provide a survey of the existing


literature) which studies many of the issues analyzed in the paper: the specification of the


policy rule, the dynamics of inflation, the responses of domestic variables to external shocks.


To our knowledge for most of this literature the estimation period comprises the 1990s, a


period of convergence toward full fledged inflation targeting (see Banco Central de Chile


2007). Because of concerns about structural change between the early phase of inflation


targeting and the current one, we do not use the early period in the estimation. This choice


makes our results not directly comparable with those of the previous literature. A particu-


larly close paper to ours is the one of Caputo et al. (2007), who estimate a somewhat more


sophisticated small open economy DSGE model using Bayesian methods on Chilean data.


Again, their use of 1990s data makes the results not directly comparable. In future work it


would be interesting though to apply some of the techniques used in our paper to a larger


scale small open economy DSGE model such as theirs.


The remainder of the paper is organized as follows. Section 2 contains a description of


the small open economy model. The DSGE-VAR framework developed in Del Negro and


Schorfheide (2007) is reviewed in Section 3. The data set used for the empirical analysis


is discussed in Section 4. Empirical results are summarized in Section 5 and Section 6


concludes.


2 A Small Open Economy Model


We now describe a simple small-open-economy DSGE model for the Chilean economy. The


model has been previously estimated with data from Australia, Canada, New Zealand, and


the United Kingdom in Lubik and Schorfheide (2007). It is a simplified version of the


model developed by Gaĺı and Monacelli (2005) to which we refer for details. We restrict


our exposition to the key equilibrium conditions, represented in log-linearized form. All


variables below are measured in percentage deviations from a stochastic balanced growth


path, induced by a technology process, At, that follows an AR(1) process in growth rates:


∆ lnAt = γ + z̃t, z̃t = ρz z̃t−1 + σzεz,t. (1)


Here ∆ denotes the temporal difference operator.


We begin with a characterization of monetary policy. We assume that monetary policy is


described by an interest rate rule, where the central bank adjusts its instrument in response
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to movements in CPI inflation [check] and output growth. Moreover, we allow for the


possibility of including nominal exchange rate depreciation or changes in the terms of trade


in the policy rule:


R̃t = ρRR̃t−1 + (1− ρR) [ψ1π̃t + ψ2(∆ỹt + z̃t) + ψ3∆x̃t] + σRε
R
t . (2)


Since ỹt measures percentage deviations from the stochastic trend induced by the productiv-


ity process At, output growth is given by ∆ỹt+ z̃t. We use ∆x̃t to represent either exchange


rate or terms of trade changes. In order to match the persistence in nominal interest rates,


we include a smoothing term in the rule with 0 < ρR < 1. εRt is an exogenous policy shock


which can be interpreted as the non-systematic component of monetary policy.


The household behavior in the home country is described by a consumption Euler


equation in which we use equilibrium conditions to replace domestic consumption by a


function of domestic output ỹt, foreign output ỹ∗t and terms of trade q̃t:


ỹt = IEtỹt+1 − [τ + α(2− α)(1− τ)]
(
R̃t − Etπ̃t+1


)
+ ρz z̃t (3)


−α [τ + α(2− α)(1− τ)] IEt[∆q̃t+1] + α(2− α)
1− τ
τ


IEt[∆ỹ∗t+1],


where 0 < α < 1 is the fraction of imported goods consumed by domestic households and


τ is their intertemporal substitution elasticity. Terms of trade are defined as the relative


price of exports in terms of imports. Notice that the equation reduces to its closed economy


variant when α = 0.


Optimal price setting of domestic firms leads to the open economy Phillips curve:


π̃t = βEtπ̃t+1 + αβEt∆q̃t+1 − α∆q̃t +
κ


τ + α(2− α)(1− τ)


(
ỹt − ỹt


)
, (4)


where ỹt = −α(2−α) 1−τ
τ ỹ∗t is potential output in the absence of nominal rigidities. Again,


the closed economy variant obtains when α = 0. The slope coefficient κ > 0 is a function of


underlying structural parameters, such as labor supply and demand elasticities and parame-


ters capturing the degree of price stickiness. Since we do not use any additional information


from the underlying model we treat κ as structural.


In order to study exchange rate policies we introduce the nominal exchange rate et via


the definition of the CPI. Assuming that relative PPP holds, we have:


π̃t = ∆ẽt + (1− α)∆q̃t + π̃∗t , (5)


where π̃∗t is a world inflation shock which we treat as an unobservable. An alternative


interpretation, as in Lubik and Schorfheide (2005), is that π̃∗t captures misspecification, or
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deviations from PPP. Since the other variables in the exchange rate equation are observed,


this relaxes the potentially tight cross-equation restrictions embedded in the model.


Instead of solving endogenously for the terms of trade, we add a law of motion for their


growth rate to the system:


∆q̃t = ρq∆q̃t−1 + σqεq,t. (6)


As discussed in Lubik and Schorfheide (2007), this specification is not fully consistent with


the underlying structural model. Since firms do have a certain modicum of market power,


the prices of internationally traded products are not exogenous to the economy even if its


size relative to the rest of the world goes to zero. However, it turns out that the specification


with exogenous terms of trade generates a better empirical fit.


Equations (2) to (5) form a rational expectations system that determines the law of


motion for domestic output, inflation, and interest rates, as well as the nominal exchange


rate. We treat technology growth z̃t, Equation (1), and the terms of trade q̃t, Equation (6)


as exogenous. Moreover, we assume that rest-of-the-world output and inflation, ỹ∗t and π̃∗t ,


follow exogenous autoregressive processes:


π̃∗t = ρπ∗ π̃
∗
t−1 + σπ∗επ∗,t, ỹ∗t = ρy∗ ỹ


∗
t−1 + σy∗εy∗,t. (7)


The rational expectations model comprised of Equations (2) to (7) can be solved with


standard techniques, e.g., Sims (2002). We collect the DSGE model parameter in the vector


θ defined as


θ = [ψ1, ψ2, ψ3, ρR, α, β, τ, ρz, ρq, ρπ∗ , ρy∗ , σR, σz, σπ∗ , σy∗ ].


Moreover, we assume that the innovations εR,t, εz,t, εq,t, επ∗,t, and εy∗,t are independent


standard normal random variables. We stack the innovations in the vector εt.


3 The DSGE-VAR Approach


To capture potential misspecification of stylized small-open economy model described in the


previous section we will embed it into a vector autoregressive specification that allows us to


relax cross-coefficient restrictions. We refer to the resulting empirical model as DSGE-VAR.


We have developed this DSGE-VAR framework in a series of papers including Del Negro


and Schorfheide (2004), Del Negro, Schorfheide, Smets, and Wouters (2007), and Del Negro


and Schorfheide (2007). The remainder of this section will review the setup in Del Negro


and Schorfheide (2007), which is used in the subsequent empirical analysis.
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Let us write Equation (2), which describes the policymaker’s behavior, in more general


form as:


y1,t = x′tβ1(θ) + y′2,tβ2(θ) + ε1,tσR, (8)


where yt = [y1,t, y
′
2,t]
′ and the k × 1 vector xt = [y′t−1, . . . , y


′
t−p, 1]′ is composed of the first


p lags of yt and an intercept. Here y1,t corresponds to the nominal interest rate R̃t and


the subvector y2,t is composed of output growth, inflation, exchange rate depreciation, and


terms of trade changes:


y2,t = [(∆ỹt + z̃t), π̃t,∆ẽt,∆q̃t].


The vector-valued functions β1(θ) and β2(θ) interact with xt and y2,t to reproduce the policy


rule.


The solution of the linearized DSGE model presented in Section 2 generates a moving


average representation of y2,t in terms of the εt’s. We proceed by approximating this moving


average representation with a p-th order autoregression, which we write as


y′2,t = x′tΨ
∗(θ) + u′2,t. (9)


Ignoring the approximation error for a moment, the one-step ahead forecast errors u2,t are


functions of structural innovations εt. Assuming that under the DSGE model the law of


motion for y2,t is covariance stationary for every θ, we define the moment matrices


ΓXX(θ) = IEDθ [xtx′t] and ΓXY2(θ) = IEDθ [xty′2,t].


In our notation IEDθ [·] denotes an expectation taken under the probability distribution for


yt and xt generated by the DSGE model conditional on the parameter vector θ. We define


the VAR approximation of y2,t through


Ψ∗(θ) = Γ−1
XX(θ)ΓXY2(θ). (10)


The equation for the policy instrument (8) can be rewritten by replacing y2,t with expres-


sion (9):


y1,t = x′tβ1(θ) + x′tΨ
∗(θ)β2(θ) + u1,t, (11)


Let u′t = [u1,t, u
′
2,t] and define


Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1
XX(θ)ΓXY (θ). (12)


If we assume that the ut’s are normally distributed, denoted by ut ∼ N (0,Σ∗(θ)), then


Equations (9) to (12) define a restricted VAR(p) for the vector yt. While the moving-


average representation of yt under the linearized DSGE model does in general not have
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an exact VAR representation, the restriction functions Ψ∗(θ) and Σ∗(θ) are defined such


that the covariance matrix of yt is preserved. Let IEV ARΨ,Σ [·] denote expectations under the


restricted VAR. It can be verified that


IEV ARΨ∗(θ),Σ∗(θ)[yty
′
t] = IEDθ [yty′t]. (13)


This point is important since we will assess the affect of policy rule changes on the volatility


of inflation and output in the subsequent empirical analysis.


To account for potential misspecification we now relax the DSGE model restrictions


and allow for VAR coefficient matrices Ψ and Σ that deviate from the restriction functions


Ψ∗(θ) and Σ∗(θ). Thus,


y1,t = x′tβ1(θ) + x′tΨβ2(θ) + u1,t, (14)


y′2,t = x′tΨ + u′2,t,


and ut ∼ N (0,Σ). Our analysis is cast in a Bayesian framework in which initial beliefs


about the DSGE model parameter θ and the VAR parameters Ψ and Σ are summarized in


a prior distribution. Our prior distribution for Ψ and Σ is chosen such that conditional on


a DSGE model parameter θ


Σ|θ ∼ IW
(
T ∗Σ∗(θ), T ∗ − k


)
(15)


Ψ|Σ, θ ∼ N


(
Ψ∗(θ),


1
T ∗


[
(B2(θ)Σ−1B2(θ)′)⊗ ΓXX(θ)


]−1
)
,


where IW denotes the inverted Wishart distribution, N is a multivariate normal distribu-


tion, B1(θ) = [β1(θ), 0k×(n−1)], and B2(θ) = [β2(θ), I(n−1)×(n−1)].


A few remarks are in order. First, the distribution of prior mass around the restric-


tion functions Ψ∗(θ) and Σ∗(θ) is controlled by the hyperparameter T ∗, which we will


re-parameterize in terms of multiples of the actual sample size T , that is T ∗ = λT . Large


values of λ imply that large discrepancies are unlikely to occur and the prior concentrates


near the restriction functions. We consider values of λ on a finite grid Λ and use a data-


driven procedure to determine an appropriate value for this hyperparameter. A natural


criterion to select λ in a Bayesian framework is the marginal data density


pλ(Y ) =
∫
p(Y |Ψ,Σ, θ)pλ(Ψ,Σ, θ)d(Ψ,Σ, θ). (16)


Here pλ(Ψ,Σ, θ) is a joint prior distribution for the VAR coefficient matrices and the DSGE


model parameters. This prior is obtained by combining the prior in (15) with a prior density
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for θ, denoted by p(θ):


pλ(Ψ,Σ, θ) = p(θ)pλ(Σ|θ)pλ(Φ|Σ, θ). (17)


We define


λ̂ = argmaxλ∈Λ pλ(Y ). (18)


As discussed in Del Negro, Schorfheide, Smets, and Wouters (2007), λ̂ and the marginal


likelihood ratio pλ=λ̂(Y )/pλ=∞(Y ) provide an overall measure of fit for the DSGE model. If


there is a large discrepancy between the autocovariances implied by the DSGE model and


the sample autocovariances, λ̂ will be small and the marginal likelihood ratio will be large.


Second, holding the innovation matrix Σ∗(θ) constant, ΓXX(θ) tends to be large – hence


the prior variance of Ψ∆ small – whenever θ implies that the endogenous variables are highly


persistent. We view this as an attractive feature of the prior. Since due to the presence


of transversality conditions DSGE model solutions are restricted to be stationary, our prior


steers us away from VAR parameterizations that imply non-stationarity and explosiveness.


Third, our prior is also computationally convenient. We use Markov-Chain-Monte Carlo


methods described in Del Negro and Schorfheide (2007) to generate draws from the joint


posterior distribution of Ψ, Σ, and θ as well as to evaluate the marginal data density


pλ(Y ). We refer to empirical model comprised of the likelihood function associated with the


restricted VAR in Equation (14) and the prior distributions pλ(Ψ,Σ|Y ), given in (15), and


p(θ) as DSGE-VAR(λ).


Finally, a word on identification of structural shocks. Up to this point, we expressed


the VAR in terms of one-step ahead forecast errors ut. However, both for understanding


the dynamics of the DSGE-VAR and for the purpose of policy analysis, it is more useful to


express the VAR as a function of the structural shocks εt. It turns out that in our setup the


monetary policy shock is identified through exclusion restrictions:


y1,t = x′tβ1(θ) + [x′tΨ + u′2,t]β2(θ) + ε1,tσR


y′2,t = x′tΨ + u′2,t.


According to the underlying DSGE model, u2,t is a function of the monetary policy shock


ε1,t and other structural shocks ε2,t. We assume that the shocks ε2,t have unit variance and


are uncorrelated with each other and the monetary policy shock. We express u2,t as


u′2,t = ε1,tA1 + ε′2,tA2. (19)
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Straightforward matrix algebra leads to the following formulas for the effect of the structural


shocks on u′2,t:


A1 =
[
Σ11 − β′2Σ22β2 − 2(Σ12 − β′2Σ22)β2


]−1


(Σ12 − β′2Σ22) (20)


A′2A2 = Σ22 −A′1
[
Σ11 − β′2Σ22β2 − 2(Σ12 − β′2Σ22)β2


]
A1. (21)


While the above decomposition of the forecast error covariance matrix identifies A1,


it does not uniquely determine the matrix A2. To do so, we follow the approach taken in


Del Negro and Schorfheide (2004). Let A′2,trA2,tr = A′2A2 be the Cholesky decomposition


of A′2A2. The relationship between A2,tr and A2 is given by A′2 = A′2,trΩ, where Ω is


an orthonormal matrix that is not identifiable based on the estimates of β(θ), Ψ, and Σ.


However, we are able to calculate an initial effect of ε2,t on y2,t based on the DSGE model,


denoted by AD2 (θ). This matrix can be uniquely decomposed into a lower triangular matrix


and an orthonormal matrix:


AD
′


2 (θ) = AD
′


2,tr(θ)Ω
∗(θ). (22)


To identify A2 above, we combine A′2,tr with Ω∗(θ). Loosely speaking, the rotation matrix is


constructed such that in the absence of misspecification the DSGE model’s and the DSGE-


VAR’s impulse responses to ε2,t coincide. To the extent that misspecification is mainly in the


dynamics as opposed to the covariance matrix of innovations, the identification procedure


can be interpreted as matching, at least qualitatively, the short-run responses of the VAR


with those from the DSGE model.


Since the matrix Ω does not affect the likelihood function, we can express the joint


distribution of data and parameters as follows


pλ(Y,Ψ,Σ,Ω, θ) = p(Y |Ψ,Σ)pλ(Ψ,Σ|θ)p(Ω|θ)p(θ),


where p(Ω|θ) is a point-mass centered at Ω∗(θ). We use MCMC techniques described in Del


Negro and Schorfheide (2007) to generate draws from the joint posterior distribution of Ψ,


Σ, Ω, and θ.


4 Data


For our empirical analysis we compiled a data set comprised of observations on output


growth, inflation, interest rates, exchange rates, and the terms of trade. Unless otherwise


noted, the raw data are taken from the on-line database maintained by the Banco de Chile
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and seasonally adjusted. Output growth is defined as the log difference of real GDP, scaled


by 400 to convert it into annualized percentages. To construct the inflation series, we pass


the consumer price index extracted from the Central Bank database through the X12 filter


(using the default settings in EVIEWS) to obtain a seasonally adjusted series. We then


compute log differences, scaled by 400. The MPR serves as our measure of nominal interest


rates.1 Annualized depreciation rates are computed from log differences of the Chilean Pesos


/ US Dollar exchange rate series. Finally, annualized quarter-to-quarter percentage changes


in the terms of trade are computed from the export and import price indices maintained by


the Central Bank.


While we compile a data set that contains quarterly observations from 1986 to 2007,


we restrict the estimation sample to the the period from 1999:I to 2006:IV and hence to


the most recent monetary policy regime. Between 1991 and 1999 the Central Bank applied


a partial inflation targeting approach that involved two nominal anchors: an exchange


rate band as well as an inflation target. In 1999 the central bank implemented a floating


exchange rate and the institutional arrangements for full inflation targeting. Official bank


publications state that the operating objective of monetary policy is to keep annual inflation


projections around 3.0% annually over a horizon of about two years. Indeed, the average


inflation rate in our estimation sample is 2.8%. We plot the path of the inflation rate and


the nominal interest rate in Figure 1 for the period 1986 to 2007. Throughout the 1990s,


Chile experienced a decade-long disinflation process, and with the adoption of the 3% target


inflation rate in 1999, inflation and nominal interest rates stabilized at a low level.


The average growth rate of real output, 4.4% during our sample period, provides an


estimate of γ in (1). The average inflation rate can be viewed as an estimate of the tar-


get inflation rate π∗ and the average nominal interest rate can be linked to the discount


factor β, because our model implies R∗ = γ/β + π∗. It turns out that the sum of average


inflation and output growth is 7.2% and exceeds the average nominal interest rate, which


is about 5.6%. Hence the sample averages are inconsistent with the model’s steady state


implications. Rather than estimating the steady state parameters jointly with the remaining


DSGE model parameters and imposing the steady state restrictions, we decided to demean


our observations and fit the DSGE model and the DSGE-VAR to demeaned data.


To provide further details on the features of our data set, we plot the Peso-USD exchange


rate in Figure 2 together with percentage changes in the terms of trade. Both series exhibit


very little autocorrelation and are very volatile. According to our DSGE model, the exchange
1Before 2001 the MPR is constructed following the same approach as in Chumacero (2005).
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rate fluctuations are a function of inflation differentials and terms of trade movements:


∆ẽt = π̃t − π̃∗t − (1− α)∆q̃t


The ROW inflation rate π∗t is treated as a latent variable. In Figure 3 we plot the exchange


rate depreciation as well as the “observable” exchange rate determinants π̃t − (1 − α)∆q̃t


for α = 0.2. The difference between the two series can be interpreted as ROW inflation.


5 Empirical Results


5.1 Estimating the Policy Rule


This section investigates the feedback rule followed by the Central Bank in the recent period.


As discussed before, Chile witnessed significant movements in the nominal exchange rate


since it entered the freely floating regime in 1999. Moreover, it was subject to large swings


in the terms of trade. Did the Central Bank respond to these movements in order to pursue


the inflation target? Table 1 addresses these questions. The Table estimates the coefficients


of the policy rule (2) under three different specifications. Under the first specification, which


we refer to as Baseline, policy only responds to inflation and real output growth, in addition


to the lagged interest rate. Under the second and third specification, called Response to FX


and Response to ToT respectively, policy responds also to the exchange rate depreciation.


Finally, under the Response to ToT specification the terms of trade also enter the feedback


rule, in addition to real output growth, inflation, and the nominal exchange rate. We


further consider a fourth specification where policy responds to year-over-year inflation


(Response to Y-o-Y Inflation) as opposed to current quarter inflation. We consider this


latter specification because the inflation target is stated in terms of year-over-year inflation,


as opposed to quarter-to-quarter.


The first column of the top panel of Table 1 shows the prior mean and standard deviation


for the policy parameters. On the ground that in 1999 Chile entered the full-fledged inflation


target regime, and that in the previous decade it had acquired a reputation as inflation fighter


by bringing down inflation, we posit a fairly high prior on ψ1, the response to inflation. The


prior is centered at 2.5 with a standard deviation of .5. The prior mean is higher than what


is usually assumed for the U.S. The priors on ψ2 and ψ3, the response to real output growth


and exchange rate depreciation respectively, and ρr, the persistence parameter, are similar


to those used in Lubik and Schorfheide (2005). The priors on ψ2 and ρr are also similar to
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that used in the estimation of DSGE models for the U.S. The prior on ψ4, the response to


a terms of trade depreciation, is centered at zero with a fairly large standard deviation, .5,


since we did not want to impose any strong a priori view on the sign or the magnitude of


the response.


The remaining columns of the top panel of Table 1 show the estimates of ψ1, ψ2, ψ3, and


ρr according to the four specifications. These estimates are obtained from the estimation


of the (four different specification of the) DSGE model. The estimates of ψ1 range from


1.8 to 2.3. The estimates of ψ2 range from .15 to .2 and indicate a small, and barely


significant, response of interest rates to output growth. The main focus of the section lies


in the responses to nominal depreciation and to the terms of trade. From the third and


fourth column of Table 1 we can see that the magnitude of the response to the exchange rate


depreciation is small, less than .1. The response to terms of trade movement is also small


at .08. From these estimates we conclude that the response of the Central Bank to nominal


exchange rate and terms of trade movement has been small, if not zero. Further confirmation


of this finding comes from the comparison of the marginal likelihoods, the measure of model’s


fit in a Bayesian context, across these different specification. The marginal likelihoods


show that the best fit is achieved by the Baseline specification, where policy does not


respond to the nominal exchange rate or terms of trade. If we are willing to put equal a


priori probability on the different specifications we can compute the posterior odds of the


alternative specifications relative to the Baseline. The Table shows that these posterior odds


are fairly small, although the Response to FX model is not as clearly rejected by the data


as the others. Finally, the results show that the specification where the authorities respond


to year-over-year inflation is soundly rejected: Its posterior odd relative to the Baseline is


minuscule. This result should not be interpreted as contradicting the statement that the


Central Bank target is the year-over-year inflation, but simply providing information on the


rule the Central Bank follows to achieve this target.


As is well known, there are pros and cons associated with full information estimation if


one is interested in the parameters of a particular equation in the system, in this case the


policy rule. On the one hand, if the cross-equation restrictions imposed by the model are


correct the full information estimates are more efficient than those from other instrumental


variable estimators. On the other hand, to the extent that these cross-equation restrictions


are invalid, the full information estimates may not be credible, and limited information


methods may be preferable. In this context, DSGE-VAR strikes a compromise between


full and limited information estimation, as it allows for deviations from the cross-equation
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restrictions. In the case at hand it may such a compromise may be necessary, since the


amount of data available is limited and therefore estimators that completely ignore the


restrictions (λ = 0) may not be efficient. At the same time, the model used here imposes


quite strong restrictions (exogeneity of the terms of trade, for one) and therefore one may not


want to dogmatically impose the restrictions (λ = ∞). For these reasons, the lower panel


of Table 1 show the estimates of ψ1, ψ2, ψ3, and ρr according to the three specifications


(Baseline, Response to FX, Response to ToT) of interest using DSGE-VAR with λ = 2. We


will justify the choice of λ = 2 in the next section. For now, notice that for each specification


the marginal likelihood of the DSGE-VAR (lower panel) is substantially higher than that of


the corresponding DSGE model (upper panel), validating some of the concerns about the


cross-equation restrictions.


Under DSGE-VAR the estimates of ψ1 andψ2, the response to inflation and output


growth respectively, are very similar across all specifications, with ψ1 about 2.75 and ψ2


about .125. Most importantly, the results regarding the response to exchange rate depreci-


ation and the terms of trade from the DSGE models are confirmed. The response to both


is quite small, about .08. In addition, even under the DSGE-VAR the alternative specifi-


cations, Response to FX and Response to ToT, are rejected relative to the Baseline, with


posterior odds similar to those in the upper panel. In summary, we seem to have some ro-


bust evidence that the Central Bank did not respond to movements in the nominal exchange


rate or the terms of trade in the recent period.


5.2 The Fit of the Small Open Economy DSGE Model


This section discusses the fit of the small open economy DSGE model, and its implications


in terms of the estimation for the DSGE model parameters. We ask the question: How


much does fit improve as we relax the cross-equation restrictions imposed by the DSGE


model? The answer to this question sheds some light on the extent to which the data is at


odds with the restrictions imposed by the model. Importantly from a policy perspective,


this analysis is also informative as to whether forecasting should be conducted with models


that are relatively rich in terms of structure, or with models that are loosely parameterized


such as VARs with relatively flat priors.


Table 2 shows the log marginal likelihood for the DSGE model as well as for the DSGE-


VAR, where λ varies in a grid from .75 to 5. As discussed in section 3, high values of λ
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correspond to tightly imposed cross-equation restrictions, while low values indicate a rela-


tively flat prior on the VAR parameters. The table also shows the posterior odds relatively


to the best-fitting model, computed under the assumption that we have equal a priori weight


on the different specifications. Table 2 shows that the best fit is achieved for values of λ


around 2 – hence, in the notation of section 3, λ̂ = 2. To put this number in perspective


we use the dummy observations interpretation of λ discussed in Del Negro and Schorfheide


(2004): λ equal to 2 means that in forecasting with the VAR one should use twice as many


dummy observations generated from the DSGE model as the length of the actual time series


available. In other words, the weight of the DSGE model prior in the best fitting model is


not negligible. The Table also shows that the posterior odds of the DSGE model relative


to DSGE-VAR(λ̂) are very small, indicating that from a statistical point of view there is


evidence that the cross-equation restrictions are violated in the data. The next section in-


vestigates whether this statistical evidence is economically meaningful, that is, whether it


translates into large differences in terms of the dynamic response of the endogenous variables


to different shocks. However, as λ increases from 2 to 5 the marginal likelihoods declines


very gradually, suggesting that DSGE-VARs with prior tighter than λ̂ do not fare poorly at


all.


Interestingly, the Table shows that the posterior odds of DSGE-VARs with less tight


DSGE priors (for instance, λ = .75) are even smaller than those of the DSGE model. This


evidence suggest that some structure is needed to perform analysis, and forecasts, with this


data set: unrestricted VARs perform very poorly. Of course, there may be prior information


other than that coming from this specific small open economy DSGE model which can help in


describing the data, e.g, the Minnesota priors or priors from different DSGE models. In this


sense, the evidence here should not be interpreted as saying that this small open economy


DSGE model is a particularly good one. Rather, it suggests that some prior information


from this model is better than none, especially given how short the sample is.


Table 3 provides the estimates of the DSGE model non-policy parameters (the policy


parameters were already described in the previous section). The first column shows the prior


mean and standard deviations. The parameter α measures the fraction of foreign produced


goods in the domestic consumption basket. In 2006 imports as goods as a fraction of total


domestic demand in Chile was about 30%. Restricted to consumer goods, this fraction was


10%. We decided to center our prior at the 30% value allowing for substantial variation.


The parameter r∗ can be interpreted as the growth adjusted real interest rate. While our


observations on average GDP growth, inflation, and nominal interest rates between 1999
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and 2007 suggest that this value is negative, we view this as a temporary phenomenon and


center our prior for r∗ at 2.5%. In the closed-economy version of our model (α = 0) the


parameter κ would correspond to the slope of the Phillips curve, which captures the degree


of price stickiness. According to our prior, κ falls with high probability in the interval 0 to


1, which encompasses large nominal rigidities as well as the case of near flexible prices. τ


captures the inverse of the relative risk aversion. We center our prior at 2, which implies


that the consumers are slightly more risk averse than consumers with a log utility function.


Finally, the priors for the parameters of the exogenous processes were chosen based with


pre-sample evidence in mind.


The second column shows the posterior mean and standard deviations obtained from


the estimation of the DSGE model. In light of the DSGE model misspecification discussed


above it is important to ask whether accounting for deviations from the cross-equation


restrictions affects the inference about the DSGE parameters. Therefore, the third column


shows the estimates obtained using DSGE-VAR(λ̂). The data provide little information


on r∗, which enters the log-linear equations through the discount factor β, and the slope


of the Phillips curve κ. The estimated import share is about 10%. While this estimate


is influenced based on the output, inflation, interest rate, and exchange rate dynamics, it


remains broadly consistent with data on import quantities. Finally, the posterior mean of


τ decreases compared to its mean and its standard deviation shrinks from 0.2 to 0.1. The


estimated standard deviation of the monetary policy shock is around 60 to 70 basis points.


Overall, the parameter estimates obtained from the state-space representation of the DSGE


model and the DSGE-VAR are very similar.


Since the DSGE model itself exhibits very little endogenous propagation, the dynamics


of the data are mostly captured by the estimated autocorrelation parameters of the exoge-


nous shock processes. The terms of trade are purely exogenous in the DSGE model and,


hence, the posterior means of ρq and σq measure the autocorrelation and innovation standard


deviation in our terms of trade series. The foreign inflation process π∗t is captured by the


difference of the two series plotted in Figure 3 and the estimates of ρπ∗ and σπ∗ capture its


persistence of volatility. The remaining sources of cyclical fluctuations are a foreign demand


shock ỹ∗t and a technology growth shock z̃t. The estimated autocorrelations of these shocks


are 0.93 and 0.72 (DSGE) and 0.89 and 0.64 (DSGE-VAR). In general we observe that the


shock-standard-deviation and autocorrelation estimates obtained with the DSGE-VAR are


slightly smaller. The reason is that the DSGE-VAR can capture model misspecification by


deviating from cross-equation restrictions, whereas the directly estimated DSGE model has
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to absorb this misspecification in the exogenous shock processes.


5.3 The Determinants of Inflation


This section discusses the impulse responses of the endogenous variables to internal and


external shocks. Given that the Central Bank is in an inflation targeting regime, the discus-


sion will focus on the determinants of inflation dynamics. Specifically, from section 5.4 we


learned that the Central Bank seemingly does not respond to exchange rate or terms of trade


movements. Did this policy manage to insulate the economy, and inflation in particular,


from external shocks?


Figure 4 shows the impulse response functions to the five shocks described in section 2:


policy shocks (Money), Technology, terms of trade (ToT), foreign output (y∗) and foreign


inflation (π∗). There are two lines for each plot, one black and one gray. Both are impulse


responses computed using the DSGE model. The difference between the two consists in


the underlying estimates of the DSGE model parameter. The gray line uses the DSGE


model estimates, and the black line uses the DSGE-VAR’s estimates. In general, the main


difference between the black and the gray impulse responses is that the latter are more


pronounced, reflecting the larger estimated standard deviation of shocks documented in


Table 3.


In terms of the determinants of inflation, the interesting feature of Figure 4 is that the


shocks that move the terms of trade and the nominal exchange rate depreciation, namely


ToT and π∗ shocks, barely affect inflation. According to the DSGE model identification, the


shocks that move inflation around are largely domestic, namely Technology and to a lesser


degree Money shocks. Notably, these shocks have very little effect on the exchange rate


depreciation (and of course on the terms of trade, given that the DSGE model considered


here treats these as exogenous). These findings indicate that the monetary authorities have


been successful in terms of isolating inflation from foreign disturbances.


It is somewhat surprising that Money shocks have a significant effect on inflation, given


that these shocks are avoidable. One possibility is that the Central Bank, in the attempt to


respond to future rather than current inflation, makes errors in forecasting inflation. From


the model’s perspective these errors appear as policy shocks. Another possible explanation


is that the policy reaction function is misspecified: Policy responds to some other variable


not included in the reaction function. While this is certainly a possibility, we know that the
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missing variable cannot be the exchange rate, since the impulse responses to Money shocks


in the Response to FX model look exactly as those in Figure 4.


Figure 4 shows that the impulse responses are generally not very persistent, reflecting the


fact that the DSGE model is not very rich in terms of frictions. Moreover, the DSGE impulse


responses are computed under stark identification assumptions, e.g., exogeneity of the terms


of trade. These limitations, as well as the evidence of misspecification discussed in the


previous section, suggest that we may want to compare the DSGE model impulse responses


to those from the DSGE-VAR and check whether relaxing the cross-equation restrictions


leads to very different dynamics. In comparing the DSGE model impulse responses with


those from the DSGE-VAR, one should bear in mind that in principle some differences may


arise from the fact that the DSGE model does not have an exact finite VAR representation


(see Ravenna 2007, among others). Figure A-1 in the Appendix shows that in the case


considered here this is not an issue. Figure A-1 compares the DSGE impulse responses


with those obtained from the finite VAR representation of the DSGE model, e.g., DSGE-


VAR(λ =∞). The two are virtually identical. This implies that if the data were generated


by the DSGE model at hand, the DSGE-VAR would recover the “true” impulse response


functions.


Figure 5 compares the impulse responses computed from DSGE-VAR(λ =∞) (black),


which are identical to the black lines shown in Figure 4, to those from DSGE-VAR(λ̂)


(gray).2 The Figure shows that by and large the differences between the DSGE-VAR(λ =∞)


and the DSGE-VAR(λ̂) impulse responses lies in the dynamic of the nominal exchange


rate, which is somewhat more volatile and persistent than according the DSGE model.


Interestingly, the terms of trade impulse responses are not very different either. Note that


the assumption of exogeneity of the terms of trade is not strictly imposed on the DSGE-


VAR. Hence, if the data were substantially at odds with this assumption, we would see


differences between the gray and black impulse responses in the last column. While we see


some differences, these are small relative to the magnitude of movements in the terms of


trade.


In summary, Figure 5 suggests that the misspecification found in section 5.2 is not very


important from an economic point of view. This result must be interpreted with caution,


however. The identification in the DSGE-VAR is by construction linked to that in the


DSGE model. While this may be a virtue, as it ties the DSGE-VAR impulse responses to
2We do not show the posterior bands for simplicity of exposition. These are available from the authors


upon request.
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those of the underlying DSGE model, it can also be a drawback: There may be other DSGE


models, and other identification schemes, that are equally capable of describing the data.


By construction, DSGE-VAR is not going to be able to uncover such models. Finally, the


data may simply not be informative enough, because of the shortness of the sample, to point


out the deficiencies of this model.


5.4 A Look at Alternative Policy Rules


This section discusses alternative policy rules. Should the Central Bank respond more or


less aggressively to inflation? Could a policy rule different than that currently pursued


further dampen inflation variability? How does the presence of misspecification change the


answers to these questions?


Figure 6 describes how the impulse responses change as the parameter ψ1 in the policy


reaction function varies from 1.25 (light gray) to 2.75 (dark gray, historical estimate), to


3.5 (black). Although each plot has three lines, visually it appears as if it had only two.


This is because raising the reaction to inflation from its estimated value of 2.75 (according


to DSGE-VAR) to 3.5 has virtually no impact on the dynamics. Hence responding more


aggressively to inflation would not have any effect on the Chilean economy, at least according


to this estimated model. Conversely, a much weaker response to inflation (ψ1 = 1.25) would


have serious effects, especially on inflation. The response to Technology shocks would be


much more pronounced. Moreover, the response to π∗ shocks, which historically has been


negligible, would become sizable. This result suggests that a strong response to inflation


has been a key ingredient in isolating the Chilean economy from external shocks.


Figure 7 shows how the variance of inflation changes as psi1 varies in a grid ranging


from 1 to 3.5. Specifically, we show that the increase (or decrease, when negative) in the


variance relative to the historical policy rule ψ1 = 2.75. In Figure 7 the variance differentials


are computed using the DSGE model. The solid (dashed-and-dotted) gray lines represent


the posterior mean (90% posterior bands) differentials under the DSGE model estimates of


parameters (second column of Table 3). The solid (dashed-and-dotted) black lines represent


the posterior mean (90% posterior bands) differentials under the DSGE-VAR estimates


of parameters (third column of Table 3). Consistently with Figure 6, under both sets of


estimates the variance of inflation increases substantially as ψ1 decreases below 1.5, while


not much happens as ψ1 increases from 2.75 to 3.5. The magnitude of the increase in the


variance differential differs substantially under the two sets of estimates. Under the DSGE
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the shocks are estimated to be more persistent and more variable than under DSGE-VAR,


hence the effect of changes in policy on the variability of inflation is larger. One can view the


higher persistent and variability of the exogenous shocks under the DSGE model estimates


as a consequence of the model’s misspecification, as discussed in section 5.2, and therefore


not trust the outcomes of the policy analysis exercise under these estimates. In any case,


these results highlight the sensitivity of the policy exercises to the estimates of the processes


followed by the exogenous shocks, a point made in Del Negro and Schorfheide (2007).


Figure 8 shows the expected changes in the variability of inflation under three different


approaches to performing the policy experiment. Under all three approaches the experiment


is the one just described, that is, varying psi1 in a grid ranging from 1 to 3.5. The first


approach (black line) also is the same one described in the previous paragraph: It amounts


to performing the experiment using the DSGE model under the DSGE-VAR estimates of the


non-policy parameters. The second approach (dark gray line) is called DSGE-VAR/Policy-


Invariant Misspecification and is described in detail in Del Negro and Schorfheide (2007).


This approach to policy assumes that while the cross-equation restrictions change with


policy, the deviations from the cross-equation restrictions outlined in Figure 5 are policy


invariant. More specifically in terms of the DSGE-VAR notation, the matrices that embody


the cross-equation restriction (Ψ∗(θ) and Σ∗(θ)) change with ψ1, but the deviations (Ψ∆ and


Σ∆) do not.3 This approach may be appealing if one thinks that these deviations capture


low or high frequency movements in the data that are not going to be affected by policy. The


variance differential under this alternative approach is about the same as under the DSGE


model (and so are the bands, which we do not show to avoid cluttering the figure). This


is not surprising given that the deviations from the cross-equation restrictions are small,


particularly for inflation.


The second approach (light gray line) is called DSGE-VAR/Backward-Looking Analysis


and is again described in detail in Del Negro and Schorfheide (2007). Under this approach


the DSGE-VAR is treated as an identified VAR: The change in ψ1 only affects the policy


rule (e.g., Sims 1999), but does not affect the remaining equation of the system. Under this


approach the cross-equation restriction are completely ignored. The light gray line shows


that the outcome from this approach is quantitatively different from that of the other two


approaches. The rationale for ignoring the cross-equation restrictions when the deviations


are small, especially in economic terms, is questionable, however.
3As discussed in Del Negro and Schorfheide (2007), we work with the moving average rather than the


VAR representations. So literally we treat the deviations from the DSGE-VAR(∞) impulse responses in


Figure 5 as policy invariant.
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6 Conclusion


We estimate the small open economy DSGE model used in Lubik and Schorfheide (2005)


on Chilean data for the inflation targeting period, 1999-2007, using data on the policy rate,


inflation, real output growth, nominal exchange depreciation, and log differences in the


terms of trade. We also estimate on the same a Bayesian VAR where the prior comes from


the small open economy DSGE model, following the DSGE-VAR methodology proposed in


Del Negro and Schorfheide (2004). The purpose of the DSGE-VAR is to check whether the


answers provided by the DSGE model are robust to the presence of misspecification, where


misspecification is defined as deviations from the cross-equation restrictions imposed by the


model.


We first focus on the estimated policy rule for the Central Bank. Since the Chilean


economy has been exposed to large movements in the exchange rate and especially the terms


of trade, we ask whether the Central Bank responded to these movements the in order to


pursue the inflation target. We find that the answer is no. According to our estimates, the


Central Bank mainly responded to inflation, and to a much less degree to output growth.


We also find that the DSGE-VAR provides similar answers to these questions.


We study the degree of misspecification in the DSGE model by comparing its fit, as


measured by the marginal likelihood, to that of the DSGE-VAR for various degree of relax-


ation of the cross-equation restrictions. We find that some degree of misspecification exists,


as the fit improves from a statistical point of view when the cross-equation restrictions are


relaxed, but is relatively small in the sense that in the best-fitting DSGE-VAR the weight


of the DSGE prior is high. This finding may be in part due to the short data sample, as the


DSGE model itself is quite simple. Whatever the reason for this result, its implication is


that a good model for the Chilean economy should have strong a priori restrictions, possibly


coming from a DSGE model. We suspect that a loosely parameterized model is unlikely to


give good forecasts or sharp policy advice.


Next, we use the DSGE model and the DSGE-VAR to investigate the determinants of


inflation. In particular, we ask whether the policy pursued by the Central Bank managed


to insulate the economy, and inflation in particular, from external shocks. We find that


both approaches give the same answer: yes. We find that the sources of inflation variability


mainly lie in domestic shocks. We also find that the misspecification of the DSGE model, if


statistically significant, is not large from an economic point of view: the dynamic responses


of the variables to shocks are very similar.
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Finally, we use the DSGE model to conduct policy exercises. We study the effect of


changing the response to inflation in the feedback rule on the variance of inflation. We


find that increasing the response from the historical value would produce little change, but


that a substantial decrease would lead to a spike in volatility. Quantitatively, the answer


depends heavily on which estimates of the non-policy parameters are used. In line with the


results described above, we find that accounting for misspecification makes little quantitative


difference in terms of the outcome of the policy exercise , at least to the extent that the


cross-equation restrictions are not completely ignored.


An important caveat to the policy analysis exercise is that the DSGE model used here


has many restrictive assumptions, and hence may not capture some the important policy


trade-offs. In spite of this, we believe that a few lessons can be learned from this exercise,


which are likely to carry over to more sophisticated models: First, the outcome of policy


experiment is very sensitive to the estimates for the parameters describing the law of motion


of the exogenous shocks. Second, the presence of misspecification – that is, the fact that


the DSGE model is rejected relative to a more loosely parameterized model – does not


necessarily imply that the answers to policy exercises obtained from the DSGE model are


not robust. The DSGE-VAR methodology provides ways of checking the robustness of the


policy advice under different assumptions about misspecification, and we hope this can be


useful in applied work at Central Banks.
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Table 1: Which Policy Rule?


(1) (2) (3) (4)


Parameter Prior Baseline
Response


to FX


Response


to ToT


Response to


Y-o-Y Inflation


DSGE


ψ1 2.50 ( 0.50) 2.31 ( 0.52) 2.04 ( 0.58) 1.89 ( 0.57) 1.82 ( 0.39)


ψ2 0.25 ( 0.13) 0.18 ( 0.10) 0.20 ( 0.11) 0.19 ( 0.09) 0.14 ( 0.07)


ψ3 0.25 ( 0.12) 0.09 ( 0.03) 0.07 ( 0.03) 0.08 ( 0.03)


ψ4 0.00 ( 0.50) -0.08 ( 0.05)


ρr 0.50 ( 0.20) 0.45 ( 0.11) 0.42 ( 0.11) 0.40 ( 0.11) 0.44 ( 0.09)


Marginal


Likelihood
-585.52 -588.32 -589.24 -593.52


Posterior Odds


relative to


Baseline DSGE


1 .061 .024 3.35e-04


DSGE-VAR(λ = 2)


ψ1 2.76 ( 0.46) 2.75 ( 0.47) 2.68 ( 0.49)


ψ2 0.13 ( 0.06) 0.13 ( 0.06) 0.13 ( 0.07)


ψ3 0.09 ( 0.04) 0.08 ( 0.04)


ψ4 -0.08 ( 0.07)


ρr 0.50 ( 0.10) 0.49 ( 0.10) 0.49 ( 0.10)


Marginal


Likelihood
-572.89 -575.71 -577.30


Posterior Odds


relative to


Baseline DSGE


1 .060 .012


Notes: We report means and standard deviations (in parentheses).
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Table 2: The Fit of the Small Open Economy DSGE Model


Specification λ
Log Marginal


Likelihood


Posterior Odds


relative to


DSGE-VAR(λ̂)


DSGE -585.52 3.27e-06


DSGE-VAR:


5 -575.40 0.081


3 -573.45 0.571


2.5 -573.02 0.878


λ̂ 2 -572.89 1.00


1.5 -574.21 0.267


1 -582.24 8.69e-05


.75 -600.89 6.91e-13


Notes: The difference of log marginal data densities can be interpreted as log posterior


odds under the assumption of that the two specifications have equal prior probabilities. We


report odds relative to the DSGE-VAR (λ = 2).
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Table 3: DSGE Model Parameters


Paramter Prior DSGE DSGE-VAR(λ = 2)


α 0.30 ( 0.10) 0.08 ( 0.02) 0.10 ( 0.03)


r∗ 2.50 ( 1.00) 2.59 ( 1.08) 2.46 ( 0.99)


κ 0.50 ( 0.25) 0.60 ( 0.22) 0.78 ( 0.24)


τ 0.50 ( 0.20) 0.37 ( 0.09) 0.39 ( 0.10)


ρz 0.20 ( 0.10) 0.72 ( 0.06) 0.64 ( 0.06)


ρq 0.50 ( 0.10) 0.38 ( 0.08) 0.42 ( 0.08)


ρy∗ 0.85 ( 0.05) 0.93 ( 0.03) 0.89 ( 0.04)


ρπ∗ 0.70 ( 0.15) 0.34 ( 0.11) 0.38 ( 0.13)


σz 1.88 ( 0.99) 0.89 ( 0.16) 0.82 ( 0.12)


σq 4.39 ( 2.29) 4.62 ( 0.54) 3.21 ( 0.48)


σy∗ 1.88 ( 0.99) 7.72 ( 2.77) 3.84 ( 1.70)


σπ∗ 1.88 ( 0.99) 5.24 ( 0.65) 3.35 ( 0.58)


σr 0.63 ( 0.33) 0.68 ( 0.12) 0.58 ( 0.12)


Notes: We report means and standard deviations (in parentheses).
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Figure 1: Interest Rates and Inflation in Chile
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Figure 2: Exchange Rate and Terms of Trade Dynamics
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Figure 3: Exchange Rate Movements and PPP
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Figure 4: DSGE Model Impulse Responses: DSGE vs DSGE-VAR(λ = 2) Param-


eter Estimates
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Notes: The figure depicts impulse responses from the DSGE-VAR(λ = 2) (black) and the


DSGE (gray) based on the respective posterior estimates summarized in Tables 1 and 3.
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Figure 5: Impulse Responses: DSGE-VAR(λ =∞) versus DSGE-VAR(λ = 2)
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Notes: The figure depicts impulse responses from the DSGE-VAR(λ = 2) (black) and the


DSGE-VAR(∞) (gray) based on the DSGE-VAR(λ = 2) posterior estimates summarized in


Tables 1 and 3.
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Figure 6: DSGE Model Impulse Responses as Function of ψ1
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Notes: The figure plots the posterior mean of the DSGE model impulse responses computed


for three different values of the response to inflation in the policy rule, ψ1: 3.5 (black), 2.75


(dark gray), and 1.25 (light gray). The remaining policy parameters ψ2, ψ3, ψ4, and ρR are


kept at the baseline values of 0.125, 0, 0, and 0.5, respectively. For all impulse responses we


use the DSGE model posterior estimates of the non-policy parameters θ(np), summarized in


Table 3.
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Figure 7: Comparative Performance of Policy Rules: Benchmark DSGE versus


DSGE-VAR(λ = 2) Parameter Estimates
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Notes: Posterior expected variance differentials as a function of ψ1 relative to baseline policy


rule ψ1 = 2.75. The remaining policy parameters ψ2, ψ3, ψ4, and ρR are kept at the baseline


values of 0.125, 0, 0, and 0.5, respectively. Negative differentials signify a variance reduction


relative to baseline rule. Differentials are computed using DSGE-VAR posterior (gray) and


DSGE model (black) posterior estimates of the non-policy parameters θ(np), summarized in


Table 3.
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Figure 8: Comparative Performance of Policy Rules: DSGE versus DSGE-


VAR/Policy-Invariant Misspecification and DSGE-VAR/Backward-Looking


Analysis
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Notes: Posterior expected variance differentials as a function of ψ1 relative to baseline policy


rule ψ1 = 2.75. The remaining policy parameters ψ2, ψ3, ψ4, and ρR are kept at the baseline


values of 0.125, 0, 0, and 0.5, respectively. Negative differentials signify a variance reduc-


tion relative to baseline rule. Differentials are computed using the DSGE-VAR/Backward-


Looking Analysis (light gray), the DSGE-VAR/Policy-Invariant Misspecification scenario


(dark gray) and the DSGE model (black), where the latter uses the DSGE-VAR(λ = 2)


posterior estimates of the non-policy parameters θ(np), summarized in Table 3.







35


Figure A-1: Impulse Responses: DSGE-VAR(λ =∞) versus DSGE


0


1


2
Interest Rate


M
o
n
e
y


−1.5


−1


−0.5


0


0.5
Inflation


−2


0


2


Output Growth


−4


−2


0


2
Depreciation


−10


0


10
ToT


0


1


2


T
e
c
h
n
o
lo


g
y


−0.5


0


0.5


1


1.5


0


2


4


6


0


2


4


−10


0


10


−2


−1


0


T
o
T


−1.5


−1


−0.5


0


0.5


−2


0


2


−20


−10


0


0


10


20


−1.5


−1


−0.5


0


0.5


y
*


−0.5


0


0.5


1


1.5


−6


−4


−2


0


0


2


4


−10


0


10


 0  4  8 12 16
−1.5


−1


−0.5


0


0.5


π
*


 0  4  8 12 16
−0.5


0


0.5


1


1.5


 0  4  8 12 16


−2


0


2


 0  4  8 12 16
−20


−10


0


 0  4  8 12 16
−10


0


10


Notes: The figure depicts impulse responses from the DSGE-VAR(∞) (black) and the DSGE


(gray) based on the DSGE-VAR(λ = 2) posterior estimates summarized in Tables 1 and 3.








 


 


 


 


 


Determinacy and Learnability in Monetary Policy Analysis: Additional Results 


 


 


Bennett T. McCallum 


 


Carnegie Mellon University 


and  


National Bureau of Economic Research 


 


 


 


Preliminary  


November 8, 2007 


 


 


 


This paper is being prepared for the 2007 Annual Conference of the Central Bank of Chile, to be 
held in Santiago on November 15-16, 2007.  I am indebted to Riccardo DiCecio and George 
Evans for helpful discussions on the topic of this paper.







 1


1. Introduction 
 
 It is almost unnecessary to begin by emphasizing that recent research in monetary policy 


analysis has featured a great deal of work concerning conditions for determinacy—i.e., existence 


of a unique dynamically stable rational expectations equilibrium—under various specifications 


of policy behavior.1  Indeed, there are a number of papers in which determinacy is the only 


criterion for a desirable monetary policy regime that is explicitly mentioned.2 


 By contrast, I have argued in a recent publications (McCallum, 2003a, 2007) that least-


squares (LS) learnability is a compelling necessary condition for a rational expectations (RE) 


equilibrium to be considered plausible, since individuals must somehow learn about the exact 


nature of an economy from data generated by that economy itself, while the LS learning process 


is biased toward a finding of learnability.  A similar position has also been expressed by Bullard 


(2006, p. 2004).  From such a position it follows that in conditions in which there is more than 


one dynamically stable RE solution—i.e., indeterminacy—there may still be only one RE 


solution that is economically relevant, if the others are not LS learnable.  In this sense, LS 


learnability is arguably a more important criterion than determinacy.   


 Substantively, my 2007 paper demonstrates that, in a very wide class of linear RE models, 


determinacy implies LS learnability (but not the converse) when individuals have knowledge of 


current conditions available for use in the learning process.  This strong result does not pertain, 


however, if individuals have available, in the learning process, only information regarding 


previous values of endogenous variables.3  One task of the present paper, accordingly, is to 


investigate the situation that obtains when only lagged information is available.  In addition, the 


                                                 
1 Prominent examples include Benhabib, et. al. (2001), Clarida, Gali, and Gertler (1999), Rotemberg and Woodford 
(1997), Sims (1994), and Woodford (2003).  Discussion in a leading textbook is provided by Walsh (2003). 
2 See, for example, Carlstrom and Fuerst (2005). 
3 Another limitation of the analysis of McCallum (2007) is that it considers only solutions of a form that excludes 
“resonant frequency sunspot” solutions.  That limitation, which is maintained here, is discussed briefly in Section 6. 
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paper will explore results that pertain when a further criterion of model plausibility, provisionally 


termed “well-formulated,” characterizes the model’s structure.  In particular, it is shown that 


models that are well formulated, in the defined sense, invariably possess the property of E-


stability and hence LS learnability if current-period information is available in the learning 


process, even if determinacy does not prevail.  The situation in the case of lagged information is 


less favorable—i.e., learnability is assured only in special cases.      


2. Model and Determinacy 


 It will be useful to begin with a summary of the formulation and results developed in 


McCallum (2007).  Throughout we will work with a model of the form 


(1) yt = A Etyt+1 + C yt-1 + D ut, 


where yt is a m×1 vector of endogenous variables, A and C are m×m matrices of real numbers, D 


is m×n, and ut is a n×1 vector of exogenous variables generated by a dynamically stable process 


(2) ut = R ut-1 + εt,  


with εt a white noise vector.  It will not be assumed, even initially, that A is invertible.  This 


specification is useful in part because it is the one utilized in Section 10.3 of Evans and 


Honkapohja (2001), for which E-stability conditions are reported on their p. 238.4  Furthermore, 


the specification is very broad; in particular, any model satisfying the formulations of King and 


Watson (1998) or Klein (2001), can be written in this form—which will accommodate any 


number of lags, expectational leads, and lags of leads.  (See Appendix A.) 


   Following McCallum (1983, 1998), we consider solutions to (1)(2) of the form 


(3) yt = Ω yt-1 + Γ ut. 


in which Ω is required to be real.  Then we have that Etyt+1 = Ω(Ωyt-1 + Γut) + ΓRut and 


                                                 
4Constant terms can be included in the equations of (1) by including an exogenous variable in ut that is a random 
walk whose innovation has variance zero.  In this case there is a borderline departure from process stability.  







 3


straightforward undetermined-coefficient reasoning shows that Ω and Γ must satisfy 


(4) AΩ2 − Ω + C = 0 


(5) Γ = AΩΓ + AΓR + D. 


For any given Ω, (5) yields a unique Γ generically,5 but there are many m×m matrices that solve 


(4) for Ω.  Accordingly, the following analysis centers around (4).  Since we do not assume that 


A is invertible, we write 


(6) 
A
0







 
0
I







2 Ω
 Ω 


 = 
 I
 I







   
C


  0
− 






 
 I
Ω 


 
 


, 


in which the first row reproduces the matrix quadratic (4).  Let the 2m×2m matrices on the left 


and right sides of (6) be denoted A  and C , respectively.  Then instead of focusing on the 


eigenvalues of 1A− C , which does not exist when A is singular, we instead solve for the 


(generalized) eigenvalues of the matrix pencil [ C  − λ A ], alternatively termed the (generalized) 


eigenvalues of C  with respect to A  (e.g., Uhlig (1999)).  Thus instead of diagonalizing 1A− C , 


as in Blanchard and Khan (1980), we use the Schur generalized decomposition, which serves the 


same purpose.  Specifically, the Schur generalized decomposition theorem establishes that there 


exist unitary matrices Q and Z such that Q C Z = T and Q A Z = S with T and S triangular.6  Then 


eigenvalues of the matrix pencil ( C  −λ A ) are defined as tii/sii. Some of these eigenvalues may 


be “infinite,” in the sense that some sii may equal zero.  This will be the case, indeed, whenever 


A and therefore A  are of less than full rank since then S is also singular.  All of the foregoing is 


true for any ordering of the eigenvalues and associated columns of Z (and rows of Q).  For the 


                                                 
5 Generically, I − R’⊗[(I − AΩ)-1A] will be invertible, permitting solution of (5) for vec(Γ).  Invertibility of (I − AΩ) 
is discussed below in Section 4. 
6 Provided only that there exists some λ for which det[ C  − λ A ] ≠ 0. See Klein (2000) or Golub and Van Loan 
(1996, p. 377).  Note that in McCallum (2007) the matrices A  and A are denoted A and A11, repectively. 
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present, let us focus on the arrangement that places the tii/sii in order of decreasing modulus.7  


 To begin the analysis, premultiply (6) by Q.   Since Q A  = SH and Q C  = TH, where H ≡ 


Z-1, the resulting equation can be written as  


(7) 11


21


S
S




 22


0
S







11


21


H
H







12


22


H
H







2 Ω
 Ω 


   = 11


21


T
T




 22


0
T







11


21


H
H







12


22


H
H




 I


 Ω
 
 


. 


The first row of (7) reduces to 


(8) S11(H11Ω + H12)Ω = T11(H11Ω + H12). 


Then if H11 is invertible the latter can be used to solve for Ω as 


(9) Ω = −H11
-1


 H12 = −Η11
−1(−Η11Ζ12Ζ22


−1) = Ζ12Ζ22
−1, 


where the second equality comes from the upper right-hand submatrix of the identity  


HZ = I, provided that H11 is invertible, which we assume without significant loss of generality.8 9 


 As mentioned above, there are many solutions Ω to (4).  These correspond to different 


arrangements of the eigenvalues, which result in different groupings of the columns of Z and 


therefore different compositions of the submatrices Z12 and Z22.  Here, with the eigenvalues tii/sii 


arranged in order of decreasing modulus, the diagonal elements of S22 will all be non-zero 


provided that S has at least m non-zero eigenvalues, which we assume to be the case.10  Clearly, 


for any solution under consideration to be dynamically stable, the eigenvalues of Ω must be 


smaller than 1.0 in modulus.  In McCallum (2007) it is shown that  


(10) Ω = Z22S22
-1T22Z22


-1 


                                                 
7 The discussion proceeds as if none of the tii/sii equals 1.0 exactly.  If one does, the model can be adjusted, by 
multiplying some relevant coefficient by (e.g.) 0.9999.  
8 This invertibility condition, also required by King and Watson (1998) and Klein (2000), obtains except for 
degenerate special cases of (1) that can be solved by simpler methods than considered here. Note that the 
invertibility of H11 implies the invertibility of Z22, given that Z and H are unitary.   
9 Note that it is not being claimed that all solutions are of the form (9). 
10 From its structure it is obvious that A  has at least m nonzero eigenvalues so, since Q and Z are nonsingular, S 
must have rank of at least m.  This necessary condition is not sufficient for S to have at least m nonzero eigenvalues, 
however; hence the assumption.   
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so Ω has the same eigenvalues as S22
-1T22.  The latter is triangular, moreover, so the relevant 


eigenvalues are the m smallest of the 2m ratios tii/sii (given the decreasing-modulus ordering).  


For dynamic stability, the modulus of each of these ratios must then be less than 1.  [In many 


cases, some of the m smallest moduli will equal zero.] 


Let us henceforth refer to the solution under the decreasing-modulus ordering as the 


MOD solution.  Now suppose that the MOD solution is stable.  For it to be the only stable 


solution, there must be no other arrangement of the tii/sii that would result in a Ω matrix with all 


eigenvalues smaller in modulus than 1.0.  Thus each of the tii/sii for i = 1,…, m must have 


modulus greater than 1.0, some perhaps infinite.  Is there some m×m matrix whose eigenvalues 


relate cleanly to these ratios?  Yes, it is the matrix  F ≡ (I − AΩ)-1A, which appears frequently in 


the analysis of Binder and Pesaran (1995, 1997).11  Regarding this F matrix, it is shown that, for 


any ordering such that H11 is invertible, including the MOD ordering, we have the equality 


(11) H11 F H11
-1 = T11


-1S11, 


which implies that F has the same eigenvalues as T11
-1S11.  In other words, it is the case that the 


eigenvalues of F are the same, for any given arrangement of the system’s eigenvalues, as the 


inverses of the values of tii/sii for i = 1, …, m.  Under the MOD ordering these are the inverses of 


the first (largest) m of the eigenvalues of the system’s matrix pencil.  Accordingly, for solution 


(9) to be the only stable solution, all the eigenvalues of the corresponding F must be smaller than 


1.0 in modulus.  This result, stated in different ways, is well known from Binder and Pesaran 


(1995), King and Watson (1998), and Klein (2000), and is an important generalization of one 


result of Blanchard and Khan (1980) for a model with nonsingular A. 


                                                 
11 There is no general proof of invertibility of [I − AΩ], but if AΩ were by chance to have some eigenvalue exactly 
equal to 1.0, that condition could be eliminated by making some small adjustment to elements of A or C.  Also, see 
Section 5 below. 
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 Thus we have established notation for models of form (1)(2) and have reported results 


showing that the existence of a unique stable solution requires that all eigenvalues of the defined 


Ω matrix and the corresponding F must be less than 1.0 in modulus.  It will be convenient to 


express that condition as follows: all λΩ < 1 and all λF < 1. 


3. E-Stability in Two Cases 


 We now turn to conditions for learnability under two different information assumptions.  


First we will review the main results from my JEDC paper, which assumes that agents have full 


information on current values of endogenous variables during the learning process, and then we 


will go on to the second assumption, namely, that only lagged values of endogenous variables 


are known during the learning process.  The manner in which learning takes place in the Evans-


Honkapohja (E&H) analysis is as follows.  Agents are assumed to know the structure of the 


economy as specified in equations (1) and (2), in the sense that they know what variables are 


included, but do not know the numerical values of the parameters.  What they need to know, to 


form expectations, is values of the parameters of the solution equations (3).  In each period t, 


they form forecasts on the basis of least squares regression of the variables in yt-1 on previous 


values of yt-2 and any exogenous observables.   Given those regression estimates, however, 


expectations of yt+1 may be calculated assuming knowledge of yt or, alternatively, assuming that 


yt-1 is the most recent observation possessed by agents and thus usable in the forecasting process.  


In the former case, the conditions for E-stability reported by E&H (2001, p. 238) are that the 


following three matrices must have all eigenvalues with real parts less than 1.0: 


(12a) F ≡ (I − AΩ)-1A 


(12b) [(I − AΩ)-1C]’ ⊗ F 


(12c) R’ ⊗ F. 
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In the second case, however, the analogous condition (E&H, 2001, p. 245) is that the following 


matrices must have all eigenvalues with real parts less than 1.0: 


(13a) A(I + Ω) 


(13b) Ω’⊗A + I ⊗AΩ 


(13c) R’⊗A + I ⊗AΩ. 


 Except in the case that Ω = 0, which will obtain when C = 0, these conditions are not equivalent to 


those in (12). 


 It is important to note that use of the first information assumption is not inconsistent with 


a model specification in which supply and demand decisions in period t are based on 


expectations formed in the past, such as Et-1yt+j or Et-2yt+j.  It might also be mentioned 


parenthetically that conditions (12) and (13) literally pertain to the E-stability of the model (1)(2) 


under the two information assumptions, not its learnability.  Under quite broad conditions, 


however, E-stability is necessary and sufficient for LS learnability.  This near-equivalence is 


referred to by E&H as the “E-stability principle” (E&H, 1999, p. 472; 2001, p. 41).  Since E-


stability is technically easier to verify, applied analysis typically focuses on it, rather than on 


direct exploration of learnability.   


 Given the foregoing discussion, it is a simple matter to verify that if a model of form 


(1)(2) is determinate, then it satisfies conditions (12).  First, determinacy requires that all 


eigenvalues of F must have modulus less than 1.0, so their real parts must all be less than 1.0, 


thereby satisfying (12a).  Second, from equation (4) it can be seen that (I − AΩ)-1C = Ω.  


Therefore, matrix (12b) can be written as Ω’ ⊗ F.  Furthermore, it is a standard result (Magnus 


and Neudecker, 1988, p. 28) that the eigenvalues of a Kronecker product are the products of the 


eigenvalues of the relevant matrices (e.g., the eigenvalues of Ω’ ⊗ F are the products λΩλF).  
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Therefore, condition (12b) holds.  Finally, since λF < 1, condition (12c) holds provided that all 


λR ≤ 1, which we have assumed by specifying that (2) is dynamically stable. 


 Determinacy does not imply learnability, however, under the second information 


assumption.  This point, which is developed by E&H (2001, pp. 174-181), can be illustrated by 


means of a bivariate example.12  Let the yt vector in (1) include two variables, y1t and y2t, related 


by the dynamic model that follows: 


(14) 1t


2t


y
y


 
 
 


  = 
0.01


0.99
−






  
  0.01


0.01

− 


t 1t 1


t 2t 1


E y
E y


+


+


 
 
 


 + 
0.02
0.01







  
1.10
0.06







1t 1


2t 1


y
y


−


−


 
 
 


 + 
1
0







 
0
1







1t


2t


 u
 u


 
 
 


. 


Then for the MOD solution we have  


(15) AΩ =  
0.01


0.99
−






  
  0.01


0.01

− 


0.0218   1.1133
0.095   0.774


 
 − − 


  = 
0.0012
0.0225


−




  
0.0189


 1.1099
− 






, 


with eigenvalues of Ω being −0.148 and −0.604, while  F = 
0.1604


9.040

−


  
 0.00831
  0.0893







, which has 


(complex) eigenvalues 0.1249 ± 0.2717 i.  Inspection of these shows that this solution is 


determinate, and that conditions (12a) and (12b), relevant for E-stability in the case in which 


current information is available during learning, are satisfied.  Let us assume R = 0, i.e., white 


noise disturbances, for simplicity.  Then the determinate RE solution is E-stable and learnable 


under the first information assumption. 


 But for the case with only lagged information during learning, we need to consider the 


eigenvalues of the matrices shown in expressions (13).  For (13a), the matrix A(I + Ω) is 


0.0112
1.0125
−






 
  0.0089
      1.0999


− 




 whose eigenvalues are −0.0030 and 1.0918.  The last of these violates the 


                                                 
12 Its specification is close numerically to the qualitative version of the E&H example that is used in McCallum 
(2007, pp. 1386-1388).  
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condition for (13a), however, so under the lagged-information assumption the relevant E-


stability condition is not satisfied and the determinate RE equilibrium is not LS learnable. 


 This result exemplifies the fact that determinacy is not generally sufficient for learnability 


of RE solutions, although it is sufficient under the first information assumption.  Of equal 


importance, in my opinion, is the fact that determinacy is not necessary for learnability.  In 


particular, the MOD solution can be learnable, and be the only learnable solution, in cases in 


which indeterminacy prevails.  One such example is given in my JEDC paper on p. 1386.  In 


such cases, the position that learnability is necessary for a solution to be plausible would suggest 


that there may be no problem implied by the absence of determinacy.13  


4. Well-Formulated Models 


 In an unpublished working paper (McCallum, 2003b), I have suggested that there is a 


distinct and neglected property that dynamic models should possess to be considered “well-


formulated” and plausible for the purpose of economic analysis.  To begin the discussion, 


consider first the single-variable case of specification (1),  


(16) yt = aEtyt+1 + cyt-1 + ut, 


with ut = (1−ρ)η + ρut-1 + wt with 1ρ <  and wt white noise.  Thus ut is an exogenous forcing 


variable with an unconditional mean of η (assumed nonzero) and units have been chosen so that 


there is no constant term.  Applying the unconditional expectation operator to (16) yields 


(17) E yt = aEyt+1 + cEyt-1 + η. 


In this case yt will be covariance stationary, and we have 


(18) E yt = η/ [1− (a + c)]. 


But from the latter, it is clear that as a + c approaches 1.0 from above, the unconditional mean of 


                                                 
13 Disregarding, that is, “sunspot” solutions not of form (3). 
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yt approaches −∞ (assuming without loss of generality that η > 0), whereas if  


a + c approaches 1.0 from below, the unconditional mean approaches +∞.  Thus there is an 


infinite discontinuity at a + c = 1.0.  This implies that a tiny change in a + c could alter the 


average (i.e., steady state) value Eyt from an arbitrarily large positive number to an arbitrarily 


large negative number.  Such a property seems highly implausible and therefore unacceptable for 


a well-formulated model.14  The substantive problem is not eliminated, obviously, by adoption of 


the zero-measure exclusion a + c ≠ 1. 


In light of the foregoing observation, it is my contention that, to be considered well 


formulated (WF), the model at hand needs to include a restriction on its admissible parameter 


values; a restriction that rules out a + c = 1, and yet admits a large interval of values that includes 


(a, c) = (0, 0).  In the case at hand, the appropriate restriction is a + c < 1.  Of course, a + c > 1 


would serve just as well mathematically to avoid the infinite discontinuity, but it seems clear that 


a + c < 1 is vastly more appropriate from an economic perspective since it includes the values (0, 


0).15  Since we want this condition to apply to a + c sums between zero and that value that 


pertains to the model at hand, our requirement for WF is that a and c satisfy 1 − ε(a + c) > 0 for 


all 0  ≤  ε ≤  1.  [It should be clear, in addition, that the foregoing argument could be easily 


modified to apply to yt processes that are trend stationary, rather than strictly (covariance) 


stationary.]  It is shown in McCallum (2003b) that under this requirement, plus a second one to 


be discussed shortly, the univariate model (16) is invariably E-stable.16   


 Next, for the bivariate case of model (1), extension of the foregoing WF property requires 


                                                 
14 The model could be formulated with the exogenous variable also written in terms of percent or fractional 
deviations from the reference level η, e.g., tû = ut − η.  But that would not alter the relationship between Eyt and η, 
which can be extremely different for tiny changes in a + c.   
15 In models of the linear form (16), one would expect coefficients a and c typically to represent elasticities and often 
to be numerically small relative to 1.   
16 That paper’s analysis of multivariate systems is, however, unsatisfactory. 
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that A and C are such that det[I − ε(A + C)] is positive for all 0  ≤  ε ≤  1; otherwise the steady-


state values of the variables may possess infinite discontinuities.  But there are other 


requirements as well.  Let acij temporarily denote the ijth element of A + C.  Then the model 


with 1 1ty Ey= , 2 2ty Ey= , η1 = Eu1t, and η2 = Eu2t implies 


(19) 1 11 12 1 1


2 21 22 2 2


y ac   ac y
y ac   ac y


η       
= +       η       


 


so that Ey = [I − (A+C)]-1η can be written as 


(20) 1 22 12 1


2 21 11 2


y 1 ac      ac1
y ac      1 ac


− η     
=     − η∆     


 


where ∆ = det[I − (A + C)] = (1−ac11)(1−ac22) − ac12ac21.  Then the counterpart of the univariate 


requirement that 1 − (a+c) > 0 includes the condition ∆ > 0.  We must rule out, however, the case 


in which ∆ > 0 results from 1−ac11 and 1−ac22 both being negative.17   The condition on ∆ should  


be extended, therefore, to also require 1−ac11 > 0 and 1−ac22 > 0.  And, furthermore, it should be 


the case that 1−ac22 is larger in absolute magnitude than ac12, with a similar requirement for y2.  


Otherwise, (20) could imply that the sign of yi and ηi would be different.  But under the 


conditions just stated, that unattractive anomaly would not occur.    


 How are these WF requirements extended to pertain to cases with more than two 


variables?  One would naturally require that [I − (A+C)] must be a P-matrix, which has all its 


principal minors positive, and implies that [I − (A+C)]-1 is also a P-matrix .18  However, it 


transpires that that condition is necessary but not sufficient to establish the argument with respect 


to learnability that will be of concern below.  Accordingly, suppose that we follow the 


suggestion above, that we require that the off-diagonal elements of [I − (A+C)]-1  do not 
                                                 
17 This is clear for the case in which A + C is a diagonal matrix. 
18 On the topic of P-matrices, see Horn and Johnson (1991) and Gale and Nikaido (1965). 
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outweigh those on the diagonal.  That possibility can be ruled out by requiring that [I − (A+C)] is 


(positive) dominant-diagonal (PDD).  This condition is somewhat stronger than is literally 


required by our objective of ruling out specifications in which leading implications of the model 


are hyper-sensitive to parameter values, but the PDD requirement is sufficient for our purpose 


and is one that has an important tradition stemming from the literature on multimarket stability 


analysis.  


 As a brief but relevantdigression, one example of a matrix that is a P-matrix and yet is not 


positive dominant-diagonal is as follows: 


(21) 
  0.08  0.92   0.90
  0.92     0.07  0.03


0.72     0.30   0.04


− 
 − 
 − 


. 


Clearly, the entries in any row show immediately that this matrix is not positive dominant 


diagonal (PDD).  But its determinant is 0.3087 and the three second-order minors are 0.0118, 


0.651, and 0.852. Since the diagonal elements are also all positive, the matrix is a P-matrix.  For 


future reference, we note that its eigenvalues are −0.0067 + 1.2319i, −0.0067 − 1.2319i, and 


0.2034.  Thus the example illustrates the fact that, although a P-matrix cannot have a negative 


real eigenvalue, it can have a complex eigenvalue pair with negative real parts.19  


  Returning now to the main line of argument, there is a second type of discontinuity that 


should also be eliminated for a model to be viewed as WF, namely, infinite discontinuities in its 


impulse response functions.  In model (1)(2) with solution (3), the impulse response to the shock 


vector ut (3) involves the matrix Γ, which is given by  


(22) Γ = AΩΓ + AΓR + D. 


  Thus (I − AΩ)Γ = AΓR + D so using F = (I − AΩ)-1A, equation (22) can be written as 


                                                 
19 See Horn and Johnson (1991, p. 123). 
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(23) Γ = FΓR + (I −AΩ)-1D. 


Then using the well-known identity that, for any conformable matrix product ABC, it is true that 


vec ABC = (C ' A)⊗ vec B,20 we have 


(24) vec Γ = (R ' F)⊗ vec Γ + vec [(I − AΩ)-1D] 


implying 


(25)  vec Γ = [I − (R ' F)⊗ ]-1 vec [(I − AΩ)-1D]. 


Accordingly, our second WF requirement is for [I − (R ' F)⊗ ] and (I − AΩ) to be well behaved 


in the same manner as I − (A + C), i.e., that they are PDD matrices  


5. E-Stability in WF Models 


 In this section, I begin by showing that if a model of form (1) is well-formulated, in the 


sense specified above, then the solution provided by the MOD ordering is, in all cases, E-stable 


and therefore LS learnable under the first information assumption.  The WF property stipulates 


that the matrices (I − AΩ) and [I − (R ' F)⊗ ] are well behaved in the sense of being PDD 


matrices.  But this implies that their eigenvalues all have positive real parts—see Horn and 


Johnson (1985, p. 349).  Thus we see from the second of these expressions that the E&H 


criterion (12c) is met.21  But, furthermore, one of the eigenvalues of R will be 1.0, since we will 


include among the system’s disturbances a random walk with zero variance, in order to be able 


to include constant terms in the specification.  Then, with 1.0 as one of the eigenvalues of R, it 


will be the case that M of the eigenvalues of (R ' F)⊗ will be the eigenvalues of F.  Then use of 


the property in footnote 21 shows that criterion (12a) is met.  Then how about the remaining 


condition (12b)?  Here we recognize that, by rearrangement of (4), (I − AΩ)-1C =  Ω.  


                                                 
20 See, for example, E&H (2001, p. 117) or Magnus and Neudecker (1988, p. 28). 
21 Here, and often in what follows, I use the fact that the eigenvalues of a matrix of form (I − B) satisfy λI−B = 1 − λB.     
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Accordingly, (12b) becomes F′Ω ⊗ .  But then note that with the MOD ordering it is the case 


that all λΩ < 1/λF so all λΩλF < 1.   But λΩλF= λΩλF ≥ Re(λΩλF) so (12b) is 


invariably satisfied.  Accordingly, we see that, with current information available during the 


learning process, the MOD solution to all well-formulated models of form (1)(2) is E-stable and 


thus LS learnable.  This result does not require or imply determinacy; there can be a multiplicity 


of (dynamically) stable solutions.  Also, it should be said explicitly, WF is not a necessary 


condition for either E-stability or determinacy.  The setup in equations (14)-(15), for example, is 


not a well formulated model.   


 Given the importance of the matrices Ω, AΩ, and F, it is interesting that they are related 


to A and C by the following identity, 


(26) (I − AΩ)(I − F)(I − Ω) = I − (A + C), 


which is mentioned by B&P (1995, fn. 34).22  From this equation we see that that non-singularity 


of I − (A + C) implies that the three matrices (I − AΩ), (I − F), and (I − Ω) are all nonsingular.  


Accordingly, the WF requirement that det[I − ε(A + C)] is positive for all 0  ≤  ε ≤  1 also implies 


that the real eigenvalues of Ω, AΩ, and F are all less than 1.0 in value.  Unfortunately, this does 


not imply that there is not some complex eigenvalue of F or AΩ with real part greater than 1.0, 


which is what is needed to satisfy the E&H conditions (12) for learnability.   


 Next we consider learnability for WF models under the second information assumption, 


for which the relevant conditions are that all eigenvalues of the matrices in (13a)-(13c) have real 


parts less than 1.0.  First consider (13a), which implies that I − A(I + Ω) must have all 


eigenvalues with real parts that are positive.  Using the definition of F, we can write  


(27) 1(I A )(I F) (I A )[I (I A ) A] (I A ) A I A(I ).−− Ω − = − Ω − − Ω = − Ω − = − + Ω  


                                                 
22 It can be verified by writing out F in left side of (26), multiplying, cancelling, and inserting C for Ω − AΩ2. 
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Now, our discussion above indicates that I − AΩ and I − F will both have eigenvalues with all 


real parts positive under the WF assumption, so (27) might seem to suggest that this property 


would carry over to I − A(I + Ω).  Unfortunately, however, this property seems not to be implied, 


although it would be if all the relevant eigenvalues were real. 


 Indeed, I have not been able to find any general results pertaining to conditions (13), but 


we can consider a couple of special cases that are of some interest.  First, consider the case in 


which C = 0, so there are no predetermined variables in the solution, which implies that Ω = 0.      


Then we have F = (I − AΩ)-1A = A and thus (13a) becomes the same as (12a).  Furthermore, 


(13b) is irrelevant with Ω = 0 and (13c) becomes (R ' A)⊗ , which is the same as in (12c).  So in 


this case, the two information assumptions yield the same E-stability conditions and the WF 


restrictions imply that E-stability obtains in the case at hand.  Second, suppose that C ≠ 0, but 


that the exogenous variables are white noise, i.e., R = 0.  Then (13c) becomes (I A )⊗ Ω and the 


result based on (I − AΩ)-1 shows that this condition will be satisfied if the WF conditions are 


relevant.  But conditions pertaining to (13a) and (13b) are not necessarily satisfied.  Of course, 


one can examine specific cases numerically.     


6. General Issues 


 A number of possible objections to the foregoing argument need to be addressed.  


Probably the most prominent among researchers in the area would be the fact that our analysis 


has been concerned only with solutions of form (3), which excludes sunspot solutions of the 


“resonant frequency” type.  It is my position, however, that the learning process pertaining to 


solutions of this type is much less plausible than for solutions of form (3).  In particular, the 


solutions are not of the standard vector-autoregression (VAR) form.  Therefore, an agent who 


experimented with many different specifications of VAR models, using the economy’s generated 
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time series data, would still not be led to such a solution.  Indeed, it seems to me that arguments 


suggesting that that type of learning could exist in actual economies are utterly implausible.  Of 


course, literally speaking, RE itself is implausible—as early critics emphasized.  Nevertheless 


RE is rightly regarded by mainstream researchers as the appropriate assumption for economic 


analysis, especially policy analysis.  That is the case because RE is fundamentally the 


assumption that agents optimize with respect to their expectational behavior, just as they do 


(according to neoclassical economic analysis) with respect to other basic economic activities 


such as selection of consumption bundles, selection of quantities produced and inputs utilized, 


etc.—for a necessary condition for optimization is that individuals eliminate any systematically 


erroneous component of their expectational behavior.  Also, RE is doubly attractive (to 


researchers) from a policy perspective, for it assures that a researcher does not propose policy 


rules that rely upon policy behavior that is designed to exploit consistent patterns of suboptimal 


expectational behavior by individuals.   


 Another issue is the possible use of learning behavior not as a device for assessing the 


plausibility of rational expectations, but as a replacement for the latter.  This type of approach is 


discussed by E&H (2001, Ch. 14) and has been prominent in the work of Orphanides and 


Williams (2005), among others.  Use of decreasing-gain learning (E&H, 2001, pp. 338-341) 


provides a sensible alternative to the constant-gain learning implicit in the LS learning/E-stability 


literature.  I do not believe, however, that this approach solves the “startup” problem, i.e., the 


issue of how the economy will behave in the first several periods following the adoption of a 


new policy rule or the occurrence of some other structural change.  I doubt that economies move 


promptly to new RE equilibria following such a change, and I would doubt that they move 


promptly to a modelled learning path.  In both cases, I share the opinion voiced by Lucas (1980), 
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to the effect that after a structural change (including policy regime changes), reliable analysis 


should pertain to the economy’s behavior after it has had time to settle into a new dynamic 


stochastic equilibrium. 


7. Conclusion 


 Let us now conclude with a very brief review of the points developed above.  First, the 


paper reviews a previous result to the effect that, under the information assumption that agents 


possess knowledge of current endogenous variables in the learning process, determinacy of a RE 


equilibrium is sufficient but not necessary for least-squares learnability of that equilibrium.  Thus, 


since learnability is an attractive necessary condition for plausibility of any equilibrium, there 


may exist a single plausible RE solution even in cases of indeterminacy.  The paper proposes and 


outlines a distinct criterion that models should possess, termed “well formulated,” that rules out 


infinite discontinuities in the model’s implied steady-state values of endogenous variables and in 


its impulse response functions.  The paper then demonstrates that under the first information 


assumption, the “natural” decreasing-modulus solution is, in all well-formulated models, 


learnable—even in the absence of determinacy.  Under the second information assumption, the 


situation is less favorable in the sense that learnability can be guaranteed only under special 


assumptions.  
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Appendix A 


To demonstrate that a very wide variety of linear RE models can be written in form (1)(2), 


consider the formulation of King and Watson (1998) or Klein (2001), as exposited by McCallum 


(1998), as follows: 


(A-1) 
*
11A


0





0
I







t t 1


t 1


E x
k


+


+


 
 
 


 = 11


21


B
B







12


22


B
B
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x
k


 
 
 


 + 1


2


G
G


 
 
 


[ ]tv . 


Here vt is an AR(1) vector of exogenous variables (including shocks) with stable AR matrix R 


while xt and kt are m1×1 and m2×1 vectors of non-predetermined and predetermined endogenous 


variables, respectively.  We assume without significant loss of generality that B11 is invertible23 


and that G2 = 0.24  Then we define   yt = [xt’ kt’ xt-1’ kt-1’]’ and write the system in form (1) with 


ut = vt and the matrices given as follows: 


(A-2) 11A  = 


1 *
11 11B A  0  0  


0          0  0  
0          0  0  
0          0  0  


−







1
11 12B B


      0
      0
      0


− −







     C =  21 22


0     0     0
B  B   0
I     0     0   
0     I     0      










0
0
0
0










   D = 


1
11 1B G


      0
      0
      0


− −
 
 
 
 
  


. 


This representation is important because it is well known that the system (A-1) permits, via use 


of auxiliary variables, any finite number of lags, expectational leads, and lags of expectational 


leads for the basic endogenous variables.  Also, any higher-order AR process for the exogenous 


variables can be written in AR(1) form.25  Thus we have shown that the Evans and Honkapohja 


(2001) formulation in their Section 10.3 is in fact rather general, although it does not pertain to 


asymmetric information models.
                                                 
23 For the system (A-1) to be cogent, each of the m1 non-predetermined variables must appear in at least one of the 
m1 equations of the first matrix row.  Then the diagonal elements of B11 will all be non-zero and to avoid 
inconsistencies the rows of B11 must be linearly independent.  This implies invertibility. 
24 If it is desired to include a direct effect of vt on kt+1, this can be accomplished by definition of an auxiliary variable 
(equal to vt-1) in xt (in which case vt remains in the information set for period t). Also, auxiliary variables can be used 
to include expectations of future values of exogenous variables. 
25 Binder and Pesaran (1995) show that virtually any linear model can be put in form (1), but in doing so admit a 
more general specification than (2) for the process generating the exogenous variables. 
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∗Corresponding author: Ulf Söderström, IGIER, Bocconi University, Milan, Italy; ulf.soderstrom@uni-
bocconi.it. This paper was prepared for the 11th Annual Conference of the Central Bank of Chile on “Monetary
Policy under Uncertainty and Learning,” in Santiago, November 15–16, 2007. We are grateful for comments
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1 Introduction


During the last twenty years many central banks have adopted inflation targeting as a strat-
egy for monetary policy, with an explicit numerical target for some measure of the inflation
rate. One important benefit of this strategy is that of increasing monetary policy credibility
and anchoring private sector inflation expectations at the numerical target (see, for instance,
Leiderman and Svensson, 1995, or Bernanke, Laubach, Mishkin, and Posen, 1999). As eco-
nomic theory suggests that private decisions are partly determined by agents’ expectations
concerning the future, inflation targeting, by anchoring inflation expectations, should be ex-
pected to simplify private agents’ decisions, thereby reducing macroeconomic volatility and
increasing overall welfare.


Several authors have produced empirical evidence that inflation targeting coupled with
central bank independence has had the effect of anchoring inflation expectations. For in-
stance, Levin, Natalucci, and Piger (2004) find that private sector inflation forecasts in the
United States (where monetary policy is not guided by an inflation target) are highly corre-
lated with a moving average of lagged inflation, while this correlation is essentially zero in a
number of countries with formal inflation targets. Gürkaynak, Levin, and Swanson (2006) and
Gürkaynak, Levin, Marder, and Swanson (2007) show that long-term inflation expectations
tend to be less responsive to macroeconomic announcements in countries with independent
inflation-targeting central banks, such as Canada, Sweden, or the United Kingdom after 1997,
than in countries where the central bank is either not independent or does not have an explicit
inflation target, for instance the U.S. or the U.K. before formal independence in 1997.


However, there is no strong evidence that this effect on inflation expectations has reduced
macroeconomic volatility in general. While many economies, for instance the U.K. and
Sweden, have performed well after the introduction of inflation targets, other economies
without formal inflation targets, in particular the U.S., have shown similar, or even more
impressive, performance.1


This paper aims at better understanding the links between, on the one hand, monetary
policy credibility and communication and, on the other, private sector expectations and
macroeconomic volatility. We study an empirical dynamic stochastic general equilibrium
(DSGE) model of the euro area, estimated by Smets and Wouters (2003). In our specification
of the model, private agents observe changes in the monetary policy stance (the central
bank’s interest rate instrument), but are unable to distinguish between temporary deviations
from the central bank’s monetary policy rule and permanent shifts in the inflation target.
Agents therefore use the Kalman filter to construct optimal estimates of the current inflation
objective and the temporary monetary policy shock and to make forecasts of the future
path of monetary policy, and they update these estimates and forecasts as more information
arrives. This learning behavior affects private agents’ decisions and therefore all endogenous
variables in the economy, with consequences for macroeconomic volatility in general.


1Cecchetti and Ehrmann (1999) and Levin, Natalucci, and Piger (2004) instead suggest that the introduc-
tion of a formal inflation target may lead to higher volatility in output, as the central bank shifts its preference
toward stabilizing inflation and the economy moves along a fixed inflation/output volatility frontier. However,
they do not find strong empirical support for this hypothesis.


1







Within this model, we first quantify the macroeconomic benefits of credibly announcing
the (time-varying) level of the central bank’s inflation objective. Such an announcement
enables private agents to directly observe movements in the central bank’s inflation objective
and temporary deviations from the monetary policy rule. We then study the design of
optimized rules for monetary policy within our framework, assuming a standard objective
function for the central bank. In particular, we analyze whether rules optimized for the full
information specification of the model need to be altered if agents do not observe the central
bank’s inflation objective.


Our results suggest that the macroeconomic benefits of credibly announcing the current
level of the time-varying inflation target may be reasonably small as long as private agents
correctly understand the stochastic processes governing the unobservable inflation target and
the temporary policy shock. While economic volatility decreases substantially after shocks
to monetary policy, these shocks account for a very small fraction of overall volatility in the
economy. Therefore, the overall gains from announcing the inflation target are fairly small.
However, if private agents overestimate the volatility of the inflation target, the overall gains
of announcing the target can be large.


We also find that optimized monetary policy rules tend to respond more aggressively to
inflation when private agents have imperfect information. By responding more aggressively
to inflation, the central bank helps private agents in their learning process, thus reducing
the deviation of inflation from the target with small consequences for volatility in remaining
macroeconomic variables.


Our model setup is closely related to those of Erceg and Levin (2003) and Andolfatto,
Hendry, and Moran (2005). Erceg and Levin (2003) study inflation persistence and the cost
of disinflation in a model where private agents cannot distinguish between temporary and
permanent monetary policy shocks which follow stationary autoregressive processes, as in our
setup. Their model is able to generate substantial persistence in inflation and large costs of
disinflation as a consequence of the learning behavior of private agents, properties that are
present also in our model. Andolfatto, Hendry, and Moran (2005) study the properties of
inflation expectations in a model where the temporary shock follows an autoregressive process
but the permanent shock follows a Bernoulli process. They show that common econometric
tests tend to reject the rationality of inflation expectations when private agents learn about
the properties of monetary policy shocks over time. We present similar evidence that private
sector forecast errors are large and persistent when agents learn about the underlying shocks.
Relative to these contributions, our purpose is somewhat broader, as we try to understand
the overall costs of imperfect information about monetary policy in terms of macroeconomic
volatility, and we also study the appropriate design of monetary policy.


Moran (2005) uses a similar model to study the welfare effects of reducing the inflation
target when agents learn about the inflation target shift using Bayesian updating. The welfare
benefits are significant when comparing steady states, but if also taking the transitional period
of learning into account, the benefits are much smaller.


A number of recent contributions study the consequences for monetary policy of private
sector learning about the general structure of the economy in the stylized “New Keynesian”
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model framework developed by Clarida, Gaĺı, and Gertler (1999), Woodford (2003), and
others. For instance, Nunes (2005) uses a model where a proportion of private agents learn
about the economic structure, and finds that his model explains well the transitional dynamics
of the economy after a disinflationary shock. Gaspar, Smets, and Vestin (2005, 2006a, 2006b)
show that optimal monetary policy responds more persistently to shocks when private agents
learn about the structure of the economy than with rational expectations, in order to reduce
the persistence and volatility of inflation. Similarly, Molnár and Santoro (2006) show that
optimal monetary policy responds more aggressively and more gradually to shocks under
private sector learning than when private agents have rational expectations. We will present
similar results in our framework.


Also in a New Keynesian framework, Orphanides and Williams (2007) study monetary
policy in a small estimated model where the central bank learns about the natural rates of
unemployment and interest and private agents learn about the structure of the economy. They
show that the explicit communication of the central bank’s inflation objective substantially
improves macroeconomic performance under a suboptimal policy, while the gains are fairly
modest under the optimal policy. Rudebusch and Williams (2006) instead study how the
publication of the central bank’s interest rate projections can better align private sector
expectations when private agents either do not observe the coefficients in the monetary policy
rule or the central bank’s target level for inflation. Finally, Aoki and Kimura (2007) show that
the learning processes of the central bank and the private sector implies that higher-order
beliefs become relevant, leading to an increase in macroeconomic persistence and volatility.
They also show that private sector learning can reduce macroeconomic volatility over time,
and announcing the inflation objective can help the central bank to estimate the natural rate
of interest.


In contrast to these papers, as well as those cited earlier, we study an estimated medium-
sized DSGE model often used for quantitative analysis. In particular, we show that while
announcing the inflation target reduces the volatility due to shocks to monetary policy, this
volatility is small relative to that from the remaining shocks in the model.


Finally, similar models have also been used by Beechey (2004) and Gürkaynak, Sack,
and Swanson (2005) to study the relationship between monetary policy and the yield curve.
Beechey uses a stylized model with optimizing agents to study the effects on the yield curve
of central bank private information concerning macroeconomic shocks and the central bank’s
preferences, following Ellingsen and Söderström (2001, 2005). In her model, the central
bank sets monetary policy optimally given a quadratic loss function, and private agents use
a Kalman filter to construct estimates of the unobservable shocks. Gürkaynak, Sack, and
Swanson (2005) use a small macroeconometric model (without complete microfoundations)
to study the effects of macroeconomic announcements on the yield curve. They rationalize
the large response of long-term forward rates found in case studies by a model where the
central bank’s inflation target moves with actual inflation, but the target is unobservable
to the private sector, and private agents use a signal extraction methodology to estimate
the current inflation target from observed movements in the short-term interest rate.2 We


2A similar model is also used by Gürkaynak, Levin, and Swanson (2006).
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deviate from these authors by studying an estimated medium-scale DSGE model. While our
model is also suited to study the behavior of the yield curve, we focus here on macroeconomic
volatility in general.


Our paper is organized as follows. We present the structure of the model economy,
following Smets and Wouters (2003), and discuss the restrictions on the private sector’s
information set and the Kalman filter used to construct estimates of the two monetary policy
shocks in Section 2. We then present the results concerning volatility in private expectations
and the macroeconomy in Section 3, and we study the design of optimized rules for monetary
policy in Section 4. Finally, we summarize our findings and conclude in Section 5.


2 Model


We use the dynamic stochastic general equilibrium model developed and estimated on quar-
terly euro area data by Smets and Wouters (2003).3 We here present briefly the log-linearized
version of the model; we refer to Smets and Wouters (2003) for a more extensive discussion.


2.1 The structural model


Households choose consumption, labor supply, and holdings of a one-period bond to maxi-
mize lifetime utility, which depends on consumption relative to an external habit level and
leisure. Utility maximization subject to a standard budget constraint gives the log-linearized
consumption Euler equation


Ct =
h


1 + h
Ct−1 +


1
1 + h


EtCt+1 −
1− h


σc(1 + h)


[
Rt − Etπt+1 + Etε


b
t+1 − εbt


]
, (1)


where Ct is aggregate consumption, Rt is the nominal one-period interest rate (measured at
a quarterly rate), πt is the one-period rate of inflation, h ∈ [0, 1) determines the importance
of habits, σc > 0 is related to the intertemporal elasticity of substitution, and εbt is a general
preference shock.


Households act as price-setters in the labor market, but wages are set in a staggered
fashion: a fraction 1− ξw of wages are reset in a given period, and the remaining fraction is
partially indexed to past inflation. This gives the log-linearized real wage equation


Wt =
β


1 + β
EtWt+1 +


1
1 + β


Wt−1 +
β


1 + β
Etπt+1 −


1 + βγw


1 + β
πt +


γw


1 + β
πt−1 (2)


− (1− βξw)(1− ξw)λw


[λw + (1 + λw)σl](1 + β)ξw


[
Wt − σlLt −


σc


1− h
(Ct − hCt−1)− εlt − ηw


t


]
,


where Wt is the real wage, Lt is aggregate labor demand, β ∈ [0, 1] is a discount factor,
γw is the degree of wage indexation, σl measures the elasticity of labor supply, λw is the
steady-state wage markup, εlt is a labor supply shock, and ηw


t is a wage markup shock.
Households also own the capital stock, which is rented to firms producing intermediate


3This model is based on Christiano, Eichenbaum, and Evans (2005). Other versions of the model include
Smets and Wouters (2005, 2007), Levin, Onatski, Williams, and Williams (2005), and Del Negro, Schorfheide,
Smets, and Wouters (2005).
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goods at the rental rate rk
t . They can increase the supply of capital by either investing in new


capital or by changing the utilization rate of installed capital, and both actions are costly in
terms of foregone consumption. The optimal choice of the capital stock, investment and the
utilization rate give the log-linearized conditions


It =
1


1 + β
It−1 +


β


1 + β
EtIt+1 +


1
ϕi(1 + β)


Qt +
1


1 + β


[
βEtε


i
t+1 − εit


]
, (3)


Qt = − [Rt − Etπt+1] + β(1− τ)EtQt+1 + [1− β(1− τ)]Etr
k
t+1 + ηq


t , (4)


Kt = (1− τ)Kt−1 + τIt−1, (5)


where It is investment, Qt is Tobin’sQ, Kt is the total capital stock, ϕi is the second derivative
of the investment adjustment cost function, τ is the depreciation rate of capital, εit is a shock
to the investment cost function, and ηq


t is a shock that captures variations in the external
finance premium.


There is a single final good which is produced under perfect competition using a continuum
of intermediate goods. These intermediate goods, in turn, are produced under monopolis-
tic competition using capital and labor inputs with a Cobb-Douglas technology. Prices on
intermediate goods are staggered as in Calvo (1983), so a fraction 1 − ξp of prices are reset
in a given period. The remaining prices are partially indexed to past inflation.4 The opti-
mal price-setting behavior then implies that aggregate inflation is determined by the New
Keynesian Phillips curve


πt =
β


1 + βγp
Etπt+1 +


γp


1 + βγp
πt−1


+
(1− βξp)(1− ξp)
ξp(1 + βγp)


[
αrk


t + (1− α)Wt − εat + ηp
t


]
, (6)


where γp is the degree of indexation to past inflation, α is the Cobb-Douglas parameter on
capital, εat is a technology shock, and ηp


t is a price markup shock. Profit optimization also
gives the labor demand function


Lt = −Wt + (1 + ψ)rk
t +Kt−1, (7)


where ψ is the inverse of the elasticity of the capital utilization cost function.
Finally, market clearing implies that


Yt = αϕyψr
k
t + ϕyε


a
t + ϕyαKt−1 + ϕy(1− α)Lt, (8)


where Yt is the aggregate level of output, and ϕy is equal to 1 plus the share of the fixed cost
in production, and the resource constraint gives


Yt = cyCt + τkyIt + (1− cy − τky)ε
g
t +


[1− β(1− τ)]kyψ


β
rk
t , (9)


4More recent models instead assume that the prices that are not reoptimized are indexed in part to past
inflation and in part to the (non-zero) inflation target or steady-state inflation (see, for instance, Smets and
Wouters, 2007). This assumption would imply that changes in the perceived inflation target have a direct
effect on price-setting and therefore on welfare (see below).
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where cy and ky are the steady-state ratios of consumption and capital to output, and εgt is
government spending.5


There are eight structural shocks in the model. Three of these—the price and wage
markup shocks ηp


t and ηw
t , and the equity premium shock ηq


t —are assumed to be white
noise with variances σ2


p, σ
2
w, σ


2
q . The remaining five shocks—to preferences, the investment


adjustment cost, technology, labor supply, and government spending—are assumed to follow
the stationary autoregressive processes


εjt = ρjε
j
t−1 + ηj


t , j = b, i, a, l, g, (10)


where ρj ∈ [0, 1), and the innovations ηj
t are white noise with variance σ2


j


2.2 Monetary policy


For the specification of monetary policy, we depart slightly from Smets and Wouters (2003)
by assuming that monetary policy is set according to the interest rate rule6


Rt = (1− gr)
{
π∗t + gπ [πt−1 − π∗t ] + gy


[
Yt−1 − Y n


t−1


]}
+ grRt−1 + εrt . (11)


Thus, the nominal one-period interest rate Rt is a linear combination of the deviation of the
previous period’s rate of inflation πt−1 from the central bank’s current inflation objective
π∗t , the previous period’s output gap (the log deviation of real output Yt from its natural,
or flexible price/wage, level Y n


t ), and the previous period’s interest rate.7 There are two
exogenous elements in the policy rule: the inflation objective π∗t and the monetary policy
shock εrt . In general, these are assumed to follow stationary AR(1) processes:


π∗t = ρ∗π
∗
t−1 + η∗t , (12)


εrt = ρrε
r
t−1 + ηr


t , (13)


where ρ∗, ρr ∈ [0, 1) and η∗t and ηr
t are white noise processes with variances σ2


∗ and σ2
r .


However, we will assume that the inflation target is very persistent (close to a random walk)
while the monetary policy shock is (almost) white noise.8


5The last term on the right-hand-side of equation (9) is due to the capital utilization costs. This term is
not in the original Smets and Wouters (2003) model, but was added by Onatski and Williams (2004).


6Smets and Wouters (2003) instead specify their monetary policy rule as


Rt = (1− gr) {π∗t + gπ [πt−1 − π∗t ] + gy [Yt − Y n
t ]}


+g∆π [πt − πt−1] + g∆y [(Yt − Y n
t )− (Yt−1 − Y n


t−1)] + grRt−1 + εr
t ,


and obtain the estimates gπ = 1.684, gy = 0.099, g∆π = 0.140, g∆y = 0.159, and gr = 0.961. Also, they
estimate the autoregressive coefficient of the inflation target to ρ∗ = 0.924. Using this rule instead of our
rule (11) gives very similar qualitative results. We have also experimented with rules containing the current
rate of inflation and output gap, and rules with persistent monetary policy shocks rather than gradual behavior,
as advocated by Rudebusch (2002). Again, the results with these rules are similar to those presented here.


7The presence of the past inflation rate and output gap in the policy rule implies that monetary policy
only responds to predetermined variables. Thus, using the terminology of Svensson and Woodford (2004), the
policy rule is an “operational” or “explicit” instrument rule, as opposed to an implicit instrument rule that
includes non-predetermined variables. Such rules are also recommended by McCallum (1997).


8Time variation in the inflation target could be due to true time-variation in the preferred rate of inflation
for an individual central banker, time variation in the composition of the monetary policy committee (and thus
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2.3 Parameterization


For the structural parameters, we use the calibrated or estimated values from Smets and
Wouters (2003), summarized in Table 1. These estimates were obtained using quarterly data
from the Euro Area from 1980:2 to 1999:4. For the monetary policy parameters, we will in
Section 3 use a fairly standard calibration of the policy rule (11), with gπ = 2.0, gy = 0.2 and
gr = 0.9, also reported in Table 1, while in Section 4 we will choose the policy rule parameters
to minimize a standard objective function for the central bank. The inflation objective π∗t
is assumed to be a near-random walk, with ρ∗ = 0.99, while the temporary monetary policy
shock εrt is essentially white noise, with ρr = 0.01. Thus, changes in the inflation objective
are highly persistent (the half-life of a shock is close to 70 quarters), while other deviations
from the policy rule are entirely temporary. The standard deviations of the two monetary
policy shocks are set to the Smets and Wouters (2003) estimates: σ∗ = 0.017 and σr = 0.081
percentage points, respectively. Thus, innovations to the temporary shock are almost five
times as volatile as those to the inflation target.9 However, as the model is estimated on a
sample with changing monetary regimes and high inflation in Europe, the estimated volatility
of the inflation target is likely an upper bound on the true volatility.


2.4 Private sector information


Our key assumption is that private agents are unable to distinguish between the two ex-
ogenous shocks to the monetary policy rule, the inflation objective π∗t and the temporary
monetary policy shock εrt . However, they are perfectly informed about all other aspects of
the economy. In particular, as they can observe the interest rate Rt, private agents can use
the policy rule (11) to back out the combination


ε̂t = (1− gr)(1− gπ)π∗t + εrt , (14)


and then use the Kalman filter to calculate optimal estimates of the inflation target π∗t and
the policy shock εrt .


10 The Kalman filter is thus characterized by the state equation[
π∗t+1


εrt+1


]
=


[
ρ∗ 0
0 ρr


] [
π∗t


εrt


]
+


[
η∗t+1


ηr
t+1


]


≡ F


[
π∗t


εrt


]
+


[
η∗t+1


ηr
t+1


]
, (15)


in the average preferred inflation rate of the committee), or time variation in the committee’s concerns for the
zero lower bound of interest rates. We assume that the inflation target is close to a random walk, so changes
in the inflation target are not expected to be reversed immediately, but are seen as close to permanent.


9Andolfatto, Hendry, and Moran (2005) instead model the inflation target as a Bernoulli process, so
occasional shifts in the inflation target are followed by long periods of a constant target. Our specification
implies that the inflation target changes in every period, but with a very low variance. One advantage of this
specification is that the Kalman filter produces optimal forecasts of the future temporary shock and inflation
target.


10As mentioned earlier, this specification is similar to those of Erceg and Levin (2003) and Andolfatto,
Hendry, and Moran (2005).
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and the observation equation


ε̂t =
[


(1− gr)(1− gπ) 1
] [


π∗t


εrt


]


≡ H ′
[
π∗t


εrt


]
. (16)


Optimal forecasts of the future inflation target and policy shock are then calculated as[
Êtπ


∗
t+1


Êtε
r
t+1


]
=


(
F − κH ′) [


Êt−1π
∗
t


Êt−1ε
r
t


]
+ κH ′


[
π∗t


εrt


]
, (17)


where κ is the Kalman gain,11 and the optimal estimates of the current target and policy
shock are given by[


Êtπ
∗
t


Êtε
r
t


]
= F−1


[
Êtπ


∗
t+1


Êtε
r
t+1


]
. (18)


Although private agents’ estimates of π∗t and εrt do not enter the model explicitly, these
estimates will affect private expectations of future monetary policy, and therefore indirectly
affect all other endogenous variables. As agents learn over time, private expectations are
in general biased predictors of future outcomes. This bias may lead private agents to make
inefficient decisions, and therefore the economy may experience inefficient volatility relative
to the case of perfect information. If the central bank instead were to announce the current
level of the inflation target, π∗t , private agents would be able to perfectly infer the realization
of the shock εrt , and the perfect-information equilibrium is attainable. We will next study the
effects on macroeconomic volatility of announcing the inflation target, that is, moving from
the equilibrium with imperfect information to that with perfect information.


3 Macroeconomic dynamics and volatility


We now study the dynamics of our model economy, first in terms of impulse responses and
optimal forecasts after the two monetary policy shocks, and then in terms of the volatility of


11To determine the Kalman gain κ, let Σ be the variance-covariance matrix of
[
η∗t+1 ηr


t+1


]′
and let


Pt+1|t denote the mean-squared error of the forecast of ξt+1 ≡
[
π∗t+1 εr


t+1


]′
, that is,


Pt+1|t = E
[(
ξt+1 − Êtξt+1


)(
ξt+1 − Êtξt+1


)′]
.


Starting from the unconditional mean-squared error, given by


vec(P1|0) = (I − F ⊗ F )−1 vec(Σ),


the Kalman gain matrix and the mean-squared error are found by iterating on


κt = FPt|t−1H
(
H ′Pt|t−1H


)−1
,


Pt+1|t =
(
F − κtH


′)Pt|t−1


(
F − κtH


′)′ + Σ.


See Hamilton (1994, Ch. 13) for details. Thus, the Kalman gain depends on all elements of F , H, and Σ, that
is on gπ, gr, ρ∗, ρr, σ∗, and σr.
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simulated time series.


3.1 The effects of monetary policy shocks


Figures 1–2 show impulse responses and optimal forecasts after one-standard-deviation-sized
innovations to the inflation objective and the temporary monetary policy shock, respectively.
The solid lines represent the impulse responses (and forecasts) in the benchmark case of
full information (when all shocks are observable), the dash-dotted lines represent optimal
forecasts with imperfect information, and the dashed lines show the effects of shocks on the
economy when there is imperfect information and agents learn over time.12


Consider first the case of full information, represented by the solid lines in Figures 1–
2. Figure 1 shows impulse responses and forecasts after a negative shock to the inflation
target π∗t . With full information, private agents immediately notice that the inflation target
has decreased, so the perceived target jumps down to its new level and agents adjust their
expectations accordingly. As a consequence there is a fall in inflation in the initial period,
and the central bank is able to increase the real interest rate with only a slight increase in
the nominal interest rate, which is soon reversed. This leads to a decrease in consumption,
investment, output, employment, and the real wage, and therefore a fall in inflation. When
inflation and the time-varying inflation target are close, they move back together to the initial
level, and the nominal interest rate follows them back. The real interest rate is therefore close
to its neutral level, and all real variables return toward steady state. There is thus a hump-
shaped response of all variables, with the maximum effect on output (around 4.5 basis points)
after four to six quarters.


After a positive innovation to the temporary monetary policy shock εrt in Figure 2, the
interest rate increases by the full amount of the shock (32 basis points), and the real interest
rate increases even more as inflation falls. This leads to a reduction in all real variables,
which motivates the fall in inflation. Again, all responses are hump-shaped, and the maxi-
mum effects on output (−20 basis points) and inflation (−5.5 basis points) occur after three
quarters. Inflation and the interest rate return to steady state after 12 to 14 quarters and
the output gap after around 20 quarters. (Note that the monetary policy shocks have no
effect on the natural level of output, so changes in the level of output are exactly mirrored
in changes in the output gap.)


Introducing imperfect information, private agents use the Kalman filter to make optimal
estimates of the current and future inflation target and policy shock, and adjust their expec-
tations accordingly. Figure 1 shows that after a negative inflation target shock a persistent
increase in the interest rate is necessary to reduce inflation expectations. Private agents
observe the small increase in the nominal interest rate, and they attribute this partly to a
negative inflation target shock and partly to a positive temporary policy shock. As they know
that the inflation target is much less volatile than the temporary shock, their optimal esti-
mate of the inflation target initially falls very little (by 0.09 basis points) while the estimate


12In all figures and tables, the inflation and interest rates are measured on an annualized basis. Appendix A
outlines how we simulate the model and construct impulse responses and optimal forecasts with imperfect
information.
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of the temporary shock increases more (by 0.67 basis points).
In future periods, the dash-dotted lines show that agents forecast the inflation target to


return slowly to its initial level and the temporary shock to jump back in the next period,
leading to a gradual return of the interest rate. These small movements in the interest rate
imply that agents expect very small effects on all variables. As agents attribute almost all of
the interest rate movement to a small temporary policy shock, they forecast small effects on
the economy.


In practice, as time goes by the central bank increases the interest rate further, and when
agents update their information set they find it increasingly likely that the inflation target
has in fact decreased. Therefore inflation falls further and all real variables continue to fall
as the real interest rate increases. As agents learn, the perceived and actual inflation target
slowly converge and the perceived temporary monetary policy shock approaches zero. This
slow learning process implies that all variables respond more gradually and persistently to
the inflation target shock than with full information, and the maximum effects on output and
inflation now occur after 12 to 14 quarters. As in Erceg and Levin (2003) and Nunes (2005),
the presence of imperfect information substantially increases the real cost of disinflation.


After a temporary policy shock in Figure 2 private agents again observe an increase in the
nominal interest rate and attribute almost all of this (32 basis points) to a positive temporary
shock and very little (four basis points) to a negative inflation target shock. In the initial
period, the main difference compared with the full information case is a larger fall in inflation,
as private agents believe that the inflation objective is lower. Thus, the same increase in the
interest rate leads to a larger increase in the real interest rate with imperfect information,
and therefore a larger effect on real variables.


Private agents then forecast the inflation target to return gradually to its initial level,
whereas the temporary shock is expected to disappear in the following period. Thus, agents
expect inflation to remain low for a long time.


As agents learn over time, the monetary policy tightening leads to a deeper recession than
under full information, and the central bank needs to lower the interest rate below the initial
level to stimulate the economy. The real variables then return toward steady state, often
with some overshooting, while inflation and the interest rate return very slowly to the initial
level together with the perceived inflation target.


As in Andolfatto, Hendry, and Moran (2005) we note that private agents’ forecasts under
imperfect information (represented by the dash-dotted lines) deviate substantially from the
true responses (the dashed lines) for all variables. This is because agents’ forecasts are based
on information available at the time of the shock, while the actual outcomes are also affected
by the private sector’s learning behavior over time.


To summarize, imperfect information about the two policy shocks implies that agents
optimally attribute almost all unexpected movements in the nominal interest rate to the
more volatile temporary shock, and very little to the persistent inflation target shock, which
is less volatile. After shocks to the inflation target, private expectations therefore deviate
substantially from the actual path of the economy, while the effects of temporary shocks
have are very similar to the full information case. In order to persuade private agents that
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the inflation target is lower the central bank needs to tighten policy more, resulting in a
deeper recession. The learning process implies that all variables respond more gradually to
an inflation target shock with imperfect than with full information.


3.2 Imperfect information and macroeconomic volatility


It is clear from the impulse responses and forecasts in Figures 1–2 that imperfect information
about the two monetary policy shocks has large effects on the dynamic behavior of the
economy and private sector forecasts, in particular after shocks to the inflation target. This
impression is confirmed by Panel (a) of Table 2, which shows the variance in some key
macroeconomic variables in the model that is due to the two monetary policy shocks.13


Conditional on the two monetary policy shocks, most variables are considerably more
volatile under imperfect information than with full information, with the exception of inflation
and the interest rate. The variance of the real variables due to monetary policy shocks is 20
to 25 percent larger with imperfect information than with full information, while inflation
and the nominal interest rate are considerably less volatile with imperfect information. Going
back to Figures 1 and 2 reveals that this effect on volatility is mainly due to the effect of
shocks to the inflation target, where the response of all real variables is considerably more
gradual with imperfect information, leading to larger volatility. As inflation target shocks
have a smaller impact on inflation and the interest rate with imperfect information than with
full information, these are also less volatile. Thus, imperfect information about the monetary
policy shocks has an important impact on macroeconomic volatility, conditional on the two
monetary policy shocks.


However, as the remaining eight shocks are observable to the private sector and therefore
are not affected by the information restrictions, the total effect of imperfect information on
macroeconomic volatility depends on the overall contribution of the monetary policy shocks
to volatility. The impulse responses to these eight shocks are shown in Figures 3 to 6. It is
clear that some of these structural shocks, in particular to technology and labor supply, have
very large effects on the real variables compared with the monetary policy shocks.


Panel (b) of Table 2 reports the effects of imperfect information on aggregate volatility.
This panel reveals that imperfect information has small effects on the volatility of macroe-
conomic variables once we take into account all structural shocks: the variance of most real
variables increases by less than two percent. The largest effects are in terms of inflation and
interest rate volatility, which is lower with imperfect information, and on the volatility of
inflation around the target, which is substantially higher. This is because actual inflation ad-
justs slowly to changes in the inflation target when private agents cannot direcly observe the
target (see Figure 1). Nevertheless, the overall effects of imperfect information on macroeco-
nomic volatility—and thus the potential benefits of credibly announcing the central bank’s
target for inflation—seem modest.


13The reported variances are averages across 1,000 simulated samples of 5,000 observations (after discarding
the initial 500 observations). Inflation and the interest rate are in annualized terms, so π̄t = 4πt and R̄t = 4Rt.
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3.3 The role of private sector information about monetary policy shock pro-


cesses


The above results suggest that there are small effects of imperfect information on macroe-
conomic volatility, and therefore that the gains of announcing the inflation target are small.
However, as discussed earlier, the response of private expectations to the unobservable shocks
depends crucially on the perceived volatility of the shocks. In the benchmark calibration, the
temporary shock is considerably more volatile than the inflation target shock. Private agents
therefore attribute a small fraction of the unexpected movement in the interest rate to the
inflation target and a large fraction to the temporary shock, with a small effect on overall
volatility as a result.


If the central bank is unwilling to announce its inflation target, it may not be reasonable to
assume that private agents know the true variance of the target. In this section, we therefore
analyze an alternative scenario where private agents overestimate the variance of the inflation
target. In particular, we set the perceived standard deviation of the inflation target five times
larger than the actual standard deviation, so the perceived standard deviation is σ̂∗ = 0.085,
which is of similar magnitude as the standard deviation of the temporary policy shock. In
this situation, private agents will attribute a greater part of the unexpected movements in
the interest rate to inflation target shocks than when they know the true variance of the
inflation target.


To illustrate how private agents’ perceptions affect the speed with which they update their
forecasts as new information arrives, Figures 7–8 show how the sensitivity of the optimal
forecasts for the inflation target and the temporary policy shock to the observed interest
rate depends on the perceived coefficients in the monetary policy rule and the persistence
and volatility of the two monetary policy shocks.14 Figure 7 reveals that private agents’
inflation target forecast is more sensitive to unexpected changes in the observed interest
rate when either the central bank is more responsive to inflation deviations from target or
when the inflation target process is seen to be more persistent or volatile.15 A larger central
bank response to the lagged interest rate or more persistence or volatility in the temporary
policy shock instead reduce the effect of new information on the inflation target forecast.
Figure 8 shows the opposite pattern for the sensitivity of the temporary shock forecast. In
our benchmark calibration (marked by vertical lines in the figures), private agents’ forecast
are particularly sensitive to the perceived volatility of the inflation target.


Figures 9–10 show impulse responses and optimal forecasts after innovations to the two
monetary policy shocks when private agents overestimate the variance of the inflation target.
(The responses under full information are of course the same as in Figures 1–2.) After an
inflation target shock in Figure 9, the larger movements in the perceived inflation target
implies that inflation falls faster than when private agents know the variance of the inflation


14The figures thus plot the two updating coefficients in the Kalman gain κ in equation (17) as a function
of gπ, gr, ρ∗, ρr, σ∗, and σr. Rudebusch and Williams (2006) also discuss how the private sector’s information
set affects the optimal updating scheme in a model where private agents are unable to observe the inflation
target and the central bank helps private agents by publishing its forecast for the interest rate.


15Note that the inflation target forecast responds negatively to the observed interest rate, as an interest rate
increase signals a decrease in the target.
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target. The increase in the nominal interest rate then translates into a larger increase in the
real interest rate than when private agents know the true variance of the inflation target, with
a deeper and less gradual recession as a result. The central bank reduces the nominal interest
rate toward the new target level more quickly, and as the perceived inflation target approaches
the true target, all real variables and inflation return to their steady-state levels earlier than
before. Thus, the negative humps in the impulse responses are deeper but less persistent
than before. Private agents’ forecasts also respond more and with larger persistence.


After a temporary policy shock in Figure 10, there are now larger differences compared
with the full information case, as the initial interest rate increase is translated into a much
larger fall in the perceived inflation target, leading to lower inflation, a higher real interest
rate and a deeper initial recession. The central bank then quickly reduces the interest rate,
and all variables return toward steady state with some over-shooting. Again, private sector
forecasts respond more quickly and all variables are expected to return more slowly to steady
state than when private agents know the true variance of the inflation target.


In general, when private agents overestimate the volatility of the inflation target, both
shocks have larger but less persistent effects on all variables. As private agents’ estimate of
the inflation target is more sensitive to shocks, actual inflation also responds more to these
shocks, translating into larger movements in the real interest rate and the other real variables.


Table 3 shows that all variables are now considerably more volatile than with full infor-
mation, in particular inflation, the output gap, and the interest rate, but also the other real
variables, whose variances increase by more than seven percent relative to the full information
case. Thus, allowing for imperfect information not only regarding the shocks to the monetary
policy rule but also to the variance of these shocks, our model generates fairly large effects of
imperfect information on macroeconomic volatility. As a consequence, in this case the gains
in terms of macroeconomic stability from announcing the central bank’s inflation target are
reasonably large.


4 Optimized monetary policy rules and imperfect credibility


We now study the properties of optimized rules for monetary policy within our framework.
We assume that the central bank aims to stabilize inflation around the inflation target, the
output gap, and the interest rate by minimizing the loss function


Lt = Var (π̄t − π̄∗t ) + λyVar (Yt − Y n
t ) + λrVar


(
R̄t


)
, (19)


where π̄t, π̄
∗
t , and R̄t measure inflation, the inflation target and the nominal interest rate


at an annualized basis, so, for example, π̄t ≡ 4πt. While this objective function does not
represent the welfare of a representative household in our economy, it is consistent with the
mandates of most central banks.16 We assume that the central bank preference parameters


16A proper welfare analysis would instead use an approximation of the representative household’s utility as
the central bank loss function (see, for instance, Woodford, 2003). In this case, the assumptions concerning
firms’ price-setting would be important for the effects of imperfect information on the macroeconomy. If,
as in our model, prices are indexed only to past inflation, the inflation target does not direcly affect private
sector behavior, and therefore the utility-based loss function would not depend on the volatility of the inflation
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are λy = 0.5 and λr = 0.1, so the central bank attaches a larger weight to inflation stability
than to output gap stability, and a small weight to stability in the interest rate.17


We first choose the coefficients in the central bank’s policy rule (11) to minimize the
central bank loss function when private agents have perfect information about the inflation
target and the temporary monetary policy shock. We then evaluate this optimized rule in
the case of imperfect information concerning the inflation target. Finally, we discuss what
deviations from the optimized benchmark rule tend to improve on the outcome of monetary
policy when private agents do not have full information about the inflation target.


The coefficients that minimize the value of the loss function (19) in the case of full
information are given by gπ = 7.915, gy = 1.748, gr = 0.917, and Panel (a) of Table 4 reports
the variances of inflation, the output gap, and the interest rate for the three alternative
models, along with the value of the loss function (19). For comparison, Panel (b) reports the
corresponding results for the calibrated rule analyzed in Section 3.


Compared with typical parameterizations of monetary policy rules, the optimized rule
responds more aggressively to both inflation and the output gap, while the degree of interest
rate smoothing is very similar.18 As a consequence, in the model with full information the
optimized rule stabilizes inflation and the output gap considerably more than the calibrated
rule, at the cost of larger interest rate variability.


We then implement the rule optimized for the full information model in the models with
imperfect information. As in Section 3, Panel (a) of Table 4 shows that the presence of
imperfect information (when agents know the true variance of the inflation target) leads to
modest increases in the volatility of output around the natural level and of inflation around
target. Thus, the value of the loss function is slightly higher than with full information,
although the difference in the two loss function values is approximately equivalent to a per-
manent output gap of only 0.043 percent.19 Assuming that private agents also overestimate
the variance of the inflation target leads to a further increase in volatility and loss, but again
the effects are modest: the difference relative to the full information case is now equivalent


target. If instead prices were indexed to the (perceived) inflation target, changes in the target would have
direct welfare effects.


17The interest rate stabilization objective can be seen as a proxy for stability on financial markets. For
instance, Tinsley (1999) argues that interest rate volatility may increase term premia and therefore lead to
higher long-term interest rates. From a theoretical perspective, Woodford (2003) shows that the welfare-
maximizing policy aims at reducing interest rate volatility when there are money transaction frictions or when
the central bank wants to avoid the zero lower bound of nominal interest rates.


18It is not uncommon for optimized policy rules to be more aggressive than estimated rules. This result is
often attributed to the fact that the optimized rules do not take into account different sources of uncertainty
that may make policy more cautions. See, for instance, Rudebusch (2001).


19To see this, consider the quadratic version of the loss function (19) given by


Lt = (1− β̂)Et


∞∑
j=0


β̂j
[(
πt+j − π∗t+j


)2
+ λy


(
Yt+j − Y n


t+j


)2
+ λrR


2
t+j


]
,


which approaches the specification in equation (19) as the central bank discount factor β̂ approaches one. A


permanent output gap of x percent then implies a value of the loss function of (1− β̂)
∑∞


j=0
β̂jλyx


2 = λyx
2.


Denoting by L0 the loss under full information and by L1 the loss under imperfect information, the permanent
output gap that would be equivalent to moving from full information to imperfect information is given by
x =


√
L1/λy −


√
L0/λy.
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to a permanent output gap of 0.063 percent. However, comparing with the calibrated rule in
Panel (b) reveals that the central bank is able to substantially reduce the effects of imperfect
information by optimizing the policy rule.20


To analyze the effects of imperfect information on the optimized policy rule, we study the
performance of six alternative rules, where we let one policy rule coefficient at a time deviate
by 50% from the optimized rule while keeping the remaining coefficients at their optimized
levels.21 The results are reported in Table 5.


By construction, any deviations from the optimized rule will increase loss in the full
information model, but Panel (a) of Table 5 shows that the effects of deviating from the
optimized coefficients of inflation or the output gap are very small. On the other hand, it
is more costly to deviate from the optimized coefficient of the lagged interest rate: reducing
the interest rate coefficient by 50% increases loss substantially, and increasing the coefficient
to 0.99 almost even more so.


Panel (b) shows the results for the model where private agents have imperfect information,
but know the true variance of the inflation target. Now, deviations from the optimized rule
do not necessarily increase loss, as the rule is optimized for the full information model.
Nevertheless, also with imperfect information all deviations from the optimized rule increase
loss, and the results are similar to the case of full information.


Finally, Panel (c) shows the results when agents have imperfect information about the
monetary policy shocks and overestimate the variance of the inflation target. In this case, the
central bank is better off responding more aggressively to inflation than under full information
(although the gains are small), whereas responding more aggressively to the output gap has
barely no effects on central bank loss.22 As before, a large coefficient on the lagged interest
rate is detrimental to central bank loss, even more so than in the other two cases. The
more aggressive response to inflation implies that inflation follows the inflation target more
closely, at the cost of a small increase in interest rate volatility. Under imperfect information
when private agents overestimate the volatility of the inflation target, the inflation gap is
more volatile than under full information. By responding more aggressively to the inflation
deviation from target, the central bank helps private agents to learn the inflation target more
quickly (see Figure 7), which tends to reduce overall volatility.23 It is also clear, however,
that the aggressive policy rule is not a perfect substitute for announcing the inflation target:
moving from imperfect information to full information would reduce the value of the loss
function considerably more than responding more aggressively to inflation.


20A similar result is obtained by Orphanides and Williams (2007).


21The coefficient of the lagged interest rate is not allowed to be larger than 0.99.


22For smaller deviations from the optimized coefficients, it is also beneficial to respond more aggressively
to the output gap when agents overestimate the variance of the inflation target, and to inflation when agents
know the true variance of the target.


23Similar results are obtained by Molnár and Santoro (2006) and Orphanides and Williams (2007) in models
where private agents learn about the processes for inflation, output (or unemployment), and the interest rate.
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5 Concluding remarks


The aim of this paper was to measure the effects of monetary policy transparency and credi-
bility on macroeconomic volatility and welfare. To this aim we use an estimated DSGE model
of the euro area economy where private agents are unable to distinguish between persistent
movements in the central bank’s inflation target and temporary deviations from the monetary
policy rule.


Our model implies that the macroeconomic benefits of credibly announcing the current
level of the time-varying inflation target are reasonably small as long as private agents cor-
rectly understand the stochastic processes governing the inflation target and the temporary
policy shock. While economic volatility decreases substantially after shocks to monetary
policy, these shocks account for a small fraction of overall volatility in the economy. The
overall gains from announcing the time-varying inflation target are therefore fairly small.
However, if private agents overestimate the volatility of the inflation target, the overall gains
of announcing the target can be substantial.


We have also demonstrated that the central bank can help private agents in their learning
process by responding more aggressively to inflation. Assuming a standard objective func-
tion for monetary policy, our results suggest that the optimal response to inflation is more
aggressive when private agents have imperfect information and overestimate the volatility of
the inflation target than when private agents have full information.


As our model is derived from the optimizing behavior of private agents, our framework
can also be used to study the welfare effects of imperfect monetary policy credibility and
transparency, for instance, using a linear-quadratic approximation of welfare in our model,
following Benigno and Woodford (2003) and Altissimo, Cúrdia, and Rodŕıguez Palenzuela
(2005). We plan to pursue this avenue in future work.
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A Simulating the model with learning


The solution of the model is given by


zt = Azt−1 +Bηt, (A1)


zt is a vector that includes the variables in the sticky price/wage model (13 equations), the
Kalman filter variables Etπ


∗
t+1,Etε


r
t+1,Etπ


∗
t , and Etε


r
t (4 equations), the flexible price/wage


model (9 equations), and the 10 shock processes, including π∗t and εrt , while ηt is a vector
that includes the 10 innovations.


Under imperfect information, the shocks to the inflation target (η∗t ) and the monetary
policy rule (ηr


t ) are not directly observable to private agents. Instead, in each period t


private agents observe the interest rate Rt, use the Kalman filter to update their estimate of
π∗t and εrt , and then adjust their expectations of future monetary policy, inflation, and output
accordingly. As time goes by, the observed interest rate differs from agents’ expectations, so
agents continue to update their information and adjust their expectations. To capture this
process we feed in the change in agents’ estimate of π∗t and εrt as new “shocks” in each period
by calculating[


Êtη
∗
t


Êtη
r
t


]
=


[
Êtπ


∗
t


Êtε
r
t


]
−


[
Êt−1π


∗
t


Êt−1ε
r
t


]


= F−1


[
Êtπ


∗
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Êtε
r
t+1


]
−
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Êt−1π


∗
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Êt−1ε
r
t


]


=
[
F−1 (


F − κH ′)− I
] [


Êt−1π
∗
t


Êt−1ε
r
t


]
+ F−1κH ′


[
π∗t


εrt


]
, (A2)


and we add the shocks Etη
∗
t ,Etη


r
t in the innovation vector ηt, and the forecasts Etπ


∗
t ,Etε


r
t


among the shock processes in the vector zt. (These Etπ
∗
t ,Etε


r
t coincide with those from the


Kalman filter.) This gives a total of 26 endogenous variables and 12 autoregressive shocks in
the vector zt and 12 innovations in the vector ηt.


Finally, we need to modify the model solution (A1) to take into account the effect of
learning on the endogenous variables: while the central bank responds to the true π∗t , ε


r
t ,


private agents respond to Etπ
∗
t ,Etε


r
t . We do this by reshuffling the matrices A and B so


that the columns corresponding to π∗t , ε
r
t , η


∗
t , and ηr


t in the private sector equations (all
equations except the interest rate rule) are moved to the positions of Etπ


∗
t ,Etε


r
t ,Etη


∗
t , and


Etη
r
t . Simulating the model with the learning shocks described above then gives the evolution


of the economy.
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Table 1: Parameter values
Parameter Value Description


Calibrated parameters
β 0.99 Discount factor
τ 0.025 Depreciation rate of capital
α 0.30 Capital share in production
ky 8.8 Capital/output ratio
cy 0.60 Consumption/output ratio
λw 0.5 Average wage markup


Estimated structural parameters
ϕi 6.771 Investment adjustment cost parameter
σc 1.353 Coefficient of relative risk aversion
h 0.573 Consumption habit parameter
σl 2.400 Elasticity of labor supply
ϕy 1.408 Fixed cost in production
ψ 0.169 Inverse elasticity of capital utilization
ξw 0.737 Calvo wage parameter
ξp 0.908 Calvo price parameter
γw 0.763 Rate of wage indexation
γp 0.469 Rate of price indexation


Estimated autoregressive parameters
ρb 0.855 Preference shock
ρi 0.927 Investment cost shock
ρa 0.823 Productivity shock
ρl 0.889 Labor supply shock
ρg 0.949 Government spending shock


Estimated standard deviations
σb 0.336 Preference shock
σi 0.085 Investment cost shock
σq 0.604 Equity premium shock
σa 0.598 Productivity shock
σp 0.160 Price markup shock
σw 0.289 Wage markup shock
σl 3.520 Labor supply shock
σg 0.325 Government spending shock
σ∗ 0.017 Inflation objective
σr 0.081 Temporary monetary policy shock


Calibrated monetary policy parameters
gπ 2.0 Coefficient on inflation
gy 0.2 Coefficient on output gap
gr 0.9 Coefficient on lagged interest rate
ρ∗ 0.99 Persistence in inflation objective
ρr 0.01 Persistence in temporary monetary policy shock


The estimated parameter values are from Smets and Wouters’s (2003) estimates using euro area data from
1980:2 to 1999:4.
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Table 2: Variances of simulated data under full and imperfect information
Ct Yt It Lt Wt π̄t Yt − Y n


t R̄t π̄t − π̄∗t


(a) Monetary policy shocks only
Full information 0.20 0.23 0.89 0.18 0.086 0.15 0.23 0.40 0.031
Imperfect information 0.25 0.29 1.12 0.22 0.10 0.084 0.29 0.32 0.16


(b) All shocks
Full information 3.67 4.36 22.41 3.05 0.65 0.20 1.29 0.73 0.083
Imperfect information 3.72 4.42 22.63 3.10 0.67 0.14 1.34 0.64 0.21


This table reports simulated variances (averages over 1,000 simulated series of 5,000 observations) in the
models with full information and with imperfect information. Inflation and the interest rate are in annualized
terms: π̄t = 4πt and R̄t = 4Rt.


Table 3: Variances of simulated data when private agents overestimate the volatility of the
inflation target


Ct Yt It Lt Wt π̄t Yt − Y n
t R̄t π̄t − π̄∗t


(a) Monetary policy shocks only
Full information 0.20 0.23 0.89 0.18 0.086 0.15 0.23 0.40 0.031
Imperfect information 0.46 0.59 2.43 0.51 0.16 0.47 0.59 0.58 0.41


(b) All shocks
Full information 3.67 4.36 22.41 3.05 0.65 0.20 1.29 0.73 0.083
Imperfect information 3.93 4.70 23.90 3.38 0.73 0.52 1.64 0.90 0.45


This table reports simulated variances (averages over 1,000 simulated series of 5,000 observations) in the
models with full information and with imperfect information when private agents overestimate the volatility
of the inflation target: σ̂∗ = 5σ∗. Inflation and the interest rate are in annualized terms: π̄t = 4πt and
R̄t = 4Rt.


Table 4: Performance of optimized and calibrated monetary policy rules
Simulated variances Loss


π̄t Yt − Y n
t R̄t π̄t − π̄∗t


(a) Optimized rule
Full information 0.17 0.38 1.82 0.046 0.42
Imperfect information, σ̂∗ = σ∗ 0.15 0.40 1.82 0.077 0.46
Imperfect information, σ̂∗ = 5σ∗ 0.20 0.41 1.83 0.089 0.48


(b) Calibrated rule
Full information 0.20 1.29 0.73 0.083 0.80
Imperfect information, σ̂∗ = σ∗ 0.14 1.34 0.64 0.21 0.94
Imperfect information, σ̂∗ = 5σ∗ 0.52 1.64 0.90 0.45 1.36


This table reports simulated variances (averages over 1,000 simulated series of 5,000 observations) in the
models with full information and with imperfect information. The optimized rule is the parameterization of
the policy rule (11) that minimizes the loss function (19) with λy = 0.5 and λr = 0.1 under full information,
and is given by gπ = 7.915, gy = 1.748, gr = 0.917. The calibrated rule is given by gπ = 2.0, gy = 0.2, gr = 0.9.
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Table 5: Performance of alternative monetary policy rules
Simulated variances Loss


π̄t Yt − Y n
t R̄t π̄t − π̄∗t


(a) Full information
Optimized rule 0.16 0.38 1.81 0.046 0.42
Large gπ 0.18 0.39 1.91 0.036 0.42
Small gπ 0.12 0.38 1.70 0.075 0.43
Large gy 0.14 0.29 2.29 0.057 0.43
Small gy 0.19 0.58 1.28 0.035 0.45
Large gr 0.27 1.88 0.67 0.16 1.17
Small gr 0.17 0.14 5.74 0.054 0.70


(b) Imperfect information, σ̂∗ = σ∗
Optimized rule 0.14 0.40 1.82 0.076 0.46
Large gπ 0.17 0.41 1.95 0.055 0.46
Small gπ 0.092 0.39 1.68 0.13 0.49
Large gy 0.13 0.30 2.30 0.086 0.47
Small gy 0.17 0.62 1.28 0.066 0.50
Large gr 0.23 2.04 0.58 0.31 1.39
Small gr 0.17 0.14 5.80 0.058 0.71


(c) Imperfect information, σ̂∗ = 5σ∗
Optimized rule 0.20 0.41 1.82 0.088 0.47
Large gπ 0.20 0.41 1.90 0.062 0.46
Small gπ 0.17 0.41 1.77 0.15 0.56
Large gy 0.17 0.31 2.31 0.092 0.48
Small gy 0.24 0.63 1.27 0.092 0.53
Large gr 0.87 3.02 0.81 0.83 2.41
Small gr 0.17 0.14 5.78 0.056 0.70


This table reports simulated variances (averages over 1,000 simulated series of 2,500 observations) in the models
with full information and with imperfect information for different parameterizations of the monetary policy
rule (11). The optimized rule is the parameterization that minimizes the loss function (19) with λy = 0.5,
λr = 0.1 under full information, and is given by gπ = 7.915, gy = 1.748, gr = 0.917. “Large” and “small”
coefficients are 50% larger or smaller than the optimized coefficients, with the exception of “large gr,” which
is equal to 0.99.
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Figure 1: Impulse responses and private sector forecasts after an inflation target shock
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This figure shows impulse responses and optimal private sector forecasts after a negative innovation (of one
standard deviation) to the inflation target π∗t .
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Figure 2: Impulse responses and private sector forecasts after a temporary monetary policy
shock
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This figure shows impulse responses and optimal private sector forecasts after an innovation (of one standard
deviation) to the temporary monetary policy shock εr


t .
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Figure 3: Impulse responses to preference shock and government spending
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This figure shows the responses to innovations (of one standard deviation) to the preference shock εb
t and


government spending εg
t .
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Figure 4: Impulse responses to investment shock and equity premium
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This figure shows the responses to innovations (of one standard deviation) to the investment adjustment cost
shock εi


t and the equity premium ηq
t .
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Figure 5: Impulse responses to technology and labor supply shocks
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This figure shows the responses to innovations (of one standard deviation) to the technology shock εa
t and the


labor supply shock εl
t.
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Figure 6: Impulse responses to price and wage markup shocks
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This figure shows the response to innovations (of one standard deviation) to the price markup ηp
t and the


wage markup ηw
t .
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Figure 7: Sensitivity of inflation target forecast to new information
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This figure shows the optimal updating coefficient (the Kalman gain) for the inflation target forecast as key
parameters vary from the benchmark calibration. Vertical lines denote benchmark values.
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Figure 8: Sensitivity of temporary policy shock forecast to new information
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This figure shows the optimal updating coefficient (the Kalman gain) for the temporary policy shock forecast
as key parameters vary from the benchmark calibration. Vertical lines denote benchmark values.
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Figure 9: Impulse responses and private sector forecasts after an inflation target shock when
private agents overestimate the volatility of the inflation target
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This figure shows impulse responses and optimal private sector forecasts after a negative innovation (of one
standard deviation) to the inflation target π∗t when private agents overestimate the volatility of the inflation
target: σ̂∗ = 5 σ∗.
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Figure 10: Impulse responses and private sector forecasts after a temporary monetary policy
shock when private agents overestimate the volatility of the inflation target
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This figure shows impulse responses and optimal private sector forecasts after an innovation (of one standard
deviation) to the temporary monetary policy shock εr


t when private agents overestimate the volatility of the
inflation target: σ̂∗ = 5 σ∗.
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This paper analyzes the quantitative relevance of additive, multiplicative and data 


uncertainty in the implementation of Chile’s monetary policy. For the analysis of data 


uncertainty we focus on the uncertainty associated with the estimation of the output gap 


using real-time data and various well-known methods to estimate the output trend. We 


found that the revisions of the output gap are important and persistent and that the 


unobserved components method shows a better performance with real-time data than 


other more usual ones, like the HP filter. In the case of additive and multiplicative 


uncertainties we estimate the equations that govern the behavior of the economy with 


time-varying parameters and with state-dependent variances in the shocks of the model. 


This allows us to analyze the contribution of these two types of uncertainties on the total 


uncertainty. We found that additive uncertainty is the most relevant to explain total 


uncertainty and that shocks to the model are state-dependent. 
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1. Introduction  


It is widely accepted that monetary policy is inevitably made in an environment of substantial 


uncertainty. This has led to a considerable increase in the interest of academic researchers to 


demonstrate formally the implications of uncertainty and the ways in which central banks can 


deal with uncertainty. The theoretical literature on uncertainty distinguishes between three types 


of uncertainty: (1) Additive uncertainty, which refers to the lack of knowledge of the central 


banks regarding the future shocks faced by the economy; (2) Multiplicative uncertainty, which 


represents the lack of knowledge, or the erroneous knowledge, of one or more parameters of the 


model that explains the behavior of the economy; and (3) Data uncertainty, which is associated 


to the fact that the information used by the central bank at the time policy decisions are made 


could either be incorrect or could show in an incomplete manner the actual state of the economy. 


The objective of this paper is to check the quantitative relevance of these three types of 


uncertainty in the case of the monetary policy of Chile’s Central Bank. To this end, the paper is 


divided into two parts: the first one covers the problem of data uncertainty and focuses on the 


output gap estimates for the full-fledged inflation targeting period, from 1999 onward; and the 


second focuses on additive and multiplicative uncertainty for the period of 1990 - 2006 but 


places a special emphasis on the period subsequent to 1999. 


In the analysis of data uncertainty we focus on the output gap because it is an important 


variable in projecting inflation and, simultaneously, what is available at the time monetary 


decisions are made are preliminary figures for real output (real-time data) which are revised 


several times afterwards. Also, the estimation of the output trend (part of the output gap) depends 


on statistical filters applied to a series of output which contains these preliminary figures.  In our 


exercise, we use various well-known filters, among them the Hodrick-Prescott (HP) filter, the 


Baxter-King (BK) filter, the Christiano-Fitzgerald (CF) filter, the quadratic trend and the Clark 


method based on the unobserved components model. To analyze the reliability and the statistical 


accuracy of these methods with real-time data we follow closely the methodology proposed by 


Orphanides and van Norden (1999). We found that the revisions of the output gap in the case of 


Chile seem to be important and persistent, and that the correlations between the final data output 


gap and the real-time data output gap are relatively low. Nonetheless, of the five filters utilized, 


the Clark method produces the best results. These results imply that caution and judgment should 
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be taken when evaluating the business cycle with real-time data, but also suggest that using 


popular filters, like HP, could be misleading.   


On the other hand, to evaluate the empirical importance of additive and multiplicative 


uncertainty we use the methodology proposed by Zhang and Semmler (2005). In particular, we 


estimate the behavioral equations for the Chilean economy with time-varying parameters and 


shocks with state-dependent variance (two states), which follow a first order Markov process. To 


estimate the behavioral equations we adopt the forward-looking specification of Svensson (2000) 


and Al-Eyd and Karasulu (2006) for the equations that govern the behavior of a small open 


economy – an aggregate demand, a Phillips curve, and the real uncovered interest parity 


condition. Additionally, we use a technique in Kim (1993) to decompose total uncertainty, 


measured using the conditional variance of the forecast error, into two components: that 


associated to multiplicative uncertainty and that associated to additive uncertainty. The results of 


the analysis suggest that for all the behavioral equations of the economy, the uncertainty of 


shocks, or additive uncertainty, has been the most important in explaining total uncertainty. 


Moreover, the estimations support the hypotheses of state-dependent variances and that these 


states could be considered as periods of high and low volatility in the shocks. Another interesting 


finding is that total uncertainty of both the output gap and the inflation rate have declined over 


time and the period of greater stability coincides with the establishment of the full-fledge 


inflation targeting framework for the conduct of monetary policy.1  


Finally, given that the estimated models in the analysis of the additive and multiplicative 


uncertainty require an output gap estimate, data uncertainty, at least as it refers to the estimation 


methods of the output gap, will be part of the additive and multiplicative uncertainty without any 


possibility of discrimination. It is for this reason that a robustness analysis is done through the 


estimation of the behavioral equations of the economy utilizing the output gap calculated with 


each of the five methods proposed. The finding is that the previous results concerning the 


contributions of additive and multiplicative uncertainty are robust and do not change.   


The paper is organized as follows. In section 2 we present a literature review on the types of 


uncertainty faced by central banks, its implications for the conduct of monetary policy and the 


way in which they have been typically modeled empirically. In section 3 we analyze the 


                                                 
1 It is important to mention that this period also coincides with the establishment of the structural surplus rule for the 
conduct of fiscal policy and with a generally highly stable international context. 
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quantitative relevance of data uncertainty, particularly focusing on the output gap estimates. In 


section 4 we present the analysis of the importance of additive and multiplicative uncertainty on 


the models typically used to analyze the effect of monetary policy. Finally, in section 5 we 


present the conclusions. 


 


2. Monetary policy and uncertainty 


In the last few years, there has been a considerable increase in the interest of academic 


researchers to demonstrate formally the ways in which central banks can deal with uncertainty 


(Schellekens, 2002, Feldstein, 2003). In particular, some papers have studied the distinct types of 


uncertainty faced by central banks, which have introduced important challenges in the modeling 


of monetary policy, and its implications on the behavior of the monetary authority. Some of 


these papers include Isard et.al. (1999), Martin and Salmon (1999), Svensson (1999), Wieland 


(2000), Meyer et.al. (2001), Tetlow and von zur Muehlen (2001a), Gianoni (2002), Orphanides 


and Williams (2002) and Soderstrom (2002). Other papers have proposed different strategies that 


can be used to deal with uncertainty, namely robust monetary policy rules and learning 


mechanisms, among others; see, for example, Craine (1979), Sargent (1998) and Onatski and 


Stock (2000) and Wieland (2002). 


Feldstein (2003) argues that central banks typically face four types of uncertainty: 


uncertainty about the current and future state of the economy, uncertainty about how the 


economy operates, uncertainty of individuals about their personal futures, and uncertainty about 


the impact of potential future monetary policies. However, the most common classification 


speaks of three types of uncertainty: additive uncertainty, multiplicative uncertainty and data 


uncertainty.2 Additive uncertainty represents the component of a forecast error associated to the 


outcome of an exogenous variable in the system (the error in a regression model). This type of 


uncertainty captures the lack of knowledge of central banks regarding the future shocks faced by 


the economy (Zhang and Semmler, 2005; Grauwe, 2006). Multiplicative (or parameter) 


uncertainty, on the other hand, represents the lack of knowledge, or the erroneous knowledge of 


                                                 
2 Another type of uncertainty also considered in the literature, but not analyzed in this paper, is uncertainty about the 
probability distributions over possible events known as Knightian uncertainty. 
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one or more parameters of the model that explains the behavior of the economy (and its agents).3 


Hall et.al. (1999) claims that this type of uncertainty can occur for several reasons such as the 


stochastic nature of the parameters and the measurement errors in the data utilized to estimate the 


model. Finally, data uncertainty is associated to the fact that the information used by the central 


bank at the time policy decisions are made could either be incorrect or could show in an 


incomplete manner the actual state of the economy (Orphanides and van Norden, 1999). 


According to Rudebush (2001), when these different types of uncertainty are combined, they 


weigh heavily on the policy decision-makers. 


Since the seminal papers of Phillips (1954) and Theil (1964),4 additive uncertainty has been 


widely studied in the literature. In particular, Theil (1964) derived the famous certainty-


equivalence result, which establishes that in the presence of additive uncertainty the central bank 


could act as if it were certain about the possible outcomes of the economy.5 The actions of the 


monetary authority depend only on its expectations about the future of the variables and not of 


the uncertainty associated with those expectations (Walsh, 2003). Phillips (1954) initiated this 


idea by suggesting that the monetary policy, based on the principles of automatic regulating 


systems, would be adequate to deal with all but the most severe disturbances that could affect the 


economic system. In this context, there was a certain degree of confidence in econometric 


modeling, such that in the estimation of the structural models any error could be eliminated, 


except the error associated with additive uncertainty. It is important to mention, however, that 


the principle of certainty-equivalence is valid only under certain conditions, particularly in a 


linear quadratic world. This could be too restrictive in practice. More generally, there are several 


models that according to their construction can imply either small or large variations in the 


monetary policy instrument when the central bank is faced with additive uncertainty; see Walsh 


(2003b). For example, Sack (2000) shows that under this type of uncertainty, the optimal policy 


rule implies a more aggressive reaction by the central bank.6 


                                                 
3 Note that the model parameters representing the behavior of the economy (reduced-form model) depend on the 
parameters that control the behavior of the individuals. 
4 Cited in Hall et.al. (1999). 
5 This implies that for monetary policy what is important is the average of the variables or the parameters; hence the 
uncertainty should be ignored. 
6 This could occur when the economy is far from full employment, when inflation is low and the expectations are 
not aligned with the target of the central bank (Feldstein, 2003). 
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Multiplicative or parameter uncertainty was first analyzed by Holt (1962),7 who 


demonstrated that policy performance could be seriously affected if the model parameters used 


for the evaluation of such policy are uncertain. In this context, the certainty-equivalence 


principle is not valid and, hence, the central bank should consider this type of uncertainty when 


making policy decisions. Brainard (1967), in his classic analysis regarding multiplicative 


uncertainty, showed that it would be optimal for the central bank to respond more cautiously 


when the impact of its policy on the economy is unknown (that is, the model feedback 


parameters).8 This result has important practical implications in the conduct of monetary policy, 


since it indicates that it could be optimal for policy makers not to expect to completely eliminate 


the gap between the observed objective variable and its target value, in a particular period. This 


could be interpreted as a justification for a gradual monetary policy. Although Brainard’s (1967) 


result has been widely discussed in the literature (see Blinder, 1998) and is quite intuitive, it 


cannot be generalized. For example, Soderstrom (2002) shows that in situations where the 


coefficients of the lagged variables in the model are subject to uncertainty, the optimal policy for 


the central bank is to react more aggressively. Other examples in support of the argument that the 


multiplicative uncertainty does not necessarily lead the central bank to behave more cautiously 


can be found in Gianoni (2002) and González and Rodríguez (2003). 


The study of uncertainty associated with the data is relatively new in the literature on 


monetary policy and uncertainty. As a matter of fact, only recently, academics and policy makers 


have cautiously invested resources in this area and, as a result, there has been significant growth 


in the literature that study the properties of real-time data and its implications on policy decisions 


(Bernhardsen et.al., 2005). The pioneering work of Croushore and Stark (1999, 2001) set the 


framework in this area and led to various applications, which have focused primarily on 


developed countries. Examples of such applications can be found in Orphanides (2001), 


Croushore and Stark (2002) and Orphanides and van Norden (2002).9 This literature highlights 


that the moment at which the data are obtained, their availability and reliability for empirical 


evaluation of policy rules, is crucial for monetary policy performance since they condition the 


decisions of the policy makers (Ghlysels, 2002). In this regard, Rudebush (2001) and 


                                                 
7 Cited in Hall et.al. (1999) 
8 This result was derived from a linear quadratic model with a known probability distribution for the uncertainty 
model parameters. 
9 For an excellent literature review on the issue for the case of the United States see Kozicki (2004). 
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Bernhardsen et.al. (2005), argue that the new information that the central banks obtains from one 


policy meeting to the next does not justify drastic changes in its instrument, which can lead to 


very slow responses to particular economic events.  


One of the variables that summarize the actual state of the economy and is, therefore, 


fundamental for the monetary policy decisions is the output gap. Naturally, if potential output 


measures are not reliable, policy decisions may fail to react to the true economic conditions and 


may instead reflect measurement error. Along these lines, Orphanides and van Norden (2002) 


argue that the output gap is associated with important components of uncertainty since there are 


at least three types of problems typically faced by the central banks when evaluating the business 


cycle with real-time data. First, output data are revised continually. Second, the methods to 


estimate potential or trend output, in general, provide different results, and this problem is 


particularly critical with the end of sample estimates that are, precisely, those relevant for policy 


decisions.10 Third, a future evaluation of output data can indicate that the economy has 


experienced a structural change and such a change could have been revealed by something else 


other than real-time data.  


Following Zhang and Semmler (2005) and to provide an example of the concepts previously 


mentioned, we consider the following economic model that is standard in the literature of 


optimal rules of monetary policy: 


{ } ∑
∞


=
∞


0
0 ),(min


0 t
tt


t


u
uxLE


t


ρ             (1) 


subject to: 


 ),,(1 tttt uxfx ε=+  (2) 


 


where ρ  is the discount factor bounded  between 0 and 1, ),( tt uxL   is a loss function of an 


economic agent, in this case the central bank, tx  is the vector of state variables, tu  is the vector 


of control variables (the policy instrument), tε  is the vector of shocks and 0E  is the 


mathematical expectation operator based on the initial values of the state variables. As 


mentioned before, this kind of model represents the basic framework of monetary policy analysis 


                                                 
10 Kuttner (1994) and St-Amant and van Norden (1998), using final data of the output and using different methods to 
estimate its trend, found that there were substantial differences in the estimations of these trends using final data. 
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and control used by Clarida et.al. (1999), Svensson (1997, 1999) and Beck and Wieland (2002), 


where the constraints in equation (2) are the Phillips curve and the IS curve plus the interest rate 


parity condition. (Svensson, 2000).  


Given the state equations in (2), the central bank’s problem consists in deriving a path for its 


instrument (the control variable tu ) that satisfies (1). The question that arises, however, is 


whether the state equations can be correctly specified with time series estimates. Given the 


previous discussion it is possible to affirm that the response to this question is negative, since 


these equations can be subject to a high degree of uncertainty caused by shocks tε , by  parameter 


uncertainty and by data uncertainty used in the estimations. This is particularly important since 


the optimal monetary policy rules11 are derived from the solution of the previous problem and, 


hence, these rules depend on the parameters of the state equations. Thus, if the parameters in the 


model are uncertain, the estimated “optimal” monetary policy rule could be unreliable. 


However, no matter the effects of uncertainty central banks should not be paralyzed. 


Following Feldstein (2003), “..although (this) uncertainty affects the ability of a central bank to 


limit the variability of inflation and output, it does not limit the ability of central banks to avoid a 


high and rising level of inflation. There is no uncertainty about the key facts that can guide 


central banks to low log-term inflation. So, uncertainty is not an excuse for allowing inflation to 


go back to the bad old days.” 


 


3. Data uncertainty: the output gap 


In this section, we analyze the quantitative relevance of data uncertainty in the case of Chile, 


focusing as said before on the output gap, and for the sample period 2000-2006. This period was 


chosen for two particular reasons: (1) the availability of historical information of the publications 


of the output series at each moment in time; and (2) it is the period in which the central bank 


adopted the full-fledged inflation targeting scheme to conduct its monetary policy. To fulfill this 


objective, we use real-time data (i.e., data used by the central bank when making policy 


decisions) and various well-known methods for the estimation of the output trends. For each 


method we analyze both the behavior of the end-of-sample output gap estimates, which are 


relevant for policy decisions, and the revisions of these estimates across time. In particular, we 
                                                 
11 See for example Svensson (1999) and Semmler et.al. (2004). 
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present the statistical properties of the revisions and verify the reliability of the estimates for 


each possible method. We divide this section into two subsections: in the first one we describe 


the methodological issues related to the construction of the output gap with real time-data and 


the detrending methods; and in the second part we present the results of the estimates and their 


implications. 


 


3.1. Methodological issues 


As mentioned by Bernhardsen et.al. (2005), monetary policy decisions are typically based on 


real-time data, classified as preliminary data. This also holds, to a lesser degree, for long-past 


historical data. The preliminary nature of the data calls for it to be in constant revision and the 


reasons for these revisions can be, among others, of an informative nature and of a 


methodological nature. In effect, and as suggested by the Central Bank of Chile in its Monetary 


Policy Report (IPoM) of September 2004, the revision of data is motivated by: (1) the inclusion 


of new basic information (new sources of information or the improvement of these sources); (2) 


the recalculation of the estimates (revisions attributed to new estimates);12 (3) methodological 


improvements, due to changes in statistical methods, concepts, definitions or classification; and 


finally, (4) error correction, either in the basic sources or in the calculations. As mentioned in the 


previous section, one of the variables that encompasses the actual state of the economy and is, 


therefore, fundamental for the monetary policy decisions is the output gap. Given that at the 


moment when policy decisions are made this variable is estimated using preliminary output data, 


according to the previous discussion it is necessary to make an assessment of the degree of 


reliability of these estimates.13 For this assessment, we use real-time data to replicate the 


available information for the policy makers at every point in time. Thus, we simulate the real-


time environment of the monetary policy setting process (Ghlysels, 2002). 


To analyze the reliability and the statistical accuracy of the output gap estimates commonly 


used in the literature we follow the methodology proposed by Orphanides and van Norden 


(1999). This consists of measuring, at any point in time, the degree at which the output gap 


                                                 
12 This refers to the updating of seasonal factors or of the base period used in the constant price estimates. In Chile, 
the last change of base year used for the national accounts updated the estimates to 2003 prices. 
13 As a matter of fact, if the output gap measures are not reliable it could be advantageous for the central bank, in 
some situations, to base their monetary policy decisions on information regarding output growth (Orphanides et.al., 
2000;  Bernhardsen et.al., 2005).  
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estimates vary when the data are revised and with the different output gap estimation 


methodologies. This allows us to capture the effects caused by data revisions and the 


misspecification of statistical models used to estimate the output trend. The advantage of this 


methodological approach is that it does not require a priori assumptions on the true structure of 


the economy or on the process that generated the observed output time series. However, and as 


stated by Orphanides and van Norden (1999), this approach also has certain limitations, such that 


data revisions are being analyzed comparing each level of output observed at the end of the 


sample with the “final output”, which could still have measurement errors. 


In Orphanides and van Norden (1999) approach there are two key definitions: the “final” and 


the “real-time” estimates of the output gap. The final estimate of the output gap is simply the 


difference between the last available vintage of output data and its trend (obtained via a 


detrending method). The real-time estimate of the output gap, on the other hand, is a time series 


consisting of the last observed estimate of the output gap constructed as the difference between 


the observed output for each point in time (each vintage) and its trend. This latter estimate 


represents the estimate that the central bank may have calculated at the time when policy 


decisions were made. Formally, if we assume that we have access to the observed output series 


published at each point in time during N  periods we would have a matrix of the form 


( )Nyyy ,...,, 21 , where each iy  (with Ni ,...,1= ) is a column vector that contains the time series 


of the output and each column is an observation (row) shorter than the one that  follows it.14 If 


)(⋅dtf  is a function that detrends the time series y , the final estimate of the output gap is given 


by: 


 


 ))(ln()ln( NdtNfinal yfygap −=  (3) 


 


On the other hand, if we define the function )(⋅l  as a function that extracts the last real 


observation of the column vector iy  we have that the real-time estimate of the output gap is 


given by: 


 


                                                 
14 In the matrix ( )Nyyy ,...,, 21  we consider the missing observations as non-real numbers. 
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 )))´(()),...,(()),((ln())(),...,(),(ln( 2121 NdtdtdtNtimereal yfyfyfyyygap llllll −=−  (4) 


 


The difference between the final output gaps and the real-time output gaps represents the 


total revision of the estimates at each point in time. The statistical properties of these series of 


revisions will be a guide to evaluate the reliability and accuracy of the output gap estimates. For 


the estimates defined in equations (3) and (4) it is necessary to define the function )(⋅dtf , that is 


the detrending method, given that in practice neither the true potential output of the economy nor 


its data generating process are known. This selection becomes important, as mentioned 


previously, since these methods in general provide quite different results. In the case of Chile, 


Gallego and Johnson (2001) find that the set of methods used to estimate the trend component of 


the output provide a wide range of estimates. Therefore, besides the revisions in the data, the 


method chosen also constitutes a source of uncertainty. 


A detrending method decomposes the real output (measured in logarithms) ty  into two 


components: the trend Tty  and the cycle C
ty  such that C


t
T
tt yyy += . In this paper we consider 


five alternative univariate methods that have been widely used in the literature:15 (1) the 


Hodrick-Prescott filter, (2) the Baxter-King filter, (3) the Christiano-Fitzgerald filter, (4) the 


quadratic trend and (5) Clark’s method based on the unobservable components model.16 It is 


important to mention that as in the case of Orphanides and van Norden (1999), we focus only on  


univariate techniques of detrending, since the use of multivariate techniques requires the 


compilation of information on the data that is not revised (in real time) for each possible 


regressor in the model. Table 1 summarizes these methods and the models they are based on. 


 


 


 


 


 


 


                                                 
15 See Orphanides and van Norden (1999) for an extensive revision of the detrending methods and its principal 
advantages and disadvantages. 
16 See Gallego and Johnson (2001) for an interesting compilation of the use of these methods in different central 
banks of the world. 
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Table 1: Alternative Methods to Calculate the Output Trend 


 


HP Hodrick-Prescott ( 1600=λ ) ( ) ( ){ }∑ = +∆+−= T


t


T
t


T
tt


T
t yyyy


1 1
22


minarg λ  


BK Baxter-King (6,32)17 


qnqt


ycycy
q


c ct
BKq


c ct
BKT


t


−+=


+= ∑∑
+


= −+
+


= −+


,...,1


),1(),1(
1


2 1


1


1 1 ωω
 


CF Christiano-Fitzgerald (6,32,1,0,0)18 


qnqt


ycycy
q


c ct
CFq


c ct
CFT


t


−+=


+= ∑∑
+


= −+
+


= −+


,...,1


),1(),1(
1


2 1


1


1 1 ωω
 


QT Quadratic Trend C
tt ytty +++= 2γβα  


Clark Unobserved Components 


t
C
t


C
t


C
t


ttt


t
T
tt


T
t


C
t


T
tt


eyyy


gg


ygy


yyy


++=


+=
++=


+=


−−


−


−−


2211


1


11


δδ
ω


ν
 


 


The Hodrick-Prescott filter is perhaps one of the most popular methods used for detrending 


and it is based on the choice of the trend that minimizes the variance of the cyclical component 


of the series, subject to penalization for variations in the second difference of the cyclical growth 


component (Hodrick and Prescott, 1997). On the other hand, both the Baxter-King filter and the 


Christiano-Fitzgerald filter are based on the smoothing of the series using weighted moving 


average. The fundamental difference between both, for the case of symmetric filters as 


considered in this paper, lies in the choice of the objective function that defines the weights 


(Baxter and King, 1999; Christiano and Fitzgerald, 2003). Moreover, the Christiano-Fitzgerald 


filter imposes the restriction that the filter weights add up to zero, when unit roots are considered. 


On the other hand, the quadratic trend is a method of deterministic components that assumes that 


the trend series show a behavior triggered by a second order polynomial. Hence, this method is 


flexible at the moment of detecting slow changes in the trend. It is important to mention that its 


simplicity has made it quite valuable for empirical applications related to monetary policy (for 


                                                 
17 The series of numbers 6 and 23 represent the minimum and maximum of the desired oscillation period, 
respectively, for quarterly data. 
18 The series of numbers 6 and 32 have the same interpretation as in the Baxter-King filter. On the other hand, the 
series of numbers 1,0,0 represent the existence of unit roots, without drift and symmetric filter, respectively.  
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example, Clarida et.al, 1998). However, its use has generated much controversy due to the 


argument that better modeling of the output requires statistical components in the model. Finally, 


the unobserved components model allows us to specify the data generating processes for the 


output time series and use these to identify the trend and cyclical components. In the particular 


case of the model proposed by Clark (1987), it is assumed that the trend component follows a 


random walk process with drift and the cyclical component follows an AR(2) process. The main 


advantage of this type of model is that it allows a richer short-term dynamic specification for the 


model. 


 


3.2. Results 


The output data observed at each point in time were constructed using data compiled from 


the monthly publications (bulletins) of the Central Bank of Chile. For each new statistical entry 


in which a new output record was published an output series was constructed, which included the 


revisions of the data published before.19 As previously mentioned, for the quantitative evaluation 


of uncertainty in the output gap estimates, we consider the period between the first quarter of 


2000 and the last quarter of 2006. Nonetheless, the output gap estimates were calculated based 


on information since 1986.20 In this context, the first time series we work with covers the period 


between the first quarter of 1986 and the first quarter of 2000. The series that follows contains an 


additional quarter not included in the previous series and this occurs successively up until the last 


series, which is comprised of the complete period, that is, from the first quarter of 1986 to the 


last quarter of 2006. Each output series was seasonally adjusted using the X-12 ARIMA 


procedure employed by the Central Bank of Chile. Hence, the series reflect both the revisions 


and the re-estimation of seasonal factors. Finally, the series published in the last quarter of 2006 


is that which we consider as the final series of output, although we are aware that this series 


could still contain unrevised data. 


The compilation of the information described in the previous paragraph produced a total of 


28 output series for each point in time. We apply the five detrending methods described in the 


                                                 
19 In some cases the revisions were observed for one or two quarters back and in others, such as the periods in which 
there are base changes, the revisions were performed on the complete series. 
20 Note that for a statistical filter to produce reasonable results we need at least a complete cycle in the series, which 
implies that long time series are necessary.  
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previous subsection to each of these estimates to calculate the output gap. Following the 


methodology applied by Orphanides and van Norden (1999), our final estimates are the output 


gap series for the last available series and our real-time estimates are the series constructed with 


the last observation of each of the output gaps estimated with the 28 series. Figures 1 and 2 show 


these estimates using the five filters, as well as final and real-time data. 


 


Figure 1: Output Gap Estimates for the Chilean Economy with Final Data 
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Figure 2: Output Gap Estimates for the Chilean Economy with Real-Time Data 
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Note from figures 1 and 2 that most of the estimations generated by the different detrending 


methods reveal similar behavioral patterns as it relates to the increasing or decreasing trends 


across the entire period. This is true for both the estimations using final data and those using real-


time data. The only exception to this rule is observed in the estimation of the output gap based on 


the quadratic trend. It is important to highlight, however, that despite the comovements observed 


in the different series, the magnitude of the changes vary considerably from one method to the 


other. In the same way, the different methods produce a wide range of output gap estimates. The 


average difference between the highest and lowest estimates is 6% when final data are used and 


12% when real-time data are used. The order of magnitude of these differences is considerable 


since they are quite superior to the difference between the highest and the lowest points of the 


business cycle within the period considered (approximately 5% for both types of data and for the 


majority of the filters). On the other hand, the average dispersion that exists between the methods 


is also important and reaches 2.3% when using final data and 4.3% in the case of real-time data. 


Another important characteristic of the estimations using final data is that these tend to be 


clustered between the fourth quarter of 2004 and the third quarter of 2005. In addition, these 


estimates remain relatively close to the end of the analysis period with the exception, once again, 


of the output gap based on the quadratic trend. This latter characteristic is not observed with the 


real-time estimates. To have a qualitative idea of the importance of data revision, figure 3 shows 


the difference between the estimates with final data and those with real-time data for the five 


detrending methods. This difference represents the total revision in the output gap. 
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Figure 3: Total Revisions in the Output Gap for the Chilean Economy  
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As observed in figure 3, the magnitude of the revisions is also important and differs 


substantially between the distinct filters used (the average dispersion of the revisions between the 


different measures is 2.8%). The most extreme cases are observed in early 2004, where the 


revisions of the HP, CF and quadratic trend methods were the most important in the entire 


sample. This is due to the fact that these filters do not adequately capture the change in the signs 


of the output gap in that period (see figures 1 and 2) and, therefore, suggests that real-time 


estimates were imprecise. Also, note that this is not satisfied for the HP and Clark methods and 


as a matter of fact, in that same period the revisions were practically null. The most important 


revisions for these last two filters were observed, on the contrary, at the beginning of the sample. 


For a better understanding of the differences between the estimates with final data and those with 


real-time data, we present descriptive statistics of the output gap estimates and of the revisions, 


respectively, for the five filters considered in tables 2 and 3. Figure 3 shows the time behavior of 


all these estimates. 
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Table 2: Descriptive Statistics of the Output Gap Measures calculated  


with Final and Real-Time Data 


 


  Mean Std Min  Max Corr 


Hodrick-Prescott 


Final Estimates -0.0030 0.0108 -0.0209 0.0177 1.0000 


Real-Time Estimates 0.0020 0.0141 -0.0230 0.0295 0.6109 


Baxter-King 


Final Estimates 0.0016 0.0074 -0.0117 0.0162 1.0000 


Real-Time Estimates -0.0054 0.0068 -0.0203 0.0071 0.5605 


Christiano-Fitzgerald 


Final Estimates 0.0022 0.0075 -0.0133 0.0117 1.0000 


Real-Time Estimates 0.0152 0.0071 -0.0001 0.0287 0.2027 


Quadratic-Trend 


Final Estimates -0.0116 0.0289 -0.0496 0.0452 1.0000 


Real-Time Estimates 0.0009 0.0347 -0.0459 0.0508 0.8408 


Clark 


Final Estimates -0.0103 0.0198 -0.0414 0.0183 1.0000 


Real-Time Estimates -0.0108 0.0199 -0.0385 0.0185 0.9880 


 


Table 3: Descriptive Statistics of the Total Revisions in the Output Gap 


 


  Mean Std Min Max AR 


Hodrick-Prescott -0.005 0.011 -0.024 0.018 0.700 


Baxter-King 0.007 0.007 -0.002 0.019 0.875 


Christiano-Fitzgerald -0.013 0.009 -0.029 0.001 0.939 


Quadratic-Trend -0.013 0.019 -0.039 0.032 0.842 


Clark 0.000 0.003 -0.006 0.006 0.473 


 


 


 


 


 







18 


 


Figure 3: Estimation of the Output Gap and the Total Revisions using Final and Real-Time 


Data for the Five Alternative Filters 


 


(a) Hodrick-Prescott (b) Baxter-King 
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(c) Christiano-Fitzgerald (d) Quadratic-Trend 
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(e) Clark 
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Comparing the results presented in tables 2 and 3 we observe that, on average, the total 


revisions are of the same or of greater magnitude as the output gap estimates for all filters used. 


This result is qualitatively similar to that found in Orphanides and van Norden (1999) for the US 


economy. Something similar occurs in the cases of the HP, BK and CF filters if we compare the 


variability of the output gap estimates and that of the revisions across the sample. As it relates to 


the minimum and maximum points of the business cycle in the period considered, it is important 


to highlight that the estimates with final data and those of real-time data tend to show the lowest 


values in the same period only in the case of the Clark method (see figure 3 panel e). At the other 


extreme, the maximum values of the output estimates with final data and those with real-time 


data coincide in the same period for the BK, the quadratic trend and Clark filters (see panels b, d 


and e of figure 3). This suggests that the majority of the applied filters fail to identify the 


magnitude of the recessive periods. 


On the other hand, the last column of table 2 shows the correlation coefficients between the 


final data estimates and the real-time data estimates for each filter employed. Note that the 


highest correlations are observed for the Clark and the quadratic trend methods, whose 


correlation coefficients are 0.98 and 0.84, respectively, while the filters that produce the lowest 


correlations are those of CF and BK (0.5 and 0.2, respectively). This is consistent with the 


comovements observed in the final data series and the real-time data series of figure 3, since the 


Clark filter, besides showing the lowest values in the revisions (see table 3), has quite similar 


movements in both estimates. On the other extreme, the BK filter shows important revisions and 


opposed movements in its estimations using final and real-time data.  


Another important element that needs to be considered is the degree of persistence that the 


revisions of the output gap estimates could reveal. This is due to the fact that as the revisions 


persist over time, the discrepancies between the final and real-time estimates would tend to be 


maintained or take time to disappear. The last column of table 3 reports the estimated first order 


autocorrelation coefficients for total revisions which indicate that these revisions are highly 


persistent. Indeed, and with the exception of the Clark model, such persistence is found within 


the range of 0.7 for the HP filter and 0.94 for the CF filter. The question yet to be responded is 


whether the distinct measures of the output gap constructed with real-time data are reliable. 


Since the different methods vary substantially with respect to the size of the cyclical component, 


it is more convenient to seek to compare the reliability of the real-time estimates using 
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independent scale measures. It is important to mention that these indicators provide a measure of 


reliability for the distinct filters as it relates to quantifying the difference between the final 


estimates and the real-time estimates. Hence, it does not indicate anything regarding the 


reliability, produced by each of the methods, as tools for the estimation of the “true” output gap 


(Bernhardsen et.al., 2005). Table 4 presents the reliability measures used by Orphanides and van 


Norden (1999).  


 


Table 4: Descriptive Statistics of the Reliability Measures for the Alternative  


Distinct Filters 


 


  Corr N/S Opsign Xsize 


Hodrick-Prescott 0.611 1.055 0.286 0.500 


Baxter-King 0.560 0.902 0.321 0.536 


Christiano-Fitzgerald 0.203 1.229 0.393 0.750 


Quadratic-Trend 0.841 0.650 0.071 0.214 


Clark 0.988 0.156 0.000 0.036 


 


In the first column of Table 4 we present the correlation between the final and the real-time 


series for each method, previously discussed. The remaining three indicators in table 4 measure 


in different ways the relative importance of the revisions. It is important to mention that the ideal 


value for these three indicators is zero. The first indicator, known as N/S, is the ratio of the 


standard deviation of the revision to that of the final estimate of the output gap and seeks to 


approximate the noise-to-signal ratio. As can be observed the methods with greater noise levels 


are the HP and the CF methods, while that with the least noise is the Clark method. On the other 


hand, the OPSING indicator shows the frequency with which the real-time estimates of the 


output gap reveals a different sign when compared to the final estimates. In the case of the HP, 


BK and CF filters, the average error frequency in the sign of the estimation is relatively high 


(approximately 30%), while the quadratic trend and the Clark methods show frequencies that are 


considerably lower, and in some cases even show no error in signs. Finally, the XSIZE indicator 


shows the frequency with which the absolute value of the revision exceeds the absolute value of 


the final estimates of the output gap. As it occurred in the case of the OPSING indicator, the HP, 
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BK and CF filters produce output gap estimates with a large quantity of observations in which 


the revision is larger than the gap itself (frequencies between 50 and 75%), while with the 


quadratic trend and the Clark methods there are much smaller frequencies (between 21 and 3%, 


respectively). It is important to highlight that, once again, the Clark method reveals to be a better 


indicator. 


According to the analysis presented in this section, we can mention that, in general terms, the 


revisions of the output gap in the case of Chile seem to be important and persistent for the period 


considered, and that the correlations between the final estimates and real-time estimates of the 


output gap are relatively low. Nonetheless, the methods that show more favorable statistics are 


those of quadratic trend and Clark’s. In particular, this last method produces the best results 


overall. Reliability indicators also indicate that the most reliable filters that will be used with 


real-time data are the quadratic and Clark methods. Comparing the results obtained with those of 


Orphanides and van Norden (1999) for the US economy, we find that in general the different 


reliability measures produce similar values. However, this comparison should be taken with 


caution since, on one hand, these authors use a much larger study sample period to evaluate the 


reliability and, on the other hand, the set of detrending methods used where not exactly the same. 


In general, these results imply that caution and judgment should be taken when assessing the 


level of the real-time estimates of the output gap. Additionally, our results should be considered 


a lower bound to the measurement errors that could be present in the output gap estimates 


because comparisons are made with respect to a measure of the final output gap that could 


contain unrevised data. 


 


4. Additive and multiplicative uncertainty 


Once the problem of data uncertainty has been dealt with, in this section we focus on the 


empirical importance of the additive and multiplicative uncertainty in the case of Chile. This 


analysis is done for the period 1990 to 2006 with some emphasis in the sub sample 1999-2006, 


the full-fledged inflation targeting period. We adopt the forward-looking specification of 


Svensson (2000) and Al-Eyd and Karasulu (2006) for the equations that govern the behavior of a 


small open economy, as is the case of Chile (i.e, the aggregate demand, the Phillips curve and the 


real uncovered interest parity condition). To capture the sources of uncertainty, we estimate the 
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model with time-varying parameters and assume that shocks have state-dependent variances (two 


states) and that their behavior follows a first order Markov process. In the end, this strategy 


allows us to decompose the conditional variance of the forecast error into two components: one 


component associated with parameter or multiplicative uncertainty and a second component 


attributed to uncertainty dealing with shocks in the model or additive uncertainty.   


 


4.1. Methodological issues 


The empirical literature that has tried to model additive and multiplicative uncertainty have 


typically used models that explicitly consider stochastic volatility potentially present in the errors 


(heteroscedasticity) and time-varying parameters (Zhang and Semmler, 2005). Among  studies 


that have explicitly dealt with parameter uncertainty we can cite Cogley and Sargent (2001), who 


studied the inflation dynamics of the United States in the post World War II period using a 


Bayesian VAR with time-varying parameters (TVP), and Semmler et.al. (2005), who estimated 


the Phillips curve and a monetary policy Taylor rule for the Euro Zone also with time-varying 


parameters. In both cases, the authors found evidence of substantial changes in the model 


parameters. It is important to mention, however, that even though the evidence found when using 


models with time-varying parameters suggests the existence of important degrees of uncertainty, 


in the modeling process this analysis cannot be separated from the additive uncertainty. This is 


so because when additive uncertainty is not considered, volatility in the parameters could be 


exaggerated when it is indeed captured (Sims, 2001). An example can be found in Sims and Zha 


(2006), who study regime changes in the US economy dynamics and find, contrary to Cogley 


and Sargent (2001), much evidence in favor of stable model dynamics but unstable variance of 


the disturbances. Thus, Cogley and Sargent (2005) modify their original model considering both 


the time-varying parameters and the stochastic volatility and also find the existence of regime 


changes. More recent examples of the estimation of Taylor rules with time-varying parameters 


and stochastic volatility can be found in Kim and Nelson (2006) and Zampolli (2006). The 


evidence found for countries such as the United States illustrates the important uncertainty 


associated with the use of the models for policy evaluation. 


According to the previous discussion, to incorporate both types of uncertainty, additive and 


multiplicative, we follow the Zhang and Semmler (2005) approach. In particular, we use a model 
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with time-varying parameters and shocks that have a state-dependent variance. Contrary to   


Cogley and Sargent (2005), who assume that the variance of the shocks change with each period, 


we assume that the variance has only two states (high volatility state and low volatility state) 


which follow a Markov process, as in the works of Sims and Zha (2006).21 This specification, 


besides having the advantage of dealing with both types of uncertainty in the same model, allows 


the decomposition of the variance of the forecast error into two components: that associated with 


additive uncertainty and that associated with multiplicative uncertainty (Kim, 1993). In this 


context, and assuming that we are dealing with Gaussian errors, we can specify the following 


general model for the state equations contained in equation (2) (Kim and Nelson, 1999): 
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where tx , as before, represents a vector of state variables, tv  is a vector of explanatory 


variables in the model,22 tβ  is a vector of parameters that follow a random walk process,23 tε  


and tη  are regression errors (tε  is interpreted as the shocks of the system), 2
, tSεσ  is the state-


dependent variance of the shocks, Q  is the variance-covariance matrix of the parameter-


generating process model errors and tS  is an indicator variable (unobserved) that takes the value 


of 1 when the state is of high volatility, 21,εσ , and 0 otherwise (i.e., the variance of the shocks is 


of low volatility 2
0,εσ ). The transition probabilities of one state to another under the Markov 


process can be written as: 
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21 These authors assume that the variance of the regression errors follow a Markov process with three states. 
22 This vector can contain both the state variable lags and other variables (endogenous and exogenous) that affect the 
behavioral equations of the economy. 
23 This assumption is common in the literature concerning time-varying parameter models. Nonetheless, in the 
analysis of the following section the validity of this assumption was verified with the data. 
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For the estimation of the model presented in equations (5) and (6) we use maximum 


likelihood techniques that combine the use of the Kalman filter and the EM algorithm proposed 


by Hamilton (1989,1990); for a detailed description of the algorithm see Kim and Nelson (1999). 


Since Chile is a small open economy, we use a version of the Svensson (2000) and Al-Eyd 


and Karasulu (2006) specification that can be estimated for the behavioral equations of the 


economy. Such a specification is a version of the Neokeynesian model for a small and open 


economy with perfect capital mobility and, as mentioned above,  is comprised of the IS curve or 


the aggregate demand curve, the short-term aggregate supply (the Phillips curve) and the real 


uncovered interest parity condition. These equations can be written as: 


 


 d
ttttttt qryEyy εθθθθ ++++= −−+− 14131211 ][  (7) 


 s
ttttttt qyE εφφπφπφπ ++++= −+− 4131211 ][  (8) 


 t
f


ttttt rrqEq υγγ +−+= + )(][ 211  (9) 


 


where ty  represents the real output gap, tπ  is the inflation rate, tr  is the short-term real 


interest rate, tq  is the real exchange rate and f
rr  is the foreign real interest rate, observed in 


period t . On the other hand, ][ 1+tt yE , ][ 1+ttE π  and ][ 1+tt qE  represent the expectations for period 


1+t  of the output gap, the inflation rate, and the real exchange rate, respectively, conditional on 


the available information at period t  ( tE  is the expectations operator). The shocks of the 


economy are represented by d
tε , s


tε  and tυ . The first two are aggregate demand and supply 


shocks, respectively, and the third one is associated with the exchange market. In the words of 


Al-Eyd and Karasulu (2006), this last disturbance term could be interpreted as a risk premium 


that captures the effects of the unobservables, such as the exchange market sentiments. Finally, 


iθ  (with 4,3,2,1=i ), iφ  (with 4,3,2,1=i ) and iγ  (with 2,1=i ) are the parameters to be 


estimated. 


It is important to mention two interesting issues of the previous specification. First, the 


explicit inclusion of the exchange rate in the modeling process is relevant for an economy such 
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as Chile that utilizes inflation targeting as a monetary policy framework. Indeed, an important 


additional transmission channel of monetary policy compared to the closed economy models is 


introduced and the external shock effect on the domestic economy is incorporated. Following 


Svensson (2000), the exchange rate affects the inflation rate directly through its effect on the 


domestic prices of the imported goods. Additionally, as it affects relative prices, the exchange 


rate also contributes to the aggregate demand transmission mechanism. Second, the specification 


incorporates both forward-looking and backward-looking terms (hybrid model), a feature for 


which there is some empirical evidence in Chile, at least for the Phillips curve (see Caputo et.al., 


2006, and Céspedes et.al., 2005). The fact that forward-looking terms are introduced in the 


model also contributes to explicitly consider the price and wage-setting rules in the modeling 


process of the sticky price models. In the case of the exchange rate, it allows the incorporation of 


the expectations component, which is inherently forward-looking, on the asset prices,24 which 


plays a key role in monetary policy. 


In spite of the theoretical advantages of the specification in equations (7), (8) and (9), at the 


practical level this presents some potential problems. In particular, the way in which the forward-


looking components are measured or approximated can have important implications in the 


estimation properties (consistency). The literature has proposed various ways to deal with these 


variables, as well as the most appropriate estimation techniques in each case. A first option 


suggested by Roberts (1995), is to use data from expectation surveys, for example those prepared 


on a monthly basis by the Central Bank of Chile, to construct a proxy variable of the 


expectations. This alternative, however, has two potential problems: the first one is associated to 


the availability of long period time series for the estimation; and the second one, acknowledged 


by the same Roberts (1995), is that in general surveys are measured with error. Another option is 


to utilize ex-post data, that is, approximate the expectation variables with their respective 


observed future values. Even though this option is operationally simple, it has an important 


problem since it generates an endogeneity bias in the estimation of the model parameters, which 


leads to inconsistent estimates (Kim and Nelson, 2006).25 To illustrate the problem of 


endogeneity bias note that the forward-looking component of the model, under the assumption of 


                                                 
24  Note that the exchange rate is the price of an asset. 
25 A fact that is relevant if it is considered that one of the objectives of the article is to study precisely parameter 
uncertainty. 
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rational expectations, can be written as: y
tttt yyE 111][ +++ += µ , πµππ 111][ +++ += ttttE  and 


q
tttt qqE 111][ +++ += µ , where j


t 1+µ  with qyj ,,π=  representing the error committed by the agents 


in their forecasts. These forecast errors are highly correlated with the shocks of the economy 


(i.e., the regression errors in the previous specification) and, therefore, upon using the ex-post 


data an endogenous variable is being implicitly introduced in the model.   


To deal with the problem of endogeneity bias, Rudd and Whelan (2005) and Lindé (2005) 


propose to estimate a model using full information maximum likelihood (FIML), for which they 


first transform the forward-looking model into a backward-looking model.26 Even though the 


methodological process of these authors generates more robust estimates compared to other 


estimation methods, it requires a priori precise knowledge of the true model that governs the 


behavior of the economy. In effect, Gali et.al. (2005) using Montecarlo simulations show that the 


FIML estimation, when there are specification errors, present biases that could be quite 


significant in magnitude. This point is highly relevant in the context of the present paper since 


one of the sources of uncertainty is precisely the lack of knowledge or imprecise knowledge of 


the true model of the behavior of the economy. Additionally, the transformation into a backward-


looking model generates a composed error that depends on the model parameters (see footnote 


26) and if this is estimated with time-varying parameters, it would not be possible to separate the 


effect of the shocks (additive uncertainty) from the instability of the parameters (multiplicative 


uncertainty).  


Galí and Gertler (1999), Roberts (2001) and Galí et.al (2005) have proposed an alternative 


methodology to deal with the endogeneity problem, which is based on the use of ex-post data for 


                                                 
26 For the Rudd and Whelan (2005) and Lindé (2005) transformation, for example for the Phillips curve presented in 
equation (8), it is assumed that the agents are rational, which implies that this equation can be expressed as: 


s
ttttttt qy εφφµπφπφπ π +++++= −++− 41311211 )(  


Then, solving for 
1+tπ  the following is obtained: 
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Applying lags to the this equation and renaming the parameters and the error of the model we have: 
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Note that the transformed Phillips curve is in essence backward-looking. Hence, it requires the use of ex-post data 
and therefore it does not present the endogeneity bias problem. 
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the forward-looking component of the model and estimation by the Generalized Moments 


Method (GMM) to instrumentalize the expectations. The use of the GMM techniques to estimate 


the Phillips curve, as well as the forward-looking Taylor rules has been very common in the 


literature. For the case of Chile, there are various examples and to cite only two of them we can 


mention Céspedes et.al. (2005), who estimated a hybrid Phillips curve, and Corbo (2002), who 


estimated a reaction function for the Central Bank. It is important to highlight that this method is 


more robust than the one proposed by Rudd and Whelan (2005) and Lindé (2005) when there are 


specification errors (Galí et.al, 2005), which makes it desirable for the objectives of our paper. 


Kim (2004, 2006), along these lines, recently proposed the application of instrumental variables 


for the estimation with endogenous regressors, in the context of time-varying parameter models 


and with regime changes that follow a Markov process. More specifically, this methodological 


proposal solves the endogeneity problem applying the Kalman filter in a two-stage Heckman 


(1976) estimation. A recent application of this methodology used to estimate a forward-looking 


Taylor rule with ex-post data for the United States can be found in Kim and Nelson (2006). 


Contrary to this latter study, that uses conditional heteroscedasticity models to capture the 


volatility in the variance of the errors, we assume that such variance follows a first order Markov 


process. 


For presentation purposes, we put forward the methodology of Kim (2004, 2006) 


summarized only for the general version of the model described in equation (5). Nonetheless, the 


procedure is easily applied to the specification of the behavioral equations of the economy; 


equations (7), (8), and (9). In this context, we have the following model in its state-space 


representation with time-varying parameters and endogenous variables: 
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where, as before, tx  represents a vector of state variables, tv  is a vector of explanatory variables 


in the model, which are correlated with the errors of the model tε , tZ  is a vector of instrumental 


variables, tβ  and tδ  are time-varying parameters and tη , tξ  and tκ  are Gaussian errors with a 


matrix of variances iQ  with κξη ,,=i . Similarly as before, we assume that the variance of errors 


tε  present two states with transition probabilities that follow a Markov process. Kim (2006) 


proposes to specify the endogeneity present in the model assuming that the correlation that exists 


between the error term tε  and the standardized forecast error associated with the endogenous 


variables *
tξ  (that is, the prediction error associated with the rational expectations of the agents) 


is constant and equal to ρ . On the other hand, and considering that the variance of the errors is 


state-dependent, Kim (2004) suggests that such correlation will also be state-dependent. With 


this, the error of the model can be rewritten as tSSSSStt ttttt
ωσρρσρξε εε ,,


* '1' −+=  with 


)1,0(~ Ntω . Using this last expression we can write the first equation of the model (10) as: 


 


 )1,0(~       '1'' ,,
* Nvx ttSSSSStttt ttttt


ωωσρρσρξβ εε −++=  (11) 


 


where tS S
t


)( 010 ρρρρ −+=  and tS  is the same indicator variable (unobserved) defined 


previously. Note in this last equation that the error of the model is independent of tv  and of *
tξ , 


hence, the estimation generates parameters that are consistent. For the estimation, Kim (2004, 


2006) proposes the following two-stage procedure. The first stage consists in estimating the 


model that instrumentalizes the endogenous variables using the maximum log-likelihood method 


based on the forecast of the error and the conventional Kalman filter, that is: 
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With this we calculate the standardized forecast error of tv  as )'( 1|
2/1
1|,


*
−


−
− −= ttttttt ZvQ δξ ξ  for all 


Tt ,...,2,1= . The second stage consists in using the forecast error calculated previously to 
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estimate the following model by applying maximum log-likelihood techniques that combine the 


use of the Kalman filter and the EM algorithm proposed by Hamilton (1989,1990): 
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As before, we assume that the transition probabilities from one state to another follow a first 


order Markov process and are: pSS tt === − ]1|1Pr[ 1  and qSS tt === − ]0|0Pr[ 1 . The 


estimation algorithm is presented in the appendix. So, what we estimate is the following set of 


equations:   
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Phillips Curve: 
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Real Uncovered Interest Parity: 
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Kim (1993)27 proposes a procedure to decompose the conditional variance of the forecast 


error ( f ), calculated from the estimation of the specifications (14), (15), and (16), into two 


components: (1) 1f  or the conditional variance due to changes (or lack of knowledge) in the 


model parameters, or multiplicative uncertainty, and (2) 2f  or the conditional variance given the 


heteroscedasticity in the error term, or additive uncertainty. For this, the author exploits the 


informational structure of the model related with the probability distributions in the different 


states. In effect, the conditional variance due to the multiplicative uncertainty depends on the 


state in a previous period, while the conditional variance due to additive uncertainty depends on 


                                                 
27 In his paper, Kim (1993) seeks to identify the sources of uncertainty and its importance associated to the process 
of monetary creation in the United States. 
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the state in the current period. This decomposition is quite useful for this paper objectives, since 


it allows us to know what percentage of the total variance of the forecast error is caused as a 


result of each of the sources of uncertainty considered. Formally, and using the same notation of 


the general model presented in equation (10) we have:28 
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where ∑ = −−− == 1


0 1|11| ]|Pr[~
i


i
tttttt iS βψβ  y i


ttP 1| −  is the variance-covariance matrix of itt 1| −β  at 


state i  


 


4.2. Results 


To estimate (14), (15), and (16) we use quarterly data for the period going from the first 


quarter of 1990 to the last quarter of 2006.  For estimation purposes we define the output gap ty  


as the difference between the observed GDP and its trend, which is calculated using the HP 


filter.29 Given that the output series ends in 2006, our measure of the output gap, according to the 


discussion in section 3 above, would be that which we consider there as “final”. Thus, the 


uncertainty associated with data revisions does not form part of the types of uncertainty analyzed 


in this section. However, the calculation methods of the output trend can have an important 


effect on the estimations. This is studied in the robustness analysis presented in the end. On the 


other hand, the quarterly inflation rate tπ  is measured as the quarterly variation of the underlying 


consumer price index (CPIX).30 As in the work of Céspedes et.al. (2005), we use the CPI 


variation instead of the implicit deflator variation of the GDP since the latter, for the case of 


Chile, is measured with considerable noise and is strongly influenced by the variations in the 


terms of trade. Additionally, the target of the central bank is expressed in terms of CPI 
                                                 
28 For details on the formal derivation of the decomposition of the conditional variance of the forecast error see Kim 
and Nelson (1999). 
29 Later in the paper, we replicate the estimations using other filters. 
30 We chose the underlying index to avoid the influence of the regulated prices and of those that show significant 
variations. 
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variations. In the case of the real exchange rate tq  we chose the bilateral exchange rate index 


with the United States. Finally, the foreign and domestic short-term interest rates tr  and f
tr  were 


defined as the monetary policy rates of Chile and the United States, respectively. All the 


previous data were obtained from the Central Bank of Chile database. Table 5 shows the 


parameters estimated using Heckman’s two-stage procedure detailed in Kim (2004, 2006) and 


described in the previous subsection.31  


There are two interesting elements of these estimations that we can highlighted. The first one 


is that variances of shocks confirm the existence of two states in the three behavioral equations: 


one of high volatility and one of low volatility. For the case of the estimations for the aggregate 


demand, note that the variance of shocks in the high volatility state is substantially greater than 


the low volatility state (0.48 vs. 0.05). The difference between these variances for the case of the 


Phillips curve is just as significant (0.54 and 0.03 in the high and low volatility states, 


respectively). In the case of the real uncovered interest parity condition something similar occurs 


(3.27 vs. 6.76), even though the magnitude of the difference is not as huge as in the previous two 


cases. Additionally, all the variances, except that associated with the high volatility state of the 


Phillips curve, are statistically significant. It is important to highlight, however, that even though 


the difference between the variances of shocks for the parity condition is not significant, the size 


of these differences is considerable if we compare them with those found for the aggregate 


demand and the Phillips curve. This is intuitively correct if we consider that the exchange rate is 


in essence an asset price. 


The second element that can be highlighted refers to the existing correlation between the 


shocks of the behavioral equations and the errors in the expectations of the economic agents that 


also vary substantially with the states. In particular, the results suggest that in high volatility 


states in the shocks, agents tend to commit crucial errors in their forecasts. This fact is 


particularly true for the Phillips curve, where such correlation varies between 0.001 and 0.47 for 


both states, and for the real uncovered interest parity condition (0.78 vs. 1). In the case of the 


aggregate demand there is also an important correlation in the high volatility state. Nonetheless, 


the difference between the correlations of both states is less evident than in the previous two 


                                                 
31 It is important to mention that in the application of the Kalman filter for the evaluation of the likelihood function 
we eliminated observations at the beginning of the sample due to the presence of non-stationary time series in the 
model; see Kim and Nelson (1999). 
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cases. Results also indicate that correlation coefficients are highly significant for all cases except 


for the one associated to the low volatility state in the shocks on the aggregate demand. 


 


Table 5: Estimation of the Behavioral Equations   


 


Aggregate Demand   Phillips Curve   Real Uncovered Interest Parity 


Param. Estimated S.D.  Param. Estimated S.D.  Param. Estimated S.D. 


p  0.6571 0.5267   p  0.6639 1.5101   p  0.9992 0.0033 


q  0.6586 0.0644   q  0.8475 0.0501   q  0.9453 0.1156 


θησ
1


 0.0697 0.2565   φησ
1


 2.4407 1.0338   γησ
1


 0.0036 0.0008 


θησ
2


 0.0797 0.2441   φησ
2


 1.2700 0.8449   γησ
2


 0.0000 0.1383 


θησ
3


 0.2942 0.2540   φησ
3


 0.0000 0.0001        


θησ
4


 0.0002 0.0002   φησ
4


 1.6518 0.9554        


0,εσ  0.0570 0.0098   0,εσ  0.0329 0.0084   0,υσ  3.2785 0.2739 


1,εσ  0.4806 0.2347   1,εσ  0.5497 1.2718   1,υσ  6.7694 0.1583 


0ρ  0.5123 0.1594   0ρ  0.0010 0.2473   0ρ  0.7854 0.0866 


1ρ  0.6324 0.1892   1ρ  0.4705 0.1446   1ρ  1.0000 0.0475 


Loglike -64.026   Loglike -80.389   Loglike -114.74 


 


Figures 4 to 6 present the time behavior of the estimated parameters for the three set of 


equations in table 5. In the case of the aggregate demand parameters (figure 4) it can be observed 


that there are three clearly defined periods. The first one, observed up until the mid 90s, is 


characterized by high instability and substantial differences between the parameters of the two 


states associated to the demand shocks. It is important to mention that during this period the 


Chilean economy experienced a substantial fall in its annual GDP growth rate (from rates of 15% 


to rates below 6%) and yet maintained moderate to high inflation rates. In the second period, that 


covered the years of 1998 and 1999, we observed a substantial reduction in the instability of the 


parameters, as well as in the differences of these reductions with respect to the state that 
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characterizes the shocks. However, such parameters still present certain volatility when 


compared with those of the years that followed 1999. The Asian crisis, which occurred during 


this period, seemed to explain, at least in part, the instability that was still present in the 


aggregate demand. The third period, on the contrary, shows much more stability than the 


previous two periods and the parameters, with the exception of the expectations parameter 


regarding output, are quite similar in the two states of the shocks. These results suggest that the 


multiplicative uncertainty associated with the aggregate demand tends to decline over time and 


the period of greater stability coincides with the establishment of the full-fledged inflation 


targeting framework to conduct monetary policy and since 2000, with the implementation of an 


explicit fiscal rule. Another interesting issue we can highlight, besides the propensity to greater 


stability, is  the degree of persistence of the output gap ( t,1θ ) and the response of this to changes 


in  relative prices ( t,4θ ) have been reduced over time, while the contrary has occurred with the 


degree of response to  expectations (t,2θ ) and the monetary policy interest rate (t,3θ ), which 


would be consistent with the logic of the inflation targeting framework. With respect to the 


parameters of the Phillips curve (figure 5), it is clear that these show a significant dependence on 


the state of the supply shocks. In particular, during the periods of high volatility of shocks, the 


parameters tend to also show high instability and when the state of these shocks is of low 


volatility the parameters are much more stable. It is important to mention that, as opposed to 


what is observed in the aggregate demand parameters, this dependence has been maintained 


throughout the entire period. These results suggest that the state of shocks is fundamental in 


explaining greater or lower degrees of uncertainty in the Phillips curve parameters. Another issue 


that can also be observed in figure 4 is that when the economy goes through a period of relative 


calm with respect to the supply shocks, the persistence of the inflation rate (t,1φ ) and the 


importance of  expectations in the determination of the inflation rate ( t,2φ ) are clearly greater 


towards the end of the period analyzed, while the trend is lower  for the case of the response of 


inflation to the business cycle (t,3φ ) and to the variations in the real exchange rate (t,4φ ). 


Contrary to what was previously mentioned, when the supply shocks are highly volatile there is 


no definite trend for the Phillips curve parameters. Finally, the parameters associated with the 


real uncovered interest parity condition (figure 6) show a high degree of instability when the 
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volatility of the external shocks is high, as well as when it is low. This would be related with the 


high degree of variability that these shocks have in both states (see table 5). With respect to the 


model parameters it is clear that these do not have a clear cut trend over time. 


 


Figure 4: Time-Varying Parameters Estimated for the Aggregate Demand 
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Figure 5: Time-Varying Parameters Estimated for the Phillips Curve 
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Figure 6: Time-Varying Parameters Estimated for the Real Uncovered Interest Parity  
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Based on the estimated parameters of the models presented in table 5, we calculated the 


decomposition of the conditional variance of the forecast error using the procedure proposed by 


Kim (1993). Figure 7 shows the decomposition for the set of equations associated with aggregate 


demand. As can be observed, total uncertainty in the behavior of the output gap has been 


relatively high throughout the entire period analyzed (note that the output gap is measured as the 


percentage deviation of output with respect to its trend). On average the forecast error variance 


was 0.021, which was 87.6% explained by uncertainty in the demand shocks (87.6%) and 12.4% 


by instabilities in the model parameters (12.4%) (see table 6). Note also that, consistent with the 


parameters behavior previously commented, total uncertainty showed significant spikes (to 


almost twice the average) in the mid 90s and during the 1998-1999 period. However, after 1999 


total uncertainty declined on average a little over 60% with respect to the average observed 


between 1993 and 1995 and in something less than 25% with respect to that observed between 


1995 and 1998. Something similar has occurred with the contributions of additive and 


multiplicative uncertainty to total uncertainty. Indeed, while parameter instability contributed 


approximately 15% to total uncertainty throughout the 90s, such contribution went down to a 


little over 10% in the period subsequent to 1999. 
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Figure 7: Decomposition of the Conditional Variance of the Forecast Error of the 


Output Gap 
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Table 6: Decomposition of the Conditional Variance of the Forecast Error of the 


Output Gap 


 


  Conditional Variance of the Forecast Error   Percentage 


  TVP MARKOV TOTAL   TVP MARKOV 


              


1993-1995 0.00424 0.02566 0.02990   14.6% 85.4% 


1996-1998 0.00353 0.01881 0.02234   15.5% 84.5% 


1999-2006 0.00208 0.01616 0.01824   10.6% 89.4% 


Total Sample 0.00279 0.01842 0.02121  12.4% 87.6% 


 


 


The decomposition of the conditional variance of the forecast error for the inflation rate is 


shown in figure 8. The results in this case are similar to those found for the output gap as it 


relates to the magnitude and behavior (principally for the decade of the 90s). In effect, the total 


uncertainty associated to the inflation rate has been on average 0.015 for the entire period 
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analyzed. This level of uncertainty is 69.9% explained by uncertainty in the supply shocks and 


30.1% by parameter instability (see table 7). Note that the two recurrent periods of high 


uncertainty, as in the case of the output gap, are in the mid 90s and during the period 1998-1999, 


where uncertainty reached levels greater than twice the observed average for the entire period of 


analysis. An additional issue that can be noted from figure 8 is that in most sub periods, additive 


uncertainty explains a major part of total uncertainty. Nonetheless, for brief episodes in the mid-


90s and during the Asian cries, the contribution pattern is reverted and it is uncertainty in the 


parameters that is most relevant (recall that the model parameters in a high volatility state in the 


supply shocks are much more unstable than in their counterparts of low volatility). Total 


inflation uncertainty, as in the case of the output gap, has been decreasing over time. And also 


the contribution of additive uncertainty grows with time. 


 


Figure 8: Decomposition of the Conditional Variance of the Forecast Error of the 


Inflation Rate 
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Table 7: Decomposition of the Conditional Variance of the Forecast Error of the 


Inflation Rate 


 


  Conditional Variance of the Forecast Error   Percentage 


  TVP MARKOV TOTAL   TVP MARKOV 


              


1993-1995 0.01172 0.01428 0.02599  43.0% 57.0% 


1996-1998 0.00612 0.01099 0.01711  33.7% 66.3% 


1999-2006 0.00337 0.00869 0.01205  24.9% 75.1% 


Total Sample 0.00545 0.01019 0.01563  30.1% 69.9% 


 


Finally, figure 9 presents the decomposition of the conditional variance of the forecast error 


associated with the real exchange rate. In this figure it is observed that total uncertainty, 


measured by the variance, has been quite important throughout the period (approximately 11 on 


average) and basically explained (95%) by uncertainty in the shocks of the real uncovered 


interest parity condition or, according to the interpretation of the previous subsection, uncertainty 


in the risk premium that captures the effects of the unobservables of the exchange market 


sentiments. This result is consistent with what was mentioned before with respect to the nature of 


the exchange rate (an asset price). It is also important to highlight that total uncertainty has not 


shown a defined pattern over time (see table 8). As a matter of fact, since 1999 this uncertainty 


increased with respect to that observed between 1995 and 1998 but practically maintained the 


same levels in the mid 90s.  


Summing up, overall uncertainty is dominated by additive uncertainty in all three set of 


equations (output gap, inflation and the real exchange rate). Moreover, results of the estimations 


of the behavioral equations (aggregate demand and aggregate supply) suggest that the variance 


of shocks is state-dependent and that such states could be considered as high volatility periods in 


the shocks and low volatility periods. For these two set of equations, total uncertainty has 


consistently declined during the current decade, bringing a rather long period of stability (so far) 


that coincides with the establishment of a full-fledged inflation targeting framework for the 


conduct of the Chilean monetary policy and an explicit rule for setting fiscal policy. On the other 


hand, it was observed that in particular periods, such as in the mid 90s and during the period 
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1998-1999, total uncertainty showed substantial increases in the output gap and the inflation rate, 


making clear the two states in the shocks variance and also indicating that during these periods 


the Chilean economy would have experienced a high volatility in such shocks. Finally, the asset 


price nature of the exchange rate is manifested in the behavior of both the parameters of the real 


uncovered interest parity condition and the uncertainty associated with the real exchange rate 


(whose source is basically exchange market shocks). 


 


Figure 9: Decomposition of the Conditional Variance of the Forecast Error of the Real 


Exchange Rate  
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Table 8: Decomposition of the Conditional Variance of the Forecast Error of the Real 


Exchange Rate 


 


  Conditional Variance of the Forecast Error   Percentage 


  TVP MARKOV TOTAL   TVP MARKOV 


              


1993-1995 0.54577 10.54444 11.09022  4.9% 95.1% 


1996-1998 0.37324 10.46275 10.83625  3.4% 96.6% 


1999-2006 0.56164 10.58610 11.14777  5.0% 95.0% 


Total Sample 0.51542 10.55042 11.06592  4.6% 95.4% 
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We use the bootstrap method to verify whether the magnitudes of the variance of the forecast 


error found before for the distinct types of uncertainties are statistically different from zero, 


whether the differences between the variance of such error due to additive uncertainty and that 


due to multiplicative uncertainty are statistically significant and whether the assumption of 


Gaussian errors in the estimation introduces important biases. 


 


Table 9: Bootstrap Decomposition of the Conditional Variance of the Forecast Error 


 


  Gaussian ML   Bootstrap 


    TVP MARKOV TOTAL 


  
TVP MARKOV TOTAL 


  Mean [        CI 95%       ] Mean [        CI 95%       ] Mean [        CI 95%       ] 


Output Gap 


1993-1995 0.00424 0.02566 0.02990   0.00585 0.00572 0.00598 0.05667 0.05542 0.05790 0.06251 0.06119 0.06384 


1996-1998 0.00353 0.01881 0.02234   0.00548 0.00533 0.00564 0.02330 0.02264 0.02401 0.02878 0.02796 0.02961 


1999-2006 0.00208 0.01616 0.01824   0.00193 0.00188 0.00197 0.01807 0.01749 0.01870 0.02000 0.01938 0.02066 


Total Sample 0.00279 0.01842 0.02121   0.00342 0.00334 0.00351 0.02596 0.02524 0.02671 0.02938 0.02860 0.03020 


Inflation Rate 


1993-1995 0.01172 0.01428 0.02599   0.01204 0.01199 0.01207 0.06555 0.02062 0.15871 0.07758 0.03267 0.18638 


1996-1998 0.00612 0.01099 0.01711   0.00588 0.00586 0.00590 0.04010 0.01541 0.09914 0.04598 0.02129 0.09725 


1999-2006 0.00337 0.00869 0.01205   0.00289 0.00288 0.00291 0.02381 0.01130 0.04950 0.02670 0.01420 0.05276 


Total Sample 0.00545 0.01019 0.01563   0.00516 0.00514 0.00518 0.03479 0.01386 0.07986 0.03996 0.01903 0.08616 


Real Exchange Rate 


1993-1995 0.54577 10.54444 11.09022   0.81944 0.77777 0.86192 9.21296 9.02628 9.40670 10.03222 9.83458 10.24011 


1996-1998 0.37324 10.46275 10.83625   0.74982 0.70561 0.79519 9.20454 9.01600 9.39305 9.95438 9.75733 10.16217 


1999-2006 0.56164 10.58610 11.14777   0.91215 0.86287 0.96336 9.19028 8.99863 9.38625 10.10250 9.89786 10.31116 


Total Sample 0.51542 10.55042 11.06592   0.85864 0.81185 0.90699 9.19750 9.00743 9.39136 10.05616 9.85448 10.26448 


 


Table 9 presents the results obtained from the bootstrap of the decomposition of the 


conditional variance of the forecast error for the three set of equations (mean estimation and 95% 


confidence intervals). Additionally, in the same table we present, for comparison purposes, the 


results found before under the assumption of the Gaussian errors in the estimation. The bootstrap 
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re-sampling was done following the methodologies of Stoffer and Wall (1991) and Psaradakis 


(1998) for state-space models that use the Kalman filter and for the sampling of errors with 


Markov regime changes, respectively. There are three important issues we can highlight from the 


results in table 9. First, even though the bootstrap average estimations and the estimations based 


on the assumption of the Gaussian errors differ, the bias does not seem to be important in 


magnitude. This is true even though in some cases this bias is statistically significant (the 


Gaussian estimation falls outside the bootstrap interval boundaries). Second, the bootstrap 


estimations confirm what was mentioned before with respect to, on one hand, the observed 


decreasing trend of  uncertainty over time for the output gap and the inflation rate, and on the 


other hand, and that uncertainty in the real exchange rate does not have a defined pattern. 


Finally, and more importantly, the bootstrap results suggest that uncertainty in all cases is 


statistically different from zero (no interval includes a level of zero uncertainty) and that the 


differences observed in the decomposition of the variance, that is, the contributions of the 


additive and multiplicative uncertainty to the total uncertainty, are statistically significant (no 


interval crosses). 


To conclude this subsection we present a robustness analysis for the decomposition of the 


forecast error variance. In section 3 above we found evidence of important differences in the 


estimation of the output gap when we consider five output detrending methods. Given that 


aggregate demand and the Phillips curve utilize an output gap measure for its estimation, 


measurement errors in the estimation of this variable will be a part of the additive and 


multiplicative uncertainty without any possibility of discrimination. Tables 10 and 11 show the 


results of the decomposition of uncertainty in its two sources, additive and multiplicative, for 


these two equations and for each of the five filters used in section 3. The first row of both tables 


show the decomposition presented in the analysis of this subsection, where the gap was 


calculated using the HP filter, and hence, represents our benchmark. In the case of the output gap 


(table 10) it is observed that in general total uncertainty is quite similar for all filters and that 


differences, as is expected, arises in the contribution of each one of the types of uncertainty to 


total uncertainty. However, all detrending methods keep additive uncertainty as the most 


important source of uncertainty (its contribution varies from a minimum of 84.7% with the BK 


filter and a maximum of 90% with the Clark filter). With respect to the inflation rate (table 11) 


the difference between the filters can be observed in both the estimation of total uncertainty and 
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the contributions of each type of uncertainty to total uncertainty. In the former case, the 


estimations are found in the range of 0.01374 and 0.02274 calculated using the BK filter and the 


quadratic trend, respectively, while the contributions of the additive uncertainty vary between 


66.6% obtained using the BK filter and 73.5% using the Clark filter. It is important to highlight 


that in this case additive uncertainty is also the relevant source to explain total uncertainty of 


inflation, regardless of the method considered for the estimation of the output gap. These results 


strengthen the conclusions mentioned before with respect to the importance of this last type of 


uncertainty for the Chile’s economy.  


 


Table 10: Robustness Analysis for the Decomposition of the Conditional Variance of the 


Forecast Error of the Output Gap 


 


  Conditional Variance of the Forecast Error   Percentage 


  TVP MARKOV TOTAL   TVP MARKOV 


Hodrick-Prescott 0.00279 0.01842 0.02121  13.2% 86.8% 


Baxter-King 0.00314 0.01734 0.02048  15.3% 84.7% 


Christiano-Fitzgerald 0.00304 0.01733 0.02037  14.9% 85.1% 


Quadratic-Trend 0.00287 0.01901 0.02189  13.1% 86.9% 


Clark 0.00200 0.01803 0.02003  10.0% 90.0% 


 


Table 11: Robustness Analysis for the Decomposition of the Conditional Variance of the 


Forecast Error of the Inflation Rate 


 


  Conditional Variance of the Forecast Error   Percentage 


  TVP MARKOV TOTAL   TVP MARKOV 


Hodrick-Prescott 0.00545 0.01019 0.01563  34.8% 65.2% 


Baxter-King 0.00385 0.00988 0.01374  28.0% 72.0% 


Christiano-Fitzgerald 0.00393 0.01006 0.01398  28.1% 71.9% 


Quadratic-Trend 0.00761 0.01514 0.02274  33.4% 66.6% 


Clark 0.00504 0.01397 0.01901  26.5% 73.5% 
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5. Final Remarks 


Macroeconomic policy in Chile is currently of world class quality. The Central Bank of Chile 


has been operating within a full-fledged inflation targeting framework since 1999-2000 while 


fiscal policy has been bounded by an explicit budget rule that takes away pro-cyclical influences 


since 2001. As a result, inflation has stayed within the inflation target range most of the time and 


economic activity has grown steadily between 2 and 6% annually (with no recessions nor booms 


whatsoever). This rather stable period also shows in our findings here, in the sense that overall 


uncertainty concerning monetary policy has declined in the first seven years of the current 


decade. It has also implied a greater role for uncertainty attributed to shocks (and less to 


uncertainty linked to unstable parameters) in both the case of inflation and the output gap, as it 


could be expected. However, the prominence of additive uncertainty is a hallmark for the entire 


period, including both the tranquil first decade of the 21st century and the more volatile 90s. This 


means that the Central Bank of Chile should concentrate much of its future research effort in 


investigating the (stochastic) nature of shocks affecting the Chilean economy rather than 


perfecting further its models in search of more stable parameters.  


The full-fledged inflation targeting scheme applied since 1999 came with a floating exchange 


rate and no explicit or implicit target for the exchange rate (as it was loosely the case during most 


of the 90s). But this important policy innovation did not change uncertainty surrounding the real 


exchange rate, which suggests (although not necessarily implies) that the floating regime has not 


brought more real exchange rate volatility.  


Finally, results reported on uncertainty about the quality and completeness of output gap data 


reveal that, among other things, using the Hodrick-Prescott filter based on real time data could be 


misleading. So, the Central Bank of Chile should amplify its spectrum of filters for detrending 


real activity data and, more importantly, widen the menu of proxy variables to check for the 


economy’s temperature when making its monetary policy decisions. 
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Appendix A: Estimation based on the Kalman filter and the EM 


algorithm (Kim and Nelson, 1999) 


 


1. Kalman Filter 
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Appendix B: Kalman filter with endogenous regressors (Kim, 2006) 


 


1|
1


1|1|1|1
*


|


1|
1


1|1|1|1
*


|


2
1|1


*
1|


*
1|11


*
1|


1|11
*


1|


1|11
*


1|


'),,|(


),,|(


)'1('),,|(


''),,|(


),,|(


),,|(


−
−


−−−−


−
−


−−−−


−−−


−−−−


−−−−


−−−−


−==


+==


−+==


−−=−=


+==


==


tttttttttttttttt


ttttttttttttttt


tttttttttt


tttttttttttt


tttttttt


tttttttt


PvHvPPvVarP


HvPvE


vPvvxVarH


vxvxEx


QPvVarP


vE


ψξβ


τβψξββ


σρρψξ


ρσξβψξτ


ψξβ


βψξββ


ε


ε


η


 


 


Appendix C: Loglikelihood function (Kim and Nelson, 1999) 
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Macroeconomic and monetary policies


from the "eductive" viewpoint.


R. Guesnerie.
Collège de France, Paris School of Economics.


November 5th, 2007, Preliminary.


1 Introduction


The �quality�of coordination of expectations is a key issue for monetary policy.
The question involves di¤erent, but interrelated channels, involving the �credi-
bility�of the Central Bank intervention and the ability of decentralized agents
to coordinate on a dynamical equilibrium.
Unsurprisingly, the understanding of the learning process of the agents is a


key ingredient of the analysis of the quality of expectational coordination. Many
studies focus attention on �evolutive�, real time learning rules (adaptive learning
rules, etc. . . ). The �eductive� viewpoint, as illustrated in many references of
this bibliography and in my 2005 MIT Press book, partly abstracts from the
real time dimension of learning, with the aim of exhibiting more directly the
systems�characteristics that are coordination-friendly.
The objective of the paper is to confront the methods and philosophy of


analysis of expectational coordination, that refer to what I just called the
"eductive" viewpoint and the actual method and philosophy that underly most
present studies of learning in the context of macroeconomic and monetary pol-
icy. The paper aims primarily at giving a synthetical �avour of the "eductive"
viewpoint as well as presenting a brief review of existing results in the context
of dynamical systems Existing applications of the "eductive" method to macro-
economics bear on general equilibrium (2) or dynamical systems (3) 1but not
directly on monetary policy issues. The exploration of the di¤erences between
the traditional viewpoint and this other viewpoint in standard monetary policy
models is extremely tentative, although it seems to me potentially promising
This text will hopefully generate new re�ection in the directions stressed
The paper will proceed as follows:


1See in particular, Guesnerie R. (2001) �"Short run expectational coordination: Fixed
versus �exible wages." Quarterly Journal of Economics, p. 1115,1147, Evans G., R. Guesnerie
(2005) "Coordination on saddle path solutions: the eductive viewpoint, 2 - Linear multivariate
models, Journal of Economic Theory, 2005, p.202-229.
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- It will recall the logic of the �eductive�viewpoint and stress di¤erences
as well as complementarities with the �evolutive�viewpoint.
- It will contrast the viewpoints for the theory of abstract dynamical


systems, emphasizing the problem of heterogeneity of expectations.
- It will select a sample of models for which it will start comparing the


standard learning viewpoint and the so-called �eductive�approach.


2 Expectational stability : the "eductive view-
point".


The notion of "eductively stable" equilibrium or "strongly rational equilibrium"
relies on considerations that have a game-theoretical underpinning, and refer
to "rationnalizability", "dominance solvability", "Common Knowledge" ideas.
This provides a "high tech" justi�cation of the expectational stability criteria
that are proposed. I �rst put emphasis on this "high tech" approach for propos-
ing global concepts of expectational stability (2-A). I turn then to the local
transposition of the global ideas and stress that the criteria have now, besides
the previous "high tech" justi�cation a low tech, intuitive interpretation (2-B).
I �nally comment on the connections between the "eductive" viewpoint and the
standard "evolutive" learning viewpoint (2-C).


2.1 Global "eductive" stability.


We are in a world populated of rational economic agents, (in all the follow-
ing, I shall assume that these agents are in�nitesimal and associated with a
continuum2), rationality of the agents is Common Knowledge and so are the in-
teractions between them (the model is Common Knowledge, from now on CK).
The state of the system is denoted E and belongs to some subset E of some
vector space. An equilibrium of the system is a state E* such that if everybody
believes that it prevails, it does prevail. (Note that this implies in particular
that the assertion it is CK that E=E* is not absurd).
Note that E can be a number, (the value of an equilibrium price in Guesnerie


(1992) or quantity Guesnerie (2001) or a growth rate, in Evans-Guesnerie(2003)),
a vector (of equilibrium prices, or quantities, in Guesnerie (2005), Chapter
6), a function, (the equilibrium demand function in many �nance models see
Desgranges (2000), Heinemann (2004), Desgranges-Heinemann (2005), Ben Po-
rath(2006) or an in�nite trajectory of states, (in Evans-Guesnerie (2005), a
probability distribution.in Desgranges-Gauthier(2003)
Let us make a presentation which is both abstract (although not fully ex-


plicit) and synthetical


2The mathematical di¢ culties and speci�cities of the continuum, and the connection of
rationalizability in this setting and in standard game theoretical setting is analysed in Jara
(2007).
Guesnerie-Jara (2007) also àbtainrather genereal results on global "eductive" stability.
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We say that E* is "eductively" stable of "strongly rational" iif Assertion A
implies assertion B.
Assertion A : It is CK that E 2 E (and implicitely that Bayesian rationality


and the model are CK)
Assertion B : it is CK that E=E*.


The mental process that leads from Assertion A to Assertion B is the fol-
lowing.
1- As every body knows that E 2 E , everybody knows that everybody limits


its responses to actions that best responses to some probability distributions
over E . It follows that everybody knows that the state of the system will be in
E(1) � E
2- If E(1) is a proper subset of E , the mental process goes on as in step 1,


but with E(1) instead of E .
3- etc...
We then have a (weakly) decreasing sequence E(n) � E(n � 1) � :::: �


E(1) � E . When the sequence converges to E*, the equilibrium is strongly,
rational or "eductively" stable. When it is not the case, the limit set is the set
of rationalizable equilibria of the model. (See Guesnerie-Jara-Moroni (2007)).
Global "eductive" stability is clearly very demanding, although it can be


shown to hold under plausible economic conditions in a variety of models, either
partial equilibrium (Guesnerie (1992)), general equilibrium (Guesnerie (2001)),
�nance and transmission of information through prices (Desgranges-Geo¤ard-
Guesnerie (2002)), or in general settings involving strategic complementarities
or substitutabilities (Guesnerie-Jara-Moroni(2007).


2.2 Local "eductive" Stability


Local "eductive stability may be de�ned through the same �high tech" or hy-
perrationality view (2B-1). However, the local criterion has also a very intuitive
and low tech and boundedly rational interpretation (2B-2).


2.2.1 Local "eductive" stability as a CK statement.


We say that E* is locally "eductively" stable or locally "strongly rational" iif
one can �nd some non trivial neighbourhood of E*, V (E) such that Assertion
A implies assertion B.
Assertion A : It is CK that E 2 V (E)
Assertion B : it is CK that E=E*.
Hypothetically, the state of the system is assumed to be in some non-trivial


neighbourhood of E*, and this hypothetically CK assumption implies the CK
of E*.
In other words, the deletion of non-best responses, starts under the assump-


tion that the state of the system is close to the equilibrium state. In that sense,
the viewpoint refers to the same hyper-rationality view as referred to before.
However, the statement can be read in a simpler way.
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2.2.2 Local "eductive" stability as a common sense requirement.


It seems intuitively plausible to de�ne local expectational stabilty as follows :
there exists a non trivial neighbourhood of the equilibrium such that if every-
body believes that the state of the system is in this neighbouhood, whatever
the speci�c form taken by eveybody�s belief, it is the case that the state is in
the stressed neighbouhood. Intuitively absence of such a neighbourhood signals
some tendancy to instability : there can be facts falsifying any conjecture on
the set of possible states, unless this set reduces to the equilibrium itself.
Naturally, it is easy to check, and left to the reader, that the failure of


getting local �expectational stability� is a failure of the above local intuitive
requirement.


2.3 "Eductive" versus "evolutive" learning stability.


There is an informal argument, due to Milgrom-Roberts (1990), according to
which, in a system that repeats itself, non best responses to existing observations
will be deleted after a while, initiating a �real time� version of the notional
time deletion of non-best responses underlying �eductive� reasoning. Let us
focus here on the connections between local �eductive stability�and the local
convergence of �evolutive�learning rules. What the �eductive stability�involves
is that once, for whatever reasons, the (possibly stochastic) beliefs of the agents
will be trapped in V (E), they will remain in V (E), as soon as the updating
process is let us say, Bayesian. Although it is not quite enough to be sure
any �evolutive�learning rule will converge, it is the case that in many settings,
one can show that local �eductive� stability involves that every �reasonable�
evolutive real time learning rule converges asymptotically (see Guesnerie (2002)
, Gauthier-Guesnerie (2005), ). Furthermore, it should be clear that the failure ot
�nd a set V (E) for which the the equilibrium is locally strongly rational, signals
a tendancy for reasonable states of beliefs, close to the equilibrium, and then
probably compatible with some reasonable evolutive updating, to be triggered
away in some cases, a fact that threatens the convergence of the corresponding
learning rule.
Hence, our very abstract and hyper-rational criterion, provides a short cut


for understanding the di¢ culties of expectational coordination, without enter-
ing into the business of specifying the real time, bounded rationality consider-
ations that may matter. Naturally, the �eductive� criterion is in general more
demanding than most fully speci�ed �evolutive�learning rules one can think of
(see previous references).


In cases of models with �extrinsic uncertainty�, the equilibrium is a proba-
bility distribution, a state of the system in the sense of the word taken here is
a probability distribution. An observation is not an observation on the state in
our sense, but an information on the state in the standard sense of the word.
�Evolutive and �eductive learning may di¤er signi�cantly..
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3 "Eductive" versus "evolutive" learning in in-
�nite horizon models.


Models used for monetary policy generally adopt an in�nite horizon approach.
This section reviews existing results on "eductive" stability in in�nite hori-
zon models. It is based on Desgranges-Gauthier (2002) Gauthier (), Evans-
Guesnerie (), Gauthier-Guesnerie (). The review will allow to confront the game-
theoretically oriented viewpoint stressed here with the standard macroeconomic
approach to the problem as reported in Evans-Honkappohja (2001).


3.1 Standard expectational analysis in one-dimensional one
step-forward memory one models.


3.1.1 The model


Consider a one-dimensional model in which the state of the system to-day is
determined form its value yesterday and its expected value to-morrow, according
to the linear (for the sake of simplicity) equation :


E [x(t+ 1) j It] + x(t) + �x(t� 1) = 0;


where x is a one-dimensional variable  and � are real parameters (; � 6= 0).3 .
A perfect foresight trajectory is a sequence (x(t); t � �1) such that


x(t+ 1) + x(t) + �x(t� 1) = 0


in any period t � 0, given the initial condition x(�1).
Assume that the equation g1 = �g21 � � has only two real solutions �1 and


�2 (which arises if and only if 1�� � 0) with di¤erent moduli (with j�1j < j�2j
by de�nition). Therefore, given an initial condition x(�1), there are two perfect
foresight solutions : x(t) = �x(t�1);i.e x(t) = �1x(t�1). and x(t) = �2x(t�1).
The steady state sequence (x(t) = 0; t � �1) is a perfect foresight equilib-


rium if and only the initial state x(�1) equals 0. The steady state is a sink if
j�2j < 1, a saddle if j�1j < 1 < j�2j, or a source if j�1j > 1. We focus attention
here on the so-called saddle-path case : the solution x(t) = �1x(t�1), generally
called the saddle path has been stressed for a long time by economists as the
focal solution, on the basis of arguments that refer to expectational plausibility.
We review, �rst, the standard expectational criteria that are used and con�rm
that the saddle-path solution �t them.


3.1.2 The standard expectational criteria.


Determinacy. The �rst criterion is determinacy. Determinacy means that
the equilibrium under consideration is locally isolated. In our in�nite horizon
setting, determinacy has to be viewed as a property of trajectories : a trajectory


3Such dynamics obtain from linearized versions of overlapping generations models with
production, at least for particular technologies (Reichlin (1986)), etc....
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(x(t); t � �1) is determinate if there is no other trajectory (x0(t); t � �1) that
is close to it. This calls for a re�ection about the notion of proximity of trajec-
tories, i.e to the choice of a topology. Yet the choice of the suitable topology is
open. The most natural candidate is the C0 topology, according to which two
di¤erent trajectories (x(t); t � �1) and (x0(t); t � �1) are said to be close when-
ever jx(t)� x0(t)j < ", for any " > 0 arbitrarily small, and any date t � �1. In
fact, with such a concept of determinacy, the saddle-path solution, along which
x(t) = �1x(t� 1) when j�1j < 1 < j�2j, is the only non-explosive solution to be
locally determinate in the C0 topology.


Growth rates determinacy. In the present context of models with memory,
a saddle solution is characterized by a constant growth rate of the state variable
This suggests that determinacy should be applied in terms of growth rates,
in which case closedness of two trajectories (x(t); t � �1) and (x0(t); t � �1)
would require that the ratio x(t)=x(t � 1) be close to x0(t)=x0(t � 1) in each
period t � 0. This is an ingredient of a kind of C1 topology, as advocated by
Evans and Guesnerie (2003a). In this topology, two trajectories (x(t); t � �1)
and (x0(t); t � �1) are said to be close whenever both the levels x(t) and x0(t)
are close, and the ratios x(t)=x(t�1) and x0(t)=x0(t�1) are close, in any period.
As stressed for example by Gauthier (2002), the examination of proximity in


terms of growth rates leads consideration of the dynamics with perfect foresight
in terms of growth rates.
De�ne


g(t) = x(t)=x(t� 1);


For any x(t�1) and any t � 0, then the perfect foresight dynamics implies :


x(t) = � [g (t+ 1) g (t) + �]x(t� 1)


Or
g (t) = � [g (t+ 1) g (t) + �]


Associated with the initial perfect foresight dynamics, is then a perfect fore-
sight dynamics of growth rates. The growth factor g (t) is determined at date t
by the correct forecast of the next growth factor g (t+ 1) : This new dynamics
is non-linear, and it has a one-step forward looking structure, without predeter-
mined variable.
We have then reassessed the problem in terms of one-dimensional one step


forward looking models which are more familiar


Sunspots on growth rates Maintaining the focus on growth rates, let us
now de�ne a concept of sunspot equilibrium, in the neighborhood of a constant
growth rate solution. Suppose that agents a priori believe that the growth factor
is to be perfectly correlated with sunspots (sunspots are generated by a Markov
process)
Namely, if the sunspot event is s at date t, they a priori believe that g(t) =


g(s), that is x(t) = g(s)x(t� 1).
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Thus, their common forecast is


E [x(t+ 1) j It] = �(s; 1)g(1)x(t) + �(s; 2)g(2)x(t),
where �(s; 1) and �(s; 2) are the sunspot transition probabilities. As shown by
Desgranges and Gauthier (2003), this consistency condition is written g(s) =
� [ [�(s; 1)g(1) + �(s; 2)g(2)] g(s) + �].
When g(1) 6= g(2);the formula de�nes a sunspot equilibrium on the growth


rate, as soon as the stochastic dynamics of growth rates is extended as g (t) =
�E [g (t+ 1) j It] g (t)� �. 4


Evolutive learning on growth rates. It makes sense to learn growth rates
from past observations. Agents then update their forecast of the next period
growth rates from the observation of past or present actual rates.
Reasonable learning rules in the sense of Gauthier-Guesnerie (2005) consist


of adaptive learning rules that are able to �detect cycles of order two�.


Iterative Expectational Stability. (IE Stability) We shall refer here to
IE-stability criterion (see Evans (1985), de Canio, (1978). Lucas (1979)), and
apply it to conjectures on growth rates


Let agents a priori believe that the law of motion of the economy is given
by


x(t) = g(�)x(t� 1);
where g(�) denotes the conjectured growth rate at step � in some mental


reasoning process. Then, they expect the next state varaible to be g(�)x(t), so
that the actual value is x(t) = ��x(t � 1)=(g(�) + 1). Assume that all the
agents understand that the actual growth factor is ��=(g(�) + 1) when their
initial guess is g(�), they should revise their guess as


g(� + 1) = � �


g(�) + 1


This is the IE-stability criterion. By de�nition, IE-stability obtains whenever
the sequence (g(�); � � 0) converges toward one of its �xed point, a fact that is
interpreted as re�ecting the success of some mental process of learning. Since
this dynamics is the time mirror of the perfect foresight dynamics of growth
rate, a �xed point �1 or �2 is locally IE-stable if and only if it is locally unstable
in the previous growth rates dynamics, that is locally determinate.


3.1.3 Standard criteria versus �eductive stability�.


This is, within a simple model, a somewhat careful reminder of the four possible
and more or less standard viewpoints on �expectational stability�. We want to
compare their viewpoints with the so called �eductive viewpoint� emphasized
here. The comparison is made easier when one notes that it turns out that here
these a priori di¤erent approaches of the problem lead to the same result.


4Clearly this equivalence relies on special assumptions about linearity and certainty equiv-
alence.
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An equivalence theorem on standard �expectational criteria� Propo-


sition . Equivalence principle in one-step forward, memory one, one-dimensional
linear systems.
Consider a one-step forward looking model (with one lagged predetermined


variable, where ; � 6= 0. Assume that we are in the saddle-path case. Then the
following four statements are equivalent:
1. A constant growth rate solution is locally determinate in the perfect fore-


sight growth rate dynamics and equivalently here in determinate in the C1 topol-
ogy of trajectories.
2. A constant growth rate solution is locally immune to (stationary) sunspots


on growth rates.
3. For any a priori given �reasonable� learning rules bearing on growth


rates,constant growth rate solution is locally asymptotically stable.
4. A constant growth rate solutiona is locally IE stable.
In particular, a saddle-path solution meets all these requirements.This is


shown in Gauthier-Guesnerie (2005),using previous �ndings The fact that "rea-
sonable" learning processes converge relies on a de�nition of reasonableness inte-
grating the suggestions of Grandmont-Laroque (1991) and results of Guesnerie-
Woodford (1991).


4 Multidimensional one-step forward looking lin-
ear models with memory one


4.1 The framework


We now consider a multidimensional linear one-step forward looking economy
with one predetermined variable, formalized as : GE (x(t+ 1) j It) + x(t) +
Dx(t� 1) = o,
where x is a n� 1 dimensional vector, G and D are two n�n matrices, and


o is the n� 1 zero vector.
A perfect foresight equilibrium is a sequence (x(t); t � 0) (a trajectory)


associated with the initial condition x(�1), and such that : Gx(t+ 1) + x(t) +
Dx(t� 1) = o.
The dynamics with perfect foresight is governed by the 2n eigenvalues �i


(i = 1; :::; 2n) of the following matrix (the matrix associated with the dynamics
(x(t+ 1);x(t)) as a function of (x(t);x(t� 1))


A =


�
�G�1 �G�1D
In 0


�
,


where 0 is the n-dimensional zero matrix.
Let by de�nition j�ij < j�j j whenever i < j (i; j = 1; :::; 2n). From now, we


focus attention on the generalized saddle-point case, where j�nj < 1 < j�n+1j.
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In what follows, we consider the perfect foresight dynamics restricted to a
n-dimensional eigensubspace, and especially in one spanned by the eigenvectors
associated with the n roots of lowest modulus.
Let ui denote the eigenvector associated with �i (i = 1; :::; 2n). Assuming


that all the eigenvalues are distinct, the n eigenvectors form a basis of the
subspace associated with �1; :::; �n. Let:


ui =


�
~vi
vi


�
where vi and ~vi are of dimension n. We check that if ui is an eigenvector, then
~vi = �ivi.
Hence, if we pick up some x(0), then if the n-dimensional subspace generated


by (u1; :::;un)is in general position, we can �nd a single x(1) =
P
ai�i in the


subspace and generate a sequence (x(t); t � 0); (x(2) =
P
ai�iui following the


just de�ned dynamics. This generates a solution, which is converging in the
saddle path case.
The methodology proposed for constructing constant growth rates solution


in the previous Section can be replicated to obtain what is called minimum order
solutions. Assume that


x(t) = Bx(t� 1) (1)


in every period t, and for any n-dimensional vector x(t�1) (B is an n:n matrix).
Also, x(t + 1) = Bx(t). Thus, it must be the case that B = �(GB + In)�1D,
or equivalently (GB + In)B +D = 0. A matrix �B satisfying this equation is
what Gauthier (200) calls a stationary extended growth rate. 5


4.1.1 The expectational plausibility of Extended Growth Rates so-
lutions according to standard criteria.


We will concentrate on three of the above criteria : determinacy, immunity to
sunspots, and IE-stability.


Determinacy. Determinacy is viewed through a dynamics of perfect foresight
extended growth rates that extends the dynamics of growth rates previously
introduced. Consider for every t, B(t) a n-dimensional matrix whose ijth entry
is equal to �ij(t) and x(t) = B(t)x(t� 1):
B(t) is a time variable, non-stationnary extended growth rate.
As x(t+1) = B(t+1)x(t);the dynamics with perfect foresight of the endoge-


nous state variable x(t) induces a dynamics with perfect foresight of extended
growth rates B(t) that is obtained by considering


GB(t+ 1)x(t) + x(t) +Dx(t� 1) = o
5 It is shown in Evans and Guesnerie (2003b) that �B = V�V


�1, where � is a n�n diagonal
matrix whose iith entry is �i (i = 1; : : : ; n) and V is the associated matrix of eigenvectors.
In what follows, we focus attention on the saddle-point case, where j�nj < 1 < j�n+1j.
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, x(t) = �(GB(t+ 1) + In)�1Dx(t� 1)
,provided that GB(t + 1) + In is a n-dimensional regular matrix. Then, the
perfect foresight dynamics is de�ned by a sequence of matrices (B(t); t � 0)
such that :


B(t) = �(GB(t+ 1) + In)�1D, (GB(t+ 1) + In)B(t) +D = 0


.This de�nes the extended growth rates perfect foresight dynamics. Its �xed
point are the stationary matrices �B such that B(t) = �B in whatever t. De-
terminacy of the matrix �B; is standardly de�ned as the fact that �B is locally
isolated, i.e that there does not exist a sequence B(t) of perfect foresight ex-
tended growth rates converging to �B.


Sunspot equilibrium. A sunspot equilibrium on extended growth rates, is
de�ned in the same spirit as for the one-dimensional system. Then, the whole
matrix B(t) that links x(t) to x(t�1) has to be exactly correlated with sunspots.
If sunspot event is s (s = 1; 2) at date t, so that


E (x(t+ 1) j s) = [�(s; 1)B(1) + �(s; 2)B(2)]B(s)x(t� 1):
x(t) = � [G [�(s; 1)B(1) + �(s; 2)B(2)]B(s) +D]x(t� 1).


In a sunspot equilibrium, the a priori belief that B(t) = B(s) is selful�lling
whatever x(t� 1); so that :


B(s) = � [G [�(s; 1)B(1) + �(s; 2)B(2)]B(s) +D] .


Iterative Expectational Stability. What about here, the IE-stability cri-
terion ?


At virtual time � of the learning process, let assume that agents believe
that, whatever t:


x(t) = B(�)x(t� 1),
where B(�) is the �th estimate of the n-dimensional matrix B. Their forecasts
are accordingly:


E (xt+1 j It) = B(�)xt.
The actual dynamics is obtained by reintroducing forecasts into the temporary
equilibrium map (??):


GB(�)xt + xt +Dxt�1 = o, x� = �(GB(�) + In)�1Dx��1.


As a result, the dynamics with learning is written:


B(� + 1) = �(GB(�) + In)�1D. (2)


Comparing this set of equations with the previous one, a stationary egr �B is
locally IE-stable if and only if the above dynamics is converging when B(0) is
close enough to �B.
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4.1.2 The dynamic equivalence principle


We can state the following proposition :
Proposition 4. Equivalence principle in one-step forward, memory one, multi-
dimensional linear systems.
Consider a stationary egr
The following three statements are equivalent:
1. The egr solution is determinate in the perfect foresight extende growth


rates dynamics.
2. The egr solution is immune to sunspots, that is, there are no neighbour


local sunspot equilibria on extended growth rates with �nite support, as de�ned
above.
3. The egr solution is locally IE-stable.
In particular, the saddle-path like solution (that exists when the n smallest


eigenvalues of A have modulus less than 1, the (n+1)th has modulus greater
than 1) meets all these conditions.
Again, this is proved in Gauthier-Guesnerie (2005)
The �avour of this statement is very close to that of the statement obtained


in the one dimensional case.
Note however, that the connection between �evolutive�learning and �educ-


tive� learning is less crystal clear. Adaptive learning processes bearing on the
multi-dimensional object extended growth rates is less easy to assess that in the
one-dimensional case of previous section.


4.2 �Eductive Stability�


4.2.1 The underlying strategic framework.


The discussion of the basic viewpoint of eductive learning requires that some
game theoretical �esh be given to the dynamical model under scrutiny, i.e
that embed the dynamic model in a dynamic game as in Evans and Guesnerie
(2003b).
We repeat, for the sake of completeness, the presentation of the construct of


Evans and Guesnerie (2003).
An OLG context is assumed. At each period t, there exists a continuum of


agents. A part of the agents �react to expectations�., another part uses strategies
that are not reactive to expectations (in the evoked OLG context, these are the
agents, who are at the last period of their lives), The former are denoted !t
and belong to a convex segment of R; endowed with Lebesgue measure d!t:
It is assumed that an agent of period t is di¤erent from any other agent


of period t
0
; t


0 6= t: More precisely, agent !t has a (possibly indirect) utility
function that depends upon
1) his own strategy s(!t);
2) su¢ cient statistics of the strategies played by others i.e. on yt = F (�!t fs(!t)g ; �);


where F in turn depends �rst, upon the strategies of all agents who at time t re-
act to expectations, and second, upon (�), which is here supposed to be su¢ cient
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statistics of the strategies played by those who do not react to expectations, and
that includes but is not necessarily identi�ed with �see below �yt�1,
3) �nally upon the su¢ cient statistics for time t + 1; as perceived at time


t: i.e. on yt+1(!t), which may be random and, now directly, upon the su¢ cient
statistics yt�1:
Here, strategies played at time t can be made conditional on the equilibrium


value of the of the t su¢ cient statistics yt: If we denote (�) both (the product of)
the probability distribution of the random random subjective forecasts held by
!t of yt+1; ~yt+1(!t) and yt�1 Let then G(!t; yt; �) be the best response function
of agent !t:
Noting that the su¢ cient statistics for the strategies of agents who do not


react to expectations is (�) = (yt�1; yt); we obtain the time t equilibrium equa-
tions :


yt = F [�!t fG(!t; yt; yt�1; ~yt+1(!t))g ; yt�1; yt]
:Note that when all agents have the same point expectations denoted yet+1; the
equilibrium equations determine a kind of temporary equilibrium mapping


Q(yt�1; yt; y
e
t+1) = yt � F


�
�!t


�
G(!t; yt; yt�1; y


e
t+1)


	
; yt�1; yt


�
:


Also assuming that all ~yt+1 have a very small common support �around�
some given yet+1; as well as the existence of adequate derivatives, decision theory
suggests that G, to the �rst order, depends on the expectation of the random
variable ~yt+1(!t) that is denoted yet+1(!t) (and is close to y


e
t+1); we are able to


linearize around any initially given situation, denoted (0); as follows


yt = U(0)yt + V (0)yt�1 +


Z
W (0; !t)y


e
t+1(!t)d!t;


where yt; yt�1; yet+1(!t) now denote small deviations from the initial values of
yt; yt�1; y


e
t+1, and U(0); V (0);W (0; !t) are n� n square matrices.


If such a linearization is considered in a neighbourhood of the steady state,
yt; yt�1; etc., will denote deviations from the steady state and U(0); V (0);W (0; !t)
are simply U; V;W (!t):
Adding an, invertibility assumption, we arrive at reduced form :
The temporary equilibrium reduced form, associated with homogeneous ex-


pectations,


yet+1(!t) = y
e
t+1; yt = By


e
t+1 +Dyt�1;


And the reduced form associated with stocahstic beliefs


yt = Dyt�1 +B


Z
Z(!t)y


e
t+1(!t)d!t


;where Z
Z(!t)d!t = I:
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and t = 1; 2; 3; : : :, (initial conditions y0 being given)
In the present context, this reduced form allows to analyse "eductive" sta-


bilty


4.2.2 �Eductive Stability�


One-dimensional setting. First, consider the one-dimensional system


From the above analysis, it seems natural to make beliefs indexed with
growth rates (as underlined in Evans and Guesnerie (2003), beliefs on the prox-
imity of trajectories in the C0 sense have not enoug grip on the agents�actions.
The hypothetical Common Knowledge assumption, to be taken into account


then concerns growth rates.(the C1 topology).
(Hypothetical) CK Assumption. The growth rate of the system is between


�1 � � and �1 + �
Such an assumption on growth rates triggers a mental process that, in suc-


cessful case, progressively reinforces the initial restriction and converges toward
the solution. The mental process takes into account the variety of beliefs associ-
ated with the initial restriction: common beliefs with point expectations is then
a particular case, and it is intuitively plausible that convergence of the general
mental process under consideration implies convergence of the special process
under examination when studying IE-stability. It is intuitive and in fact quite
straightforward in the one-dimensional context that IE-stability is a necessary
condition of eductive stability . It follows :
Proposition :(Evans and Guesnerie (2003))
A constant growth rate solution is locally �eductively stable� or �locally


strongly rational�then it is determinate in growth rates, locally IE stable, locally
immune to susnpots, and attracts all reasonable evolutive learning rules.
Hence �Eductive Stability� is more demanding in general than all the pre-


vious equivalent criteria. The fact that it is strictly more is illustrated in the
quoted paper, as well as the fact that in the present model it is equally demand-
ing under a behavioural homogeneity condition.


Multi-dimensional setting. In a natural way, the hypothetical Common
Knowledge assumption, to be taken into account has to bear on extended growth
rates.
(Hypothetical) CK Assumption. The extended growth rate of the system


B belongs to V (B).
where V (B) is a neigbourhood in the space of matrices (that may be de�ned


with respect to some distance evaluated from some matrix norm)
As we said earlier, if B 2 V (B). ) B = B; then the solution is localy


�eductively�stable or locally Strongly Rational.
As in the one-dimensional case, one can show
Proposition :(Evans-Guesnerie(2005)
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If a stationnary extended growth rate solution is locally �eductively stable�
or �locally strongly rational� then it is determinate, locally IE stable, locally
immune to susnpots.
Again, �Eductive Stability�is more demanding in general than all the pre-


vious standard (and as stressed earlier equivalent) criteria.
The reason is that the "eductive" analysis takes into account
1- the stochastic nature of beliefs,
2- the heterogeneity of beliefs, both dimensions which are neglected in the


Iterative Expectational stability construct.
In fact, as soon as local �eductive� stability is concerned, the results of


Guesnerie-Jara-Moroni (2007), although obtained in a somewha tdi¤erent con-
text suggest that point-expectations and stochastic expectations do not make
so much di¤erence Hence, locally at least, the key di¤erences between Strong
rationality and standard expectational stability criteria would come from the
heterogeneity of expectations.


4.3 Standard expectational coordination approaches and
the �eductive�viewpoint : a tentative conclusion.


First remark. Our attempt at comparing the standard expectational coordi-
nation criteria, determinacy, absence of neighbour sunspot equilibria, Iterative
Expectational stability, has been limited to a limited class of models. An ex-
haustive attempt would have to extend the class of models under scrutiny in
di¤erent directions.


- Introduce uncertainty (intrinsic uncertainty) in the models of previous
sections. The analysis should extend, with some technical di¢ culties, the appro-
priate objects under scrutiny being then respectively, probability distributions
on growth rates (numbers) or extended growth rates (matrices). It is reasonable
to conjecture that the above �ndings would hold somewhat una¤ected in the
new setting, although the concept of susnpot equilibria should be adapted and
extended to take in to account a richer set of extrinsic uncertainty.


- Introduce longer memory lags and/or more forward looking periods.
The theory seem applicable although the concept of �extended growth rate�
becomes more intricate. (see Gauthier (2004))
Second remark that brings us to the models used in monetary theory.
A number of these models have a structure analogous to the ones under


scrutiny before (see next section), although they most often involve intrinsic
uncertainty.
This suggest two provisional conclusions that will be put under scrutiny.
1- The standard criterion used in monetary theory for assessing expectational


coordination, local determinacy, is less demanding than the �eductive�criterion,
because it neglects a dimension of heterogeneity of expectations that is present
in the problem.
2- However, the connections between the �evolutive viewpoint� and the


�eductive� one is less clearcut than in our prototype model. Di¤erences have
three sources :
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- the theoretical connection between the two types of learning is less well es-
tablished in the multidimensional case than in the one-dimensional one. (Propo-
sition 1-3 has no counterpart in Proposition 2)
- In a noisy system, agents do not observe at each step, a state of the


system, as de�ned in our construct, i.e as a probability distribution, but a
random realisation drawn from this probability distribution. Learning rules, to
be e¢ cient have to react slowly to new information. Intuitively, IE stability and
consequently eductive stability will be more demanding local criteria than the
criterion of success of, necessarily slow, evolutive learning.
- However, the question of homogeneity of expectations versus heterogeneity


and randomness remains.
This is however a conclusion that holds within the framework of truly over-


lapping generations models. The equations from which the expectational coor-
dination aspects of monetary policy are examined are of the overlapping form
but come from in�nite horizon models. Their interpretation in an �eductive�
analysis is hence di¤erent. We will stress this sometimes considerable di¤erence
in the next and �nal Section.


5 Eductive Stability in monetary models.


I will introduce here very simple versions or models that are used for the discus-
sion of monetary policy and of the Central Bank policy. I �rst introduce a new
Keynesian model. I will pursue the discussion in a simpler setting of a cashless
economy, in the sense of Woodford (2003).


5.1 Preliminaries on "eductive" stability in a new Keyne-
sian model.


I consider here a new keynesian model, in a linearized reduced form close, but
not identical, to that of Woodford (2003), where I forget about noise.


�t = bEt(�t+1) + lxt


and
xt = it � f(�Et(�t+1)) + Et(xt+1)


Where
it = a�t�1 + cx


or
it = a�t + cxt


Once the interst rate rule is brought into the second equation, the system
becomes a one-step forward looking two dimensional model, with or without
memory.
The expectational criterion that is used, which leads to stress the Taylor


rule a > 1; is "determinacy", i.e the fact that there does not exists an in�nite
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sequence meeting the above equations and close to the steady state sequence
Previous conditions apply (in the no memory case, the previous condition turn
out into a condition on the modulus of the eigenvalues of the relevant matrix,
that has to be smallet than one).
The conclusion seems simple.
- The "eductive" viewpoint is in spirit the same as the standard criterion. It


is however more demanding since it leads to consider deviations of expectational
coordination that relate with the heterogeneity of expectations.
- If, then, one comes back to the underlying model and not to its reduced


form, one may wonder whether the agents are"essentially identical in the sense
of Evans-Guesnerie (2005), in which case heterogeneity of beliefs may be locally
forgotten. I conjecture it is not the case, i.e that a one direction mistake of price
setting �rms (which are essentially identical) and another direction mistake of
the consumershave to be added (this is intuitively why heterogenity matters),
but this brings us to the underlying model, and the question is open in the
absence of theorem on this issue.
There is however a more basic issue on which I now come.
The equivalence theorems previously stressed are formally proved in an OLG


framework. The same holds true for our analysis of the connections between
"eductive" stability and standard "expectational" stability. In particular, the
"eductive" argument used both for evaluating IE-stability and proving strong
rationality take place in "people�s minds" but in "OLG people�s minds". In a
sense, the fact that agents, in the initial model have in�nite horizon expecta-
tions, so that the "eductive" analysis of expectational coordination must refer
to in�nite horizon beliefs, has been dropped from the analysis. The main issue
is then the following : is it the case that the implicit reduction of beliefs to OLG
like beliefs is legitimate from the more basic viewpoint under consideration. In
order to clarify this issue, I now focus attention on a model simpler to analyse,
a model of a cashless economy, in the spirit of Chapter 2 of Woodford (2003).


5.2 A random walk into "eductive stability�in a cashless
economy :


I consider an economy populated by a continuum of identical agents, living for
ever. Each agent � receive y units of a perishable good at every period. There is
money and the good has a money price Pt at each period, The agents have an
identical utility function U =


P
�tu(Ct), where u(Ct) will be most often taken


as iso-elastic u(Ct) = [1=(1� �)](Ct)(1��):
First order conditions are (1 + it) = (1=�)[u0(Ct+1)=u


0(Ct)](Pt=Pt+1)
�1 =


(1=�)(Pt+1=Pt)[
Ct
Ct+1


]�


The Central bank decides on a nominal interest rate according to a Wick-
sellian rule imt = �(Pt=P


�
t );where � is increasing.


As in Woodford, I assume (P �t+1) = � > � and 1 + �(1) = �=�
We note that the path Pt = P �t ; Ct(�) = y; de�ne a Rational Expectations,


here a perfect foresight, equilibrium.
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Is this equilibrium determinate ? It should be noted that, since all agents are
similar and face the same conditions in any equilibrium, any equilibrium has to
meet Ct(�) = y: It follows that any other equilibrium P 0t has to meet :
(1+�(P 0t=P


�
t ))� = (P


0
t+1=P


0
t ): which can be written (1+�(P


0
t=P


�
t ))(P


0
t=P


�
t )� =


(P 0t+1=P
�
t )Assume that the other equilibrium is close to the initial one and call


�Pt = (P
0
t �P �t )=P �t : Then, to the �rst order : �(1+�0+�)�Pt = �Pt+1: Hence


if � > 1; there can be no sequence �Pt meeting this condition and remaining
close to P �t : The equilibrium is locally determinate.
Note that :
- This may not mean that there are no other perfect foresight equilibria,


although the one under scrutiny is the only stationnary one
- If we accept to view the equations as coming from an OLG framework,


we would argue that the equilibrium is locally IE-Stable, or even here locally
"eductively" stable : the assertion it is CK that a departure in price expectations
of �Pt+1 involves a departure in period t price of �Pt such that �(1+�


0+�)�Pt =
�Pt+1 and if it were CK that P �t + �Pt remains for ever in a neighbourhood of
the equilibrium P �t ; then a variant of existing argument would involve that the
equilibrium * is CK, i.e that it is locally "eductively stable".
However, the �rst assertion of the just sketched argument, which is a core


element of its construction in an OLG framework, makes nos sense here, because
the equilibrium condition has to refer to the whole trajectory of beliefs of the
agents. To say it in another way, the fact that price expectations to-morrow
in period t;is P �t + �Pt+1 has no �nal bite on what the equilibrium price may
be to-day in period t + 1 It has in an OLG framework, wher the period t
equilibrium is entirely determined by the beliefs of agents living in period t; on
the the characteristics of period t+ 1, the only part of the future inwhich they
will live. It is di¤erent here : indeed, demand of an agent at period t; as seen
from period 0 is :


Ct(�) = C1(�)
h
�t=��t1[(1 + is)(Ps=Ps+1)]


1=�
i
: It does depend on the whole


agents beliefs over the period and not only on their beliefs over the next period
!
The rigth question is then the following : assume that it is the case that


hypothetically it is CK that Ps is close to P �s then is it the case that the equilib-
rium is CK. To make the computation easier, I change slightly the Wicksellain
rule, replacing imt = �(Pt=P


�
t ) by i


m
t = �(Pt=Pt�1)


The argument has to proceed as follows.
- Express the change of consumption program of an individual as a func-


tion of its expectations, for expectations in a neighbourhood of the equilibrium
expectations P �t = �


t+1
P �0 : Indeed, di¤erentiation of the above formula leads


to


dCt=C = dC1=C + (�=�)
tX


s=1


d[1 + �(Ps=Ps�1)](Ps=Ps+1)


-To start the "edcutive satbility argument, assume that all agents believe
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that in�ation in the future will be �+ �; and let us check waht will happen in
period 1, given these beliefs. (I denote �0 = v)
We have


dCt=C = dC1=C + (�=�)[v(P1=P0) +
tX


s=2


1=�(v � 1=�)�


= dC1=C + (�=�)[v(P1=P0) + (t� 1)(1=�(v � 1=�)�
An enveloppe argument (the fact that the utility of agents is una¤ected to


the �rst order by this change of beliefs) implies


dC1 + [v=�(P1=P
�
0 )]


+1X
t=1


(�t+1) + [(1=��)(v � 1=�)�]
+1X
t=1


(t� 1)(�t+1) = 0


i.e


dC1 + [v=�(P1=P
�
0 )](�=(1� �) + �3=(1� �)2[(1=��(v � 1=�)�] = 0


Now equilibrium on the �rst period market, given these beliefs involve :


[(P1=P
�
0 )=�] + �


2=(1� �)[((1� 1=�v)�] = 0
The formula suggest that �rst period realised in�ation goes the other way,


but much outside the conjectured band of increased in�ation. This suggests that
the in�nite horizon equilibrium is not "eductively" stable, for every positive v at
least from a somewhat mechanical, too mechanical, view of the mental process
(the best v seems to be 1=�) .
Note also, that contrarily to what happens in a standard RBCmodel, (Evans,


Guesnerie, Mc Gough, (2007), work in progress) the intertemporal elasticity of
substitution does not play a role


5.3 Conclusion.


The conclusion is necessarily provisonial, since the outsider�s random walk in
monetary models although from a well delineated basis, has to be confronted
with the criticism and enriched by an intuition somewhat missing in the present
state of my understanding of the specialized issues that have been touched.
It seems however that this otusider�s walk may raise interesting questions


for insiders and then opens new fronts of thinking. It is at least a reasonable
hope at this stage.
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Abstract


This paper estimates a sticky-information general-equilibrium model for the United


States and the Euro-area, and uses it as a laboratory to answer monetary policy ques-


tions. The �rst set of questions is positive and concerns describing past monetary policy:


what policy rule has best described policy? What has been the role of stabilization pol-


icy? How large have policy errors been? What is the role of policy announcements?


What is the result of having interest rates move gradually? The second set of questions


is normative and concerns the design of optimal policy: what is the optimal Taylor rule?


What is the optimal elastic price-level standard? What rule maximizes social welfare?


How does parameter uncertainty a¤ect optimal policy? The answers to these questions


suggest a few lessons for applied monetary policy.
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1 Introduction


In a famous passage, John Maynard Keynes aspired to the day when economists would be


as useful as dentists. Robert E. Lucas Jr. (1980) in turn argued that this usefulness should


amount to the following: �Our task as I see it is to write a FORTRAN program that will


accept speci�c economic policy rules as �input� and will generate as �output� statistics


describing the operating characteristics of time series we care about, which are predicted


to result from these policies.� Starting with Kydland and Prescott (1982), the computer


program that Lucas asked for has taken the form of dynamic stochastic general equilibrium


(DSGE) models, which are quickly growing in richness and being used in central banks.1


The initial versions of these models faced one problem. They implied rapid adjustment


of many macroeconomic variables to shocks, while in the data, these responses tend to


be gradual and delayed. In their predictions for investment, consumption, real wages, or


in�ation, the standard classical model lacks �stickiness� in the words of Sims (1998) and


Mankiw and Reis (2006). The most popular approach to deal with this disconnect between


theory and data follows the in�uential work of Christiano, Eichenbaum and Evans (2005)


by adding many rigidities that stand in the way of adjustment: habits in consumption,


adjustment costs on investment, norms in wage bargaining, and indexed sticky prices.


One promising alternative is inattention. If people face costs of acquiring, absorbing and


processing information, they will optimally choose to stay inattentive for stretches of time,


only sporadically updating their information (Reis, 2006a, 2006b). Because di¤erent people


update their information at di¤erent dates, news dissipates gradually through the economy,


leading to delayed and sluggish adjustments in the aggregate. One virtue of inattention is


that the limitations to absorbing information should a¤ect all agents in all of their actions.


Therefore, inattention naturally leads to a parsimonious explanation for the pervasiveness


of stickiness in the macroeconomy through the stickiness of information.


The objective of this paper is to provide a sticky-information DSGE model in which


to perform the experiments envisioned by Lucas. To do so, the model must ful�ll two


requisites. First, it must be su¢ ciently rich to make predictions on the key variables that


policymakers care about. Second, there must be a way to assign values to the parameters of


1For a few examples, these type of models are now in use at the ECB (Smets and Wouters, 2003), the
Board of Governors (Erceg, Guerrieri and Gust, 2006, Edge, Kiley, Laforte, 2007), and the IMF (Bayoumi,
2004).
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the model so that it is able to match the important features of the data. Given a model and


parameter values, one has the �laboratory�that Lucas asked for to study the consequences


and merits of di¤erent policies.


The model in this paper is the sticky information general-equilibrium (SIGE) setup


developed by Mankiw and Reis (2007). Section 2 presents the model, adding to the previous


work a discussion of its limitations and the derivation of a criteria for evaluating social


welfare under di¤erent policies. Section 3 picks parameters by �tting the model�s predictions


to data using Bayesian methods. It extends previous work by expanding the number of


parameters being estimated, and applying it to both U.S. and E.U. data.


The heart of this paper is in sections 4 and 5. They ask di¤erent hypothetical questions


on monetary policy and answer them through the lenses of the estimated SIGE model.


For each policy experiment, I compare the dynamics of macroeconomic variables under the


status quo and under the proposed change and I calculate the policy�s welfare bene�ts.


Section 4 asks questions about the current policy status quo. It starts by describing the


policy rule that best describes current and past behavior. Then, it examines the role that


countercyclical stabilization policy has had. Next, it asks what has been the contribution


and e¤ects of discretionary policy errors. Finally, it investigates the e¤ect of expectations


regarding policy both by asking whether disin�ations should be announced ahead of time,


and whether it is best to move interest rates gradually or all at once.


Section 5 turns to optimal policy. Taking the parameter estimates as �xed, it starts by


computing the Taylor rule coe¢ cients that maximize welfare and comparing them with the


actual coe¢ cients estimated in the data. It then considers an alternative simple policy, an


optimal �elastic price standard�that targets a path for the price level allowing for temporary


deviations in response to output gaps. Next, it computes the more involved policy rule that


maximizes welfare under commitment. I compare each of these policies in terms of the social


welfare bene�ts they bring. Finally, I ask how parameter uncertainty a¤ects these optimal


policy rules, �rst by assessing their expected performance over the estimated distribution


of parameter values, and second by computing the policy rules that maximize this expected


performance.


I picked these policy experiments both because they clarify the properties of the SIGE


model and because they connect to the typical questions asked by central bankers. Insofar


as the model captures important features of the data, it leads to lessons on how to best
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conduct monetary policy. Section 6 concludes by stating these lessons.


2 The SIGE model


The SIGE model of Mankiw and Reis (2007) belongs to the wide class of general-equilibrium


models with monopolistic competition and price-setting by �rms that have become the work-


horse for the study of monetary policy (surveyed in Woodford, 2003a). There are three sets


of markets where agents meet every period: a market for savings where households trade


bonds and interest rates change to balance borrowing and lending, markets for di¤erent


varieties of goods where monopolistic �rms sell varieties of goods to households, and mar-


kets for labor where monopolistic households sell varieties of labor to �rms. Aside from


households and �rms, there is a third agent, the central bank, setting monetary policy. I


model the current policy status quo in terms of a Taylor rule.


To this otherwise classical framework, SIGE adds one new assumption: that consumers,


workers, and �rms only update their information sporadically, with a share of each randomly


drawn every period being allowed to update their information. Reis (2006a, 2006b) provides


micro-foundations for optimal inattentiveness by considering costs of acquiring, absorbing


and processing information, and establishes some restrictive conditions under which this


may imply the particular updating pattern just described. For a homoskedastic linearized


economy with constant costs of planning, the optimal rate of arrival of information is �xed,


so I will treat it as a parameter, but it is important to keep in mind that it can be mapped


into a measure of the monetary cost of updating information.


Sub-section 2.1 presents the formal model and sub-section 2.2 discusses areas for im-


provement in future research. Readers less interested in the micro-foundations can skip


these sections and jump straight to section 2.3 where I discuss the reduced-form equations


describing the dynamics of macro variables. Section 2.4 derives a welfare criteria to evaluate


di¤erent policies.


2.1 The micro-foundations


I describe the economic environment �rst, that is the set of agents and markets, and then


solve for optimal behavior to �nally de�ne an equilibrium.


The environment: There is a continuum of households, distributed in the unit interval and
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indexed by j, that derive utility at each date t from consuming an aggregate Ct;j of goods,


and disutility from working Lt;j hours according to the function:


U(Ct;j ; Lt;j) = ln(Ct;j)�
{L1+1= t;j


1 + 1= 
: (1)


Households live forever and discount the future by the factor �, so individual welfare is


E0
P1


t=0 �
tU(Ct;j ; Lt;j). The parameter  measures the Frisch elasticity of labor supply,


and the intertemporal elasticity of substitution is one so that the model is consistent with a


balanced growth path with bounded hours. The aggregate good is a Dixit-Stiglitz composite


of the consumption of a continuum of varieties of goods in the unit interval, indexed by i,


with a time-varying and random elasticity of substitution �̂t:


Ct;j =


�Z 1


0
Ct;j(i)


�̂t
�̂t�1di


� �̂t�1
�̂t


: (2)


Each good trades at price Pt;i, and the Dixit-Stiglitz form implies that there is a static price


index:


Pt =


�Z 1


0
Pt;i


1��̂tdi


� 1
1��̂t


; (3)


such that, conditional on the optimal choices of the consumer,
R 1
0 Pt;iCt;j(i) = PtCt;j . The


household faces a budget constraint every period:


Mt+1;j = �t+1 (Mt;j � Ct;j + (1� �w)Wt;jLt;j=Pt + Tt;j) (4)


The household enters a period with real wealthMt;j , uses some of it to consume, earns labor


income at the wage rate Wt;j after paying a �xed labor income tax �w, and receives the


transfer Tt;j . The remaining funds accumulate at the real interest rate �t+1 by participating


in a �nancial market where 1-period bonds are traded. The transfer Tt;j includes lump-sum


taxes, pro�ts and losses from �rms, and payments from an insurance contract that all


households signed at the beginning of time that ensures that every period they are all left


with the same wealth.


For each good i, there is a technology that produces it using as inputs the labor from


each household with a constant elasticity of substitution among them and overall decreasing
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returns to scale:


Yt;i = AtN
�
t;i; (5)


Nt;i =


�Z 1


0
Nt;i(j)


̂t
̂t�1dj


� ̂t�1
̂t


: (6)


The parameter � determines the degree of returns to scale, while ̂t is the random elasticity


of substitution across labor varieties. Nt;i is the labor aggregate used in the production of


good i, that combines in a Dixit-Stiglitz way the labor from each household. The corre-


sponding price index across labor varieties such that WtNt;i =
R 1
0 Wt;jNt;i(j)dj is:


Wt =


�Z 1


0
Wt(i)


1�̂tdi


� 1
1�̂t


: (7)


The market-clearing conditions for each good and labor variety are:


Gt


Z 1


0
Ct;j(i)dj = Yt;i; (8)Z 1


0
Nt;i(j)di = Lt;j : (9)


The time-varying and random Gt re�ects changes in government spending, which here lead


to wasted resources. I refer to them broadly as aggregate demand shocks. The fraction of


output of each variety consumed by the government is 1� 1=Gt. I de�ne aggregate output


and labor as Dixit-Stiglitz aggregators across varieties


Yt =


�Z 1


0
Y


�̂t�1
�̂t


t;i di


� �̂t
�̂t�1


; (10)


Lt =


�Z 1


0
L
̂t�1
̂t


t;j dj


� ̂t
̂t�1


: (11)


although note that using instead the de�nitions Yt =
R
Yt;idi and Lt =


R
Lt;jdj leads to the


same results up to a �rst-order approximation.


To describe the data, I assume that policy followed a Taylor rule:


it = �y log


�
Yt
Y n
t


�
+ �p log


�
Pt
Pt�1


�
� "t; (12)
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where it � log [Et (�t+1Pt+1=Pt)] and "t is a policy shock. The level of output, Y n
t , is that


which would be realized if all agents were attentive.


Information and optimal behavior: I assume that consumers are separated into two decision-


makers that do not communicate with each other: a shopper and a planner. The shopper�s


job is to allocate total spending on consumption by household j to the continuum of varieties.


He has full information, so he solves the following problem at each data:


min
fCt;j(i)gi2[0;1]


Z 1


0
Pt;iCt;j(i)di; (13)


subject to the labor aggregator (6). The standard solution is:


Ct;j(i) = Ct;j (Pt;i=Pt)
��̂t : (14)


Summing over all consumers and using the market clearing condition gives the total demand


for variety i:


Yt;i = (Pt;i=Pt)
��̂t Gt


Z 1


0
Ct;jdj: (15)


The planner�s job is to decide on total spending each period, Ct;j . He is inattentive,


and � is the probability that he updates his information each date. Therefore, there are �


agents who have current information, �(1� �) that have 1-period old information, �(1� �)2


with 2-period old information, and so on. Since agents that last updated their information


at the same time are identical in everything, we can group planners according to when they


last updated. The subscript j then denotes how long ago did the planner last update and


there are �(1� �)j many agents in this group.


When the planner updates his plan at some date t, he chooses a plan for current and


future consumption all the way into in�nity fCt+l;lg1k=0 since with a vanishingly small


probability he may never update again. Letting V (Mt) denote the value function of an


agent that has just update his information, his problem is:


V (Mt) = max
fCt+l;lg


( 1X
l=0


�l(1� �)l ln(Ct+l;l) + ��
1X
l=0


�l(1� �)lEt [V (Mt+1+l)]


)
(16)


subject to the sequence of budget constraints in (4), a no-Ponzi scheme condition, and the
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demand for labor variety j that this worker solely supplies. The optimality conditions are:


�l(1� �)l
Ct+l;l


= ��
1X
k=l


�k(1� �)kEt
�
V 0 (Mt+1+k) ��t+i;t+1+k


�
(17)


V 0 (Mt) = ��
1X
l=0


�l(1� �)lEt
�
V 0 (Mt+1+l) ��t;t+1+l


�
; (18)


where ��t+l;t+1+k=
t+kQ
z=t+l


�z+1 is the the compound return between t + l and t + 1 + k for


k > l. Now, for l = 0, the right-hand side of (17) is the same as the right-hand side of


(18). Therefore, 1=Ct;0 = V 0 (Mt), or the marginal utility of an extra unit of consumption


equals the marginal value of an extra unit of wealth. Using this result to replace for the


V 0 (Mt+1+l) terms in (18) and writing the equation recursively gives the standard Euler


equations linking the marginal utility of consumption today and tomorrow for an agent


that updates her information at both dates. Equation (18) for t + l and (17) imply that


inattentive consumers set their marginal utility equal to the expected marginal utility of


attentive consumers. These two relations are:


C
�1=�
t;0 = �Et


h
�t+1C


�1=�
t+1;0


i
; (19)


C
�1=�
t+l;l = Et�l


h
C
�1=�
t+l;0


i
: (20)


Next, I turn to �rms. I assume that they are divided in two departments, one that


purchases the cost-minimizing mix of inputs, and another that picks the overall amount


of production. The purchasing department has full information, so for �rm i at date t it


minimizes costs by solving:


min
fNt;i(j)gj2[0;1]


Z 1


0
Wt;jNt;i(j)dj (21)


subject to the labor aggregator (6). The solution to this problem is:


Nt;i(j) = Nt;i (Wt;j=Wt) ; (22)


which, aggregating over all �rms and using the labor market clearing condition, gives the
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total demand for labor variety j:


Lt;j = (Wt;j=Wt)
�̂t
Z
Nt;idi: (23)


The sales department maximizes pro�ts and is inattentive. Every period, a randomly


drawn fraction of �rms � updates their information, so �rms can be grouped into groups i


of size �(1 � �)i according to how long it has been since they last updated. Each �rm is


a monopoly provider of its good and chooses a nominal price at which it stands ready to


satisfy demand. There is a �xed sales tax �p. The �rm who last updated i periods ago sets


Pt;i to maximize expected real after-tax pro�ts:


max
Pt;i


Et�i


�
(1� �p)Pt;iYt;i


Pt
� WtNt;i


Pt


�
(24)


subject to the available technology (5) and taking into account the demand for its good in


(15). The �rst-order condition, after some rearranging, is:


Pt;i =
Et�i [(1� �p)�̂tWtNt;i=Pt]


Et�i [�(�̂t � 1)Yt;i=Pt]
: (25)


Finally, I turn to workers. They are inattentive, and each period a randomly drawn


sample updates their information with probability !. Their problem is similar to that of


consumption planners and consists of:


V̂ (Mt) = max
fWt+l;lg


8<:�
1X
l=0


�l(1� !)l{Et


0@L1+1= t+l;l + 1


1 + 1= 


1A+ �! 1X
l=0


�l(1� !)lEt
h
V̂ (Mt+1+l)


i9=; ;


(26)


subject to the sequence of budget constraints in (4), a no-Ponzi scheme condition, and the


demand for the variety of labor j (23) which this worker supplies monopolistically. The


optimality conditions are:


�l(1� !)l{Et
�
̂t+lL


1+1= 
t+l;l


�
(1� �w)=Wt+l;l =


�!
1X
k=l


�k(1� !)kEt
�
V 0 (Mt+1+k) ��t+l;t+1+k


�
̂t+l � 1


�
Lt+l;l=Pt+l


�
(27)


V̂ 0 (Mt) = �!
1X
k=0


�k(1� !)kEt
h
V̂ 0 (At+1+k) ��t;t+1+k


i
: (28)
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Now, as in the consumer problem, combining (27) for l = 0 with (28) leads to the conclusion:


V̂ 0t (Mt)Wt;0


Pt
=
(1� �w)̂t{L


1= 
t;0


̂t � 1
: (29)


This expression shows that  is the Frisch elasticity of labor supply for attentive agents, and


that the marginal disutility of working os equated to the real wage rate times the marginal


value of wealth times a markup taking into account the elasticity of demand for the good.


Similar manipulations as in the consumer problem lead to the two following condition:


̂t
̂t � 1


�
L
1= 
t;0 Pt


Wt;0
= �Et


 
�t+1 �


̂t+1
̂t+1 � 1


�
L
1= 
t+1;0Pt+1


Wt+1;0


!
; (30)


Wt+l;l =
Et


�
(1� �w){̂t+lL


1= 
t+l;l


�
Et


�
̂t+lLt+l;lL


1= �1
t+l;0 =Wt+l;0


� : (31)


Monopolistically competitive equilibrium. An equilibrium of this economy is a set of aggre-


gate variables fYt; Ltg, output of each variety fYt;ig, labor of each variety fLt;jg, prices of


each good fYt;ig, wages fWt;ig, and interest rates fitg, such that consumers behave opti-


mally (15), (19), (20), �rms behave optimally (23), (25), workers behave optimally (30),


(31), markets clear, the aggregates for output, labor, prices and wages satisfy (10), (11), (3),


(7) and monetary policy follows the Taylor rule (12) with P�1 = 0; for all dates t from 0 to


in�nity as a function of the exogenous paths for technology fAtg, monetary policy shocks


f"tg, aggregate demand fGtg, goods�substitutability f�̂tg, and labor substitutability f̂tg.


2.2 Missing work on the micro-foundations


The SIGE model that I just presented provides a DSGE account of 5 macroeconomic series:


output, in�ation, real wages, hours, and nominal interest rates. In the tradition of Kydland


and Prescott (1982) and Rotemberg and Woodford (1997), the model makes a few simpli-


fying assumptions, some more common and other perhaps more unusual. Each of these


presents an opportunity for future work that can improve the model. I now discuss a few


that seem particularly promising.


First, the model lacks investment and capital accumulation. It is an issue of open


debate whether this absence signi�cantly a¤ects the dynamics of the other variables in


this class of models (Woodford, 2005, Sveen and Weinke, 2005), but a clear bene�t from
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modelling investment is that it extends the model to explain one more macroeconomic


variable. The reason why the SIGE model omits investment is that while there is previous


work that studies in detail the micro-foundations and implications of inattentiveness on the


part of consumers (Reis, 2006a), �rms setting prices (Mankiw and Reis, 2002, Reis, 2006b)


and workers (Mankiw and Reis 2003), the behavior of inattentive investors accumulating


capital has not been studied yet. There has been some related work studying �nancial


investment decisions with inattentiveness by Gabaix and Laibson (2002) and Abel, Eberly


and Panageas (2007), but the step from this to study physical investment and capital


accumulation remains to be taken.


The model also lacks international trade and exchange rates. The reason for this omis-


sion is the same as that for investment: the models of inattentive behavior in international


markets are still missing. Also in this case, progress will likely come soon, as Bachetta and


van Wincoop (2006) have already �lled some of this gap. Once this is done, one can build


an open economy SIGE to use in economies other than the U.S. or the Euro-area.


Third, the model lacks wealth heterogeneity since it assumes a complete insurance con-


tract with which households fully diversify their risks. Most business cycle models make this


assumption because it makes them more tractable by collapsing the wealth distribution to


a single point. Relaxing this assumption and numerically computing the equilibria should


not be di¢ cult but it has not yet been done.


Turning to the micro-foundations of inattentiveness, note that it assumes that when


agents pays the cost to obtain new information, they can observe everything. While there


is an explicit �xed cost of information, the variable cost is zero. This assumption is use-


ful because it allows the model to emphasize the decision of when and how often to pay


attention, which can then be studied in detail. It can be easily relaxed to allow people


to observe only some things but not everything when they update (see e.g., Carroll and


Slacalek, 2007). A harder extension would be to also consider the decision of how much


to pay attention, by letting people pick which pieces of news to look at when they update.


There has been some recent work in this area, following the approach of Sims (2003), but


these models are still not at the point where they can be put in general equilibrium and


taken to the data, despite promising progress by Mackowiack and Wiederholt (2007).


One implication of removing the assumption that once agents learn, they learn every-


thing, is that there is no longer common knowledge in the economy. This leads to a new
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source of strategic interactions between agents who have di¤erent information and know


that no one knows everything. Woodford (2003b), followed by Hellwig (2002), Amato and


Shin (2003), Morris and Shin (2006) and Adam (2007) have studied some of the implications


of this behavior, and recent work by Lorenzoni (2006) moves towards turning these insights


into a business cycle model that could be taken to the data. Hellwig and Veldkamp (2007)


study another source of strategic interaction, on whether agents coordinate their attention


times. These extra ingredients promise to enrich future models of inattentiveness.


There is another source of strategic interaction ignored by the SIGE model. The model


assumed that consumers had inattentive planners and attentive shoppers, and �rms had


inattentive sales departments and attentive purchasing departments, so that at every mar-


ket, monopolists would only face attentive agents. This is important because if a monopolist


sold its product to some buyers that are inattentive, then it would want to exploit their


inattentiveness to raise its pro�ts (Gabaix and Laibson, 2006). These inattentive buyers


would take into account this extra cost of being inattentive and alter their choices of when


to update their information and how to act when uninformed. The equilibrium of this game


has not, to my knowledge, been fully studied yet.


Overall, there are many features ignored by the SIGE model that can lead to new and


interesting insights. They were omitted typically because they are not su¢ ciently well-


understood to put them into the full DSGE setup that this paper wishes to deliver. Some


of them will be easier to do and others more challenging, and I hope that future research


will take them up.


2.3 The key reduced-form relations


The appendix shows how to derive a set of log-linear approximate relations for the aggregate


variables in the model. The �rst relation is a Phillips curve or aggregate supply curve


relating the price level (pt) to marginal costs that depend on real wages (wt � pt), output


(yt) and aggregate productivity (at), and to shocks to desired markups due to changes in


the elasticity of substitution for goods (�t):


pt = �


1X
j=0


(1� �)jEt�j
�
pt +


�(wt � pt) + (1� �)yt � at
� + �(1� �) � ��t


(� � 1)[� + �(1� �)]


�
(32)
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The parameter � measures the degree of returns to scale in production, while � is the


steady-state elasticity of substitution for goods.2 Prices depend on past expectations of


the marginal cost plus the desired markup because every period only a fraction � of �rms


update their information and set their plans for current and future prices until the next


adjustment.


The second relation is an aggregate demand curve or IS curve relating output to a mea-


sure of wealth (yn1 = limi!1Et (yt+i)), the long real interest rate (Rt = Et
P1


j=0 (it+j ��pt+1+j))


and shocks to government spending (gt):


yt = �
1X
j=0


(1� �)jEt�j (yn1 �Rt) + gt; (33)


Higher expected future output raises wealth and increases spending, while higher expected


interest rates encourage savings and lower spending. Every period only a randomly drawn


share � of consumers update their plan, so the larger is �, the more consumption respond


to shocks as they occur.


Next comes a wage or labor supply curve that relates current wages (wt) to the expected


value of �ve determinants:


wt = !


1X
j=0


(1� !)jEt�j
�
pt +


(wt � pt)
 +  


+
lt


 +  
+
 (yn1 �Rt)


 +  
�  t
( +  )( � 1)


�
(34)


First, nominal wages rise one-to-one with prices since workers care about real wages. Second,


the higher are real wages in the economy, the higher is demand for a worker�s variety of


labor so the higher the wage she will demand. Third, the more labor is hired (lt) the better


it must be compensated since the marginal disutility of working rises. Fourth, higher wealth


discourages work through an income e¤ect, and higher interest rates promote it by giving a


larger return on saved earnings today. Fifth and �nally, if the elasticity of substitution across


labor varieties (t) rises, workers�desired markup falls so they lower their wage demands.


The two new parameters are  , the Frisch elasticity of labor supply, and  the steady-state


elasticity of substitution between di¤erent varieties of labor. A randomly drawn fraction of


workers ! becomes informed every period and respond to shocks to these �ve determinants,


2All variables with a t subscript refer to log-linearized values around their non-stochastic steady state.
Without any subscript are �xed parameters and steady state values.
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while the remaining workers set wages to what they expected would be optimal when they


last updated.


The fourth relation is a standard production function linking output to technology and


labor with decreasing returns to scale:


yt = at + �lt; (35)


The �fth and �nal relation is the Taylor rule:


it = �y(yt � ynt ) + �p�pt � "t; (36)


where yt � ynt is the output gap, or the di¤erence between actual output and its level if all


agents were attentive, and "t are policy disturbances.


These 5 equations give the equilibrium values for output, wages, prices, labor, and


nominal interest rates as a function of shocks to aggregate productivity growth, aggregate


demand, goods markups, labor markups, and monetary policy. We assume that each of


these shocks follows an autoregressive process of order 1 with coe¢ cients ��a, �g, �� , � ,


and �", and is subject to innovations e
�a
t , egt , e


�
t , e



t , and e


"
t , that are independent and


normally distributed with standard deviations ��a, �g, �� , � , and �". The model has a


total of 20 parameters, that I collect in the vector �, and is solved using the algorithm of


Mankiw and Reis (2007).


2.4 Social welfare


To compare the merits of di¤erent policies, I use a measure of social welfare that sums over


the utility of all the households. Because the model assumes that all households are ex


ante identical and there are complete insurance markets, it is natural to assume that all


households get the same weight in this sum. Because I will compare di¤erent policy rules,


I take an ex ante perspective, looking at the unconditional expectation of social welfare.


I denote social welfare as a function of the parameters byW(�). The appendix provides


a formula for computing this function under the current policy rule and for calculating the


bene�ts of alternative policies in units of steady-state consumption.
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3 Estimating sticky information


Taking sticky information models to the data has been an active �eld of research. One


approach has looked for direct evidence of inattentiveness using micro data. Carroll (2003)


used surveys of in�ation expectations to show that the public�s forecasts lag the forecasts


made by professionals.3 Mankiw, Reis and Wolfers (2003) followed by showing that the


disagreement in the in�ation expectations in the survey data have properties consistent


with sticky information.4 Reis (2006a) and Carroll and Slacalek (2006) interpret some of


the literature on the sensitivity and smoothness of micro consumption data in the light of


sticky information and Klenow and Willis (2006) and Knotek (2006) �nd slow dissemination


of information in the micro data on prices. For the most part, this literature has supported


the sticky information assumption, and has obtained consistent estimates of the information-


updating rates.


A second approach estimates Phillips curves assuming sticky information on the part of


price setters only.5 These limited information approaches typically use data on in�ation,


output, marginal costs and expectations to estimate simpler versions of (32) with typically


good or mixed results. One interesting �nding that comes out of many of these studies is that


the main source of discrepancy between the model and the data is not the inattentiveness


or the slow dissemination of information, but instead the assumption that, conditional on


their information sets, agents form expectations rationally.


This paper takes a third approach, of estimating the model using full-information tech-


niques that exploit the restrictions imposed by general equilibrium. A few papers had


attempted this before and typically found either mixed or poor �ts between model and


data.6 Mankiw and Reis (2006) explained the contrast between the negative results in some


of these papers and the mostly positive results found by the other two approaches. These


papers assumed inattentiveness only in price-setting, while assuming that the other agents


in the model were fully attentive. However, as discussed in the introduction, to �t the


data stickiness should be pervasive, and for the internal coherence of the model, inatten-


3See also Dopke et al (2006a) and Nunes (2006).
4Also focussing on disagreement, see Branch (2007), Rich and Tracy (2006), and Gorodnichenko (2006).
5See Khan and Zhu (2006), Dopke et al (2006b), Korenok (2005), Pickering (2004), Coibion (2006), and


Molinari (2007).
6See Trabandt (2003), Andres et al (2005), Kiley (2007), Laforte (2007), Korenok and Swanson (2006,


2007), and Paustiam and Pytlarczyz (2006).
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tiveness should apply to all decisions. By assuming attentive consumer and workers, the


general-equilibrium restrictions imposed in these papers were misspeci�ed.


This paper follows this third approach, estimating sticky information in general equi-


librium, but allowing for pervasive stickiness. Given a set of data Y, this paper takes a


Bayesian likelihood approach, starting with a prior density p(�) and using the likelihood


function L(Y j �) to obtain the posterior density of the parameters p(� j Y). This is done


numerically, using Markov Chain Monte Carlo simulations.


I set the value of �ve parameters: the Frisch elasticity of labor supply  to 4, the degree


of returns to scale in labor � to 2/3, and because I observe hours and output in the data, I


can back out a series for the technology shock and use least-squares to attribute a value to


��a and ��a.
7 All the other 15 parameters are estimated using the algorithms developed


by Mankiw and Reis (2007)8. The prior distributions follow the convention in the DSGE


literature (An and Schorfheide, 2006) for most parameters, while for the inattentiveness I


use a �at prior in the unit interval. They are described in Table 1.


3.1 U.S. estimates of the SIGE model


I use U.S. quarterly data on real output per capita, total real compensation per hour, hours


per capita, in�ation, and the e¤ective federal funds rate. The �rst four series refer to the


non-farm business sector, and the price series used is the implicit price de�ator for this


sector. All the series are de-meaned and go from 1954:3 to 2006:1.


Table 2 displays summary statistics of the posterior distributions for each parameter.


The estimates of the non-policy parameters are roughly similar to those in Mankiw and


Reis (2007). The median elasticity of substitution across goods varieties implies a steady-


state markup of 5%, while across labor varieties, markups are higher at 16%. All of the


5 exogenous shocks are quite persistent, and for most estimates, the 95% credible sets are


considerably tighter than the priors so the data were informative. Consumers and workers


update their information at almost the same frequency, between 5 and 6 quarters, while


�rms are considerably more attentive, once every 1.5 quarters.


Table 3 displays variance decompositions. In�ation is mostly driven by monetary shocks,


7For the United States, ��a = :35 and ��a = :01, while for the Euro-area ��a = :22 and ��a = :005.
8Di¤erent from Mankiw and Reis (2007), I estimate the parameters describing monetary policy: �y; �p,


�", and �", which they �xed using prior information.
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while 81% of the variance of hours is due to monetary and aggregate demand shocks.


For output growth, aggregate demand shocks account for almost half of its variance, with


monetary, productivity and goods-markup shocks all accounting for roughly the same share


of the remainder.


Figure 1 shows one-standard deviation impulse responses to the four non-policy shocks.


Notably, all four shocks lead to hump-shaped dynamics for in�ation. As in Gali (1999),


a positive innovation to productivity lowers hours, and while it raises output, it does so


by less than full-information output, leading to a negative output gap. The SIGE model


can generate booms or recessions following a productivity shock, but the U.S. data seems


to prefer parameter combinations where there is a recession. Increases in the elasticity of


substitution across goods or labor varieties raise hours in the short run, but actually lead


to a negative output gap because they immediately raise full-information output by more


than actual output.


Table 4 compares a few relevant sample moments with the estimated model�s predictions.


The �rst two are the standard deviations of in�ation and output growth, since these are


typically used to assess policy trade-o¤s. In the data they are both :01, but at the prior


parameters, their value was much higher. The posterior predictions from the model are


signi�cantly closer to the data. The third moment is the serial correlation of in�ation,


which has attracted considerable attention, both theoretically and empirically.9 In the


data, it is .83, which is within the posterior 95% credible set. The last three moments


capture three puzzling observations in the macro data: the positive Phillips correlation


that models with no role for monetary policy have trouble matching, the smoothness of real


wages relative to labor productivity that models with frictionless labor markets struggle


with, and the gradual response of real variables to shocks that classical models miss.10


With full attention, the model in this paper would predict that these moments would be


0, 1 and 1.22. Inattention moves the model in the right direction for matching the facts


on the Phillips correlation and the gradual response of output, although at the posterior


estimates, it has little e¤ect over the smoothness of real wages.


9See Fuhrer and Moore (1995) and Pivetta and Reis (2007).
10Mankiw and Reis (2006) discuss the central role of these facts.
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3.2 Euro-area estimates of the SIGE model


For the Euro-area, I use the area-wide quarterly dataset that combines data from each


country�s national accounts to build consistent pseudo-aggregates for the whole region from


1970:1 to 2005:4. In�ation is the change in the log of the GDP de�ator, output growth


the change in log real GDP, and wages are measured using total compensation. To obtain


variables per capita, I use an interpolated Euro-area population series.


I restrict attention to the period from 1993:4 to 2005:4. On November 1st 1993, the


Maastricht treaty was signed, creating the European Union and setting out the plan to


the introduction of a single currency in 1999. The Euro-area data from this date forward


is closer to the model�s assumption of a common and stable monetary policy rule. The


appendix describes the estimation results starting the sample instead at 1979:3 (when the


European Monetary System was �rst created).


Table 5 shows the posterior distributions of the parameters for the Euro-area. Note


that, in spite of the short sample, the posterior mean estimates are considerably di¤erent


from their prior counterparts, and that the credible sets are fairly tight. The data were


clearly informative. Turning to the estimates, the elasticities of substitution in both the


goods and labor market are similar, implying desired markups of 9% and 7% respectively,


in contrast with the United States where goods market are more �competitive�in the sense


of signi�cantly lower desired price markups. For the non-policy shocks, it stands out that


aggregate demand shocks are very small.


The estimates of inattentiveness are more surprising and interesting. According to them,


consumers are very inattentive, not updating their information for 3.5 years on average.


Workers, in contrast, are quite well-informed, updating information every 4.5 months. In


part, this may be due to the stronger role of unions in Europe than the United States.


These may imply that, on the one hand, unions are constantly monitoring information and


bargaining ensuring wages re�ect current information, and on the other hand they reduce


the incentive for each household to collect information for choosing consumption. As for


�rms, they are more inattentive than their U.S. counterparts, updating their price plans on


average every 3 quarters.


Table 6 has the variance decompositions. While they are imprecisely estimated, one


can detect some broad patterns that are di¤erent from the ones for the United States.
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In�ation is mostly driven by productivity shocks, while output growth and hours are driven


by aggregate demand shocks. Monetary shocks have a smaller role than in the United


States, although they account for almost half of the variability of real wage growth, and for


some parameters in the 95% set, they can account for between one third and one half of the


variability of in�ation, output growth, and hours. Shocks to the markups are essentially


irrelevant in the Euro-area.


Figure 2 shows the impulse responses to the di¤erent shocks. The productivity and


aggregate demand shocks have very persistent e¤ects on all variables, with in�ation peaking


several years after the initial shock. Curiously, a positive aggregate-demand shock raises


hours and the output gap, but induces such a strong raise in nominal interest rates that


it ends up raising in�ation. As expected from the variance decompositions, the markup


shocks have a negligible impact.


Table 7 has the same predictive moments as table 4. As it was the case there, the


posterior predictions for standard deviations are signi�cantly closer to the data than their


prior counterparts. The model predicts considerably more in�ation persistence than in


the data, however. The Phillips correlation is weaker in the E.U. data, and the posterior


estimates re�ect this, although it is estimated imprecisely. The main discrepancy between


the model�s predictions and the data is in the variance of real wages relative to labor


productivity. As a result of having quite attentive workers, the posterior estimates predict


very volatile real wages.


4 Monetary policy positive questions


Using the two estimated models, I now ask and answer a set of hypothetical questions about


monetary policy.


4.1 What rule has best described policy?


The estimation assumed that policy followed a Taylor rule for nominal interest rates. An


extensive literature, starting with Taylor (1993) has documented that this provides a good


description of policy in the United States, and a not-too-bad description of policy in the


Euro-area. Within this common rule, there is room for di¤erences between the two regions


in the parameters of the rule. The mean and standard-error of the posterior parameter


19







distributions are:


it = 1:28
(:20)


�pt + 0:43
(:10)


(yt � ynt )� "t and "t = 0:90
(:02)


"t�1 + 0:01
(:002)


zt for the United States,


it = 1:23
(:16)


�pt + 1:49
(:37)


(yt � ynt )� "t and "t = 0:79
(:05)


"t�1 + 0:02
(:01)


zt for the Euro-area.


According to these estimates, monetary policy in the United States responds to �uctu-


ations in the output gap and is very persistent. In contrast, the estimated Taylor rule for


the Euro-area involves a response to output that is more than three times as large as the


one for the United States, as well as less persistent shocks.11


Figure 3 plots the impulse responses to a 1-standard-deviation monetary-policy shock


in the United States. Lowering nominal interest rates leads to a persistent increase in


in�ation, peaking 1 year after the shock. An expansion ensues, with hours and the output


gap peaking before in�ation, 3 quarters after the shock. This description matches relatively


well the conventional wisdom on the impact of monetary policy shocks. Figure 4 plots the


impulse responses for Europe. These are remarkably similar to the U.S. ones. The only


slight di¤erence is that the impulse responses die a little faster in the Euro-area, which is


probably tied to the less persistent monetary shocks.


4.2 What has been the role of stabilization policy?


I interpret stabilization policy as setting nominal interest rates that respond to movements


in the output gap, that is �y > 0. The 95% posterior credible sets for the coe¢ cient on


output in the Taylor rule are [.26, .64] and [.90, 2.36] respectively for the United States. and


the Euro-area. clearly, policy has reacted to the output gap in both areas, and signi�cantly


more so in the Euro-area.


Figures 5, 6, and 7 plot the impulse responses to shocks to monetary policy, aggregate


demand and productivity shocks if instead U.S. nominal interest rates had not responded


to the output gap. Had that been the case, the response of hours, the output gap, and also


in�ation to shocks would have been signi�cantly more pronounced. Next, I calculate the


variance of the macroeconomic variables if �y had been zero. The variances of in�ation,


11These results are in contrast with those from the DSGE model with sticky prices of Christiano, Motto
and Rostagno (2007). They �nd that nominal interest rates in the Euro-area are more persistent than in the
United States, and equally responsive to the output gap. One key di¤erence is that they specify the policy
rule di¤erently, assuming partial adjustment in interest rates rather than persistent "t shocks, and including
money as an extra argument in the policy rule for the Euro-area.
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hours and the output gap would have been 138%, 116%, and 106% higher respectively. Only


nominal interest would have been more stable, by 27%. As a result, stabilization policy has


a clearly bene�cial role in the United States: welfare would have been 12% lower in units


of steady-state consumption without it.


In the Euro-area, depicted in �gures 8, 9 and 10, we again observe that hours and the


output gap would respond more to shocks if there were no stabilization concerns. However,


both nominal interest rates and now also in�ation are signi�cantly less responsive to shocks


in this counterfactual scenario. Looking at variances, without stabilization policy, hours


and the output gap would have been 62% and 228% more volatile respectively, whereas


in�ation and interest rates would have been 55% and 49% less volatile respectively. The


welfare loss of eliminating stabilization policy is 4 times smaller than in the United States


at 3%.


Interestingly, while �y was higher in the Euro-area, these results show that stabilization


policy has been more important in the United States at curtailing volatility and improving


welfare.


4.3 How large have policy errors been?


Changes in interest rates not captured by changes in in�ation or in output are attributed


to "t. In the data, these "t shocks may come from many sources, from reaction to other


macroeconomic and �nancial news, to the exercise of judgement and discretion, or just to


policy mistakes (Blinder and Reis, 2006). In the model, these shocks are treated exclusively


as policy errors. They bring no bene�ts and unambiguously lower welfare by introducing


an extra source of variability.


According to the variance decomposition in Tables 3 and 6, these shocks have accounted


for a large share of the variance of several macro variables in the United States, but a smaller


amount in the Euro-area. If they had been eliminated, the variance of in�ation would have


fallen by a striking 74% in the United States, while hours and the output gap would be


46% and 26% as volatile as before respectively. In terms of welfare, eliminating these policy


shocks would have raised U.S. well-being by an equivalent amount to 5% of steady-state


consumption. In the Euro-area, the reduction in the variance is more modest, 10%, 8% and


35% for in�ation, hours and the output gap, and the welfare bene�t is smaller, 1.4%.
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4.4 What is the role of policy announcements?


In the past decade, there has been an increasing emphasis on transparency in central bank-


ing. Part of the argument for transparency is that if the central bank acts in a predictable


way it will reduce confusion and mistakes on the part of private decision-makers. If policy


shocks must take place, then this point of view argues that they should be well-announced


and communicated to the general public. In the context of the SIGE model, this calls


for announcing monetary policy shocks a few quarters in advance, so that in the interim


between announcement and action, a larger fraction of agents have time to become aware.


Figures 11 and 12 show the results from announcing a monetary policy shocks 1 or 2 years


ahead, in the United States and the Euro-area respectively. In both regions, announcements


lower the total impact of monetary policy shocks on hours and the output gap, while


increasing their impact on in�ation. The agents that update their information learn about


the shocks before it happens and adjust their actions in response. In�ation and nominal


interest rates rise immediately, even before the policy shock materializes.


4.5 What is the result of having interest rates move gradually?


As described by Bernanke (2004), the FOMC tends to change interest rates gradually.


There have been some academic arguments in favor of such actions, typically involving


�nancial stability, the gradual revelation of news, or the desire to move long-term interest


rates. Woodford (2000) noted that in forward-looking models like SIGE, gradualism involves


combining policy responses with announcements of future policy changes.


Figures 13 and 14 compares three di¤erent patterns of shocks for the two regions. In the


�rst case, there is a one-standard-deviation shock to interest rates at date 0. In the second


case, there is a sequence of four consecutive shocks, each of size �"=4 and each coming as a


surprise to the agents. Finally, in the third scenario, the sequence of four shocks is accounted


at date 0. Gradualist policy seems to have a slightly larger impact on macro variables than


unexpected policy changes. This e¤ect is signi�cantly larger if it is announced.


5 Monetary policy normative questions


This section uses social welfare function from the model to compute optimal policy rules


under di¤erent regimes.
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5.1 What is the optimal Taylor rule?


At the mean posterior estimates, the optimal Taylor rule�s are (in parenthesis are the


estimated status quo coe¢ cients):


it = 1:62
(1:28)


�pt + 1:81
(0:43)


(yt � ynt ) for the United States,


it = 19:00
(1:23)


�pt + 0:54
(1:49)


(yt � ynt ) for the Euro-area.


The optimal response of nominal interest rates to in�ation is higher at the optimal rules


than in the status quo. In the Euro-area, it is extreme; however, the welfare function is very


insensitive to values of �� above 3, so the exact value of 19 need not be taken too seriously.


Looking at the response of nominal interest rates to the output gap, it is 3 times lower at


the optimum than in the status quo in the Euro-area, but it would have to increase by more


than 4 times in the United States.


Implementing this optimal Taylor rule in place of the estimated rule would raise welfare


in the United States by 5.5% of steady-state consumption. Recalling from section 4 that


eliminating the policy errors led to a welfare gain of 5%, this implies that adjusting the


parameters of the Taylor rule to their optimal levels contributes 0.5% to welfare. The


welfare gains for Europe are more modest in total, 2%, but higher in terms of the bene�t


from adjusting the coe¢ cients in the Taylor rule, 0.6%.


5.2 What is the optimal elastic price-level standard?


Ball, Mankiw and Reis (2005) showed that in an economy with inattentive �rms, the optimal


policy was an �elastic price standard�as described in Hall (1984). It keeps the price level


close to a deterministic targetKt, allowing for deviations of the price level from it in response


to output gaps:


pt = Kt � �(yt � ynt ) (37)


With inattentiveness on the part of consumers and workers as well, there is no reason


to expect that this simple policy continues to be the best. I computed the optimal � if


such a rule was implemented in the United States and the Euro-area. In the United States,


the optimal � is 0.95, so there is quite a bit of elasticity of the price path relative to the


target, while in the Euro-area, it is close to zero (0.01), so that policy resembles a strict


price-level target. This type of policy would raise welfare in the United States by 2.6%,
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less than half of the bene�ts from an optimal Taylor rule (5.5%). In the European Union,


a strict price-level target raises welfare by 2% units of steady-state consumption relative


to the status quo. This is also less than the optimal Taylor rule, but now only slightly so


(0.1%).


5.3 What rule maximizes social welfare?


Having discussed two popular policy rules, I now turn to the unconditionally optimal policy


rule. To calculate it, I compute the optimal path for the price level, pt, in response to each


of the shocks. The appendix explains the calculations.


Table 8 collects the welfare gains from di¤erent policies. Moving to the uncondition-


ally optimal rule would raise U.S. welfare by 6.3% in steady-state consumption units, a


substantial amount. This rule raises welfare by 0.7% more than the next-best alternative,


an optimal Taylor rule. For the Euro-area, the bene�ts are less than half, 2.7%, but still


substantial, and about 0.7% larger than the bene�ts from either an optimal Taylor rule or


an optimal price-level standard.


5.4 How does parameter uncertainty a¤ect policy?


The calculations so far have computed optimal welfare at the mean parameter estimates.


Splitting the parameter vector �, into two vectors, one with the policy parameters �p and


another with the non-policy parameters �np, the social welfare function becomesW(�p;�np).


Given the posterior distributions for the non-policy parameters, p(�np), the optimal policy


rules so far were �̂
p
= argmax�pW


�
�p;
R
�npdp(�np)


�
.


These calculations therefore ignored the parameter uncertainty associated with the �np


by evaluating welfare at its their mean estimates. I can take this estimation uncertainty into


account to, following Levin et al. (2006), compute instead ~�
p
= argmax�p


R
W(�p;�np)dp(�np).


These policy rules are robust, in the sense that they perform well when averaged over the


many di¤erent models that correspond to each of the �np. By using the Bayesian pos-


terior density over these models, the policy rules are optimal, in the sense of Bayesian


model-averaging.


Table 9 shows the robustly optimal parameters of the three policy rules that I considered,


as well as their welfare gain relative to two benchmarks: the estimated status quo, and


the expected welfare of using the optimal policy rules in sections 5.1 to 5.3 that ignored
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parameter uncertainty. Figure 15 shows the posterior distributions for welfare under the


optimal policies W(�̂p;�np), and the robustly optimal policies W(~�p;�np).


As Giannoni (2007) found, these calculations show that a concern for robustness leads


monetary policy to be more aggressive. In the Taylor rule, nominal interest rates respond


more strongly to movements in both in�ation and output.12 The expected welfare gain of


implementing the robustly optimal rule, instead of the optimal rule at the mean estimate


is negligible, not even reaching 1 basis point of steady-state consumption. The robust price


standards are less elastic, but again the welfare bene�ts are minimal.


6 Lessons for applied monetary policy


The aim of this paper was to use one particular model of the macroeconomy to give policy


advice. That required being explicit about all of the details of the model, and some may


have left readers with an unpleasant after-taste. It also required assigning plausible values


to parameters in order to match important features of the data, and there is room for


disagreement on how well it did so. It is clear that the model�performance is still far from


the level of success one should demand to con�dently give precise policy recommendations.


Sections 2 and 3 tried, as much as possible, to alert the reader to the theoretical gaps


in the model, the di¤erent views on how to set its parameters, and the ways in which it


succeeded and failed at explaining the data. In the model�s defense, it did not seem to


perform noticeably worse than some popular alternatives, like the models in Altig et al


(2006), Smets and Wouters (2007) and Schmitt-Grohe and Uribe (2007).


Keeping in mind these caveats, I reached some conclusions regarding current policy:


� In the United States, monetary policy shocks have had a persistent and delayed im-


pact, with the output gap and hours peaking only 3 quarters after the shock, and


in�ation one quarter later. Interest rates have responded strongly to output �uctua-


tions, and this has had a strong bene�cial stabilizing e¤ect. Interpreting all deviations


for the policy rule as costly mistakes provides an upper bound on their welfare costs


at 5% of consumption. Announcing monetary policy shocks in advance increases their


12While �� falls for Europe, again it is very hard to calculate its exact value because the welfare function
is close-to-�at for high values of this parameter. The di¤erence in welfare between using the values of 18.25
and 19 is less than 0.01%.
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e¤ectiveness at changing in�ation, while mitigating their impact on output and hours,


and moving interest rates gradually enhances their overall impact.


� In the Euro-area, monetary policy shocks have a similar delayed and persistent e¤ect


on in�ation, hours and the output gap. Interest rates are more sensitive to output


than in the United States, but the bene�ts from this stabilization policy are smaller.


Policy errors have been smaller than in the United states, so the welfare bene�t of


eliminating them is only 1.4% of steady-state consumption. Announcements and


gradual movements in interest rates have the same e¤ects as in the United States.


Turning from what policy has been, to what it could (and, according to the model


should) have been, I concluded that:


� In the United States, the optimal Taylor rule has interest rates responding much


more strongly to the output gap than is currently the case and, doing so together


with eliminating policy errors, could raise welfare by as much as 5.5% of consump-


tion. The optimal price-level standard involves allowing for large departures from the


target price-level in response to �uctuations in output. The best performing policy


rule under commitment would raise welfare by 6.3%. Taking into account parame-


ter uncertainty, the robustly-optimal Taylor rule responds more aggressively to both


output and in�ation, but the welfare bene�ts relative to the optimal rule that ignores


parameter uncertainty are tiny.


� In the Euro-area, the optimal Taylor rule responds much more strongly to in�ation,


but less strongly to output �uctuations. Adjusting the coe¢ cients of the Taylor rule


raises welfare by 0.6% of steady-state consumption, which together with the 1.4%


bene�t of eliminating policy errors, leads to an overall bene�t of 2% of implementing


the optimal Taylor rule. The optimal price-level standard is essentially strict price-


level target, and it performs almost as well as the optimal Taylor rule. The best


policy rule under commitment would raise welfare by 2.7% of consumption. The


robustly-optimal policy rules perform only marginally better than the rules that ignore


parameter uncertainty.
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Appendix


A.1. The log-linear equilibrium for the full model. At the non-stochastic steady


state, the �ve exogenous processes are constant. Using the conditions de�ning the optimum,


it follows that output is Y = AL�, consumption is C = Y=G and labor is


{L1+1= =
�G(� � 1)( � 1)
(1� �w)(1� �p)�


: (38)


I log-linearize the equilibrium conditions around this point. Small caps denote the log-


deviations of the respective large-cap variable from the steady state, with the exceptions


of: �t and t which are the log-deviations of �̂t and ̂t, rt which is the log-deviation of the


short rate Et[�t+1], and Rt which is the log-deviation of the long rate limk!1Et[ ��t;t+1+k ].


Log-linearizing the optimality and market clearing conditions in the consumers�problem:


ct;0 = Et (ct+1;0 � rt) (39)


ct;j = Et�j (ct;0) ; (40)


yt;j = yt � � (pt;j � pt) ; (41)


Log-linearizing the conditions in the �rms�problem:


yt;i = at + �lt;i; (42)


pt;i = Et�i


�
pt +


�(wt � pt) + (1� �)yt � at � �t�=(�� � 1)
� + ��(1� �)


�
; (43)


lt;j = lt � (wt;j � wt): (44)


Log-linearizing the conditions in the workers�problem:


wt;0 � pt � lt;0= + t=(� � 1) = Et[�rt + wt+1;0 � pt+1 � lt+1;0= + t+1=(� � 1)];(45)


wt;j = Et�j (wt;0) : (46)
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Log-linearizing the price indices and Taylor rule:


pt = �
1X
i=0


(1� �)ipt;i; (47)


wt = !
1X
j=0


(1� !)jwt;j ; (48)


it = �y(yt � ynt ) + �p�pt � "t; (49)


it = rt + Et (�pt+1) (50)


And �nally, log-linearizing the aggregate quantity indices:


yt = gt + ct; (51)


ct = �
1X
j=0


(1� �)jct;j ; (52)


This set of 14 equations over time provide the equilibrium solution for the set of 14


variables (yt;j ; yt; ct;0; ct;j ; ct; lt;0; lt;j ; lt; wt;j ; wt; pt; pt;i; it; rt) as a function of the 5


exogenous processes (�at; "t, gt; t, �t).


A.2. The reduced-form aggregate relations. The natural levels of the variables


are de�ned as the equilibria values when all agents are attentive (so � = � = ! = 1). In


this case , since all agents are identical, yt;j = yt, ct;0 = ct;j = ct, lt;0 = lt;j = lt; wt;j = wt,


and pt;i = pt. Solving the set of linear equations, tedious algebra shows that:�
1 +  


 �


�
ynt =


�
1 +  


 �


�
at + gt +


t
 � 1 +


�t
� � 1 (53)


I am then ready to derive the �ve equations. Starting with the Phillips curve, replace


yt;j using (41) and pt;i using (43) into (47) and rearrange to obtain (32). Moving to the IS,


iterate (39) forward and take the limit as time goes to in�nity. Then, the fact that there


is complete insurance plus the fact that eventually all become aware of shocks implies that


limi!1Et (ct+i;0) = limi!1Et
�
ynt+i


�
� y1t . Using the de�nition of the long rate Rt and


replacing for ct;0 in (40) and (52) gives an expression for aggregate consumption. Replacing


it in (51) and using the fact that limi!1Et [gt+i] = 0 gives the IS curve in (33). Next, I


turn to the wage curve. Taking very similar steps as in the IS, iterate (45) forward and use


the solution to replace for wt;0 in (46) Combining the wt;j in the aggregator for wt in (48)
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and replacing out lt;j using (44) gives the wage curve in (34). Fourth, aggregating (42) over


i gives the aggregate production function in (35). Fifth and �nally, the expressions for the


nominal interest rate in (49) and (50) give the Taylor rule in (36).


A.3. Numerical solution of the model. The 5 equations in section 2.3 together


with the initial condition p�1 = 0 de�ne an equilibrium in the 5 variables (yt; pt; wt; lt; it)


as function of the �ve stochastic variables ("t;�at; gt; �t; t). Mankiw and Reis (2007)


showed how to use a method of undetermined coe¢ cients to solve this model. Letting


s 2 S = f�a; g; �; ; "g denote the di¤erent shocks, they write pt =
P


s2S
P1


n=0 p̂n(s)e
s
t�n


and their Proposition 1 solves for the scalars p̂n(s) that measure the impact of shock s at


lag n on the price level. Their Corollary 1 in turn solves for the equilibrium coe¢ cients


ŷn(s), {̂n(s), (ŵ � p̂)n(s) and l̂n(s) that govern the solution for output, nominal interest


rates, real wages and hours.


A.4. Evaluating welfare. The utilitarian social welfare function is:


Z 1


0
E0


" 1X
t=0


�t


 
ln(Ct;j)�


{L1+1= t;j


1 + 1= 


!#
dj; (54)


and I focus on its unconditional expectation. Multiplying the expression above by (1 � �)


and taking the limit as � ! 1, the policy objective is:


Z 1


0


0@E (ln(Ct;j))� {E
�
L
1+1= 
t;j


�
1 + 1= 


1A dj: (55)


Recall the de�nition of the log-linearized values: ct;j = ln(Ct;j)� ln(C) and lt;j = ln(Lt;j)�


ln(L). Social welfare then is:


ln(C) +


Z 1


0


 
E (ct;j)�


{L1+1= E
�
e(1+1= )lt;j


�
1 + 1= 


!
dj: (56)


At this point I make one assumption common in this literature: that the tax on prices


exactly o¤sets the monopoly distortion in the goods market (1��p = �=(��1)), the tax on


wages exactly o¤sets the monopoly distortion in the goods market (1��w = =(�1)), and


the distortion from government spending is on average zero (G = 1). In this case, the non-


stochastic steady state is an e¢ cient equilibrium without uncertainty. These assumptions


allow us to focus monetary policy on the task of stabilizing economic activity (Woodford,
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2003a). From (38), they imply that {L1+1= = �.


In the log-linear solution of the model, both ct;j and lt;j are normal variables with a zero


mean. Therefore, social welfare is:


ln(C)� �


1 + 1= 


Z 1


0
exp


�
(1 + 1= )2V ar(lt;j)


�
dj: (57)


Because lt;j is a normal variable, V ar(lt;j) is a linear function of the variance of the exogenous


shocks. As we will see, these are small in the data, so approximating exp (V ar(lt;j)) by


1 + V ar(lt;j) involves very little numerical error and social welfare becomes:


ln(C) + �(1 + 1= )� �(1 + 1= )
Z 1


0
V ar(lt;j)dj (58)


Using the distribution of workers according to when they last updated, this becomes:


ln(C) + �(1 + 1= )� �(1 + 1= )!
1X
j=0


(1� !)jV ar(lt;j) (59)


Next, note that combining (44) with (45) and (46) to replace out for wt;0 gives the


following expressions:


lt;j = lt � (wt;j � wt) (60)


wt;j = Et�j


�
pt +


lt;j
 
� t
� � 1 �Rt + y


1
n


�
(61)


Using a method of undetermined coe¢ cients, guess that lt;j =
P


s2S


�Pj�1
n=0


~ln(s) +
P1


n=j
�ln(s)


�
est�n


and solve to �nd that:


~ln(s) = l̂n(s) + ŵn(s) for all s; (62)


( +  )�ln(s)


 
=


l̂n(s)



+ (ŵ � p̂)n(s) +


ŷn(s)


�n
+


8>>><>>>:
0 for s = "; a; �


�n=( � 1) for s = 


��ng=�n for s = g


(63)


where �n = �
Pn


i=0(1� �)i. From this, it follows that:


V ar(lt;j) =
X
s2S


0@j�1X
n=0


~ln(s)
2 +


1X
n=j


�ln(s)
2


1A�2(s) (64)


30







Finally, some grouping shows that


!
1X
j=0


(1� !)j
0@j�1X
n=0


~ln(s)
2 +


1X
n=j


�ln(s)
2


1A =
1X
n=0


h
(1� 
n)~ln(s)2 +
n�ln(s)2


i
(65)


where 
n = !
Pn


i=0(1 � !)i. Ignoring the terms that are invariant to policy changes, the


social welfare function then is:


W(�) = �
X
s2S


1X
n=0


h
(1� 
n)~ln(s)2 +
n�ln(s)2


i
�2s; (66)


wits ~ln(s) and �ln(s) de�ned above. To evaluate the welfare bene�t in percentage units of


steady-state consumption of a policy that implies �(1) starting from another that implies


�(0), use (59) to calculate:


exp(�(1 + 1= )
�
W(�(1))�W(�(0))


�
)


A.5. Optimal policy. The set of non-policy parameters is always: �np = (�;  ; �; ;


��a; ��a; �g; �g; �� ; �� ; � ; � ; �; !; �). The set of policy parameters for the Taylor rule


is �p = (�y; ��; �"; �"). Since the welfare function declines monotonically with �
2
" and the


policy controls it, it is obvious that �2" = 0 at the optimum (and, as result, �" is irrelevant.


To �nd the optimal �y and �� I numerically maximized welfare subject to the restriction


that �� > 1.


For an elastic price standard, the only policy coe¢ cient is �. Using the corollary in


Mankiw and Reis (2007), one can show that, regardless of the policy rule, in this model


ŷn(s) = 	np̂n(s) + �n(s) where 	n and �n(s) are messy functions of �np while for the


natural rate of output ŷnn(s) = �n(s). Combining this with the elastic price standard, it


follows that p̂n(s) = �(�n(s)��n(s))=(1��	n). Given this solution for p̂n(s), welfare can


be evaluated using the Corollary 1 in Mankiw and Reis (2007), and the results in A.4. This


was then numerically maximized with respect to � in the real line.


For the optimal unconditional policy, let �S be the set of non-policy shocks f�a; g; �;
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g. The problem of �nding the optimal policy is to:


min
ffp̂n(s)g1n=1gs2 �S


8<:X
s2 �S


1X
n=0


h
(1� 
n)~ln(s)2 +
n�ln(s)2


i
�2s


9=; (67)


Since the problem is additively separable across the di¤erent elements of �S, we can solve


the four separate problems instead:


min
fp̂n(s)g1n=1


1X
n=0


h
(1� 
n)~ln(s)2 +
n�ln(s)2


i
�2s for each s 2 �S (68)


Using (62)-(63) together with the solutions in the Mankiw-Reis corollary, one can derive,


after much algebra, that:


~ln(s) = anp̂n(s) + bn(s) (69)


�ln(s) = cnp̂n(s) + dn(s) (70)


for some messy functions an, bn(s), cn, and dn(s) that depend on the non-policy structural


parameters of the economy. But then, the �rst-order conditions of (68) lead to the solution:


p̂n(s) = �
(1� 
n)anbn(s) + 
ncndn(s)


(1� 
n)a2n +
nc2n
: (71)


for n = 1; 2::: and s 2 �S. A simple algorithm uses the non-policy structural parameters


of the economy to evaluate the expressions: an, bn(s), cn, and dn(s) and calculates the


optimal policy directly using (71). This takes only a few seconds. Given the optimal p̂n(s),


the Mankiw-Reis corollary gives the solution for the other variables, and the results in A.4.


gives optimal welfare.


A.6. Robustly optimal policy. This exercise consists of �nding:


�̂
p
= argmax


�p
W
�
�p;


Z
�npdp(�np)


�
:


For the Taylor rule case, �p = (�y; ��), and the integral was calculated by averaging over


10,000 draws from the posterior density. A �rst grid search for the optimum with 0.2 jumps


started from the non-robust optimal policy rules. Two further grid searches, with 0.05 and


0.01 jumps, were then undertaken around the candidate optimum.
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For the elastic price standard, �p = � and the procedure was the same.


A.6. Europe EMS sample. Table A.1 shows the posterior estimates using Euro-


data since the start of the European Monetary System (EMS) and the practice of pegging


exchange rates. It is a stretch to apply the model to this extended dataset, since it includes


changes in the members of the European Community, and involves frequent devaluations


and exits from the EMS.
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Figure 1. Impulse responses to one-standard deviation
non-policy shocks in the United States







Figure 2. Impulse responses to one-standard deviation
non-policy shocks in the Euro-area
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Figure 3. Impulse responses to a one-standard deviation
monetary policy shocks in the United States
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Figure 4. Impulse responses to a one-standard deviation
monetary policy shocks in the Euro-area
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Figure 5. Impulse responses to a one-standard deviation
monetary policy shock in the United States


with and without output stabilization concerns.
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Figure 6. Impulse responses to a one-standard deviation
aggregate productivity shock in the United States


with and without output stabilization concerns.
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Figure 7. Impulse responses to a one-standard deviation
aggregate demand shock in the United States
with and without output stabilization concerns.
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Figure 8. Impulse responses to a one-standard deviation
monetary policy shock in the Euro-area


with and without output stabilization concerns.
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Figure 9. Impulse responses to a one-standard deviation
aggregate productivity shock in the Euro-area
with and without output stabilization concerns.
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Figure 10. Impulse responses to a one-standard deviation
aggregate demand shock in the Euro-area


with and without output stabilization concerns.
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Figure 11. Impulse responses to a one-standard deviation
monetary policy shock in the United States


announced in advance or not
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Figure 12. Impulse responses to a one-standard deviation
monetary policy shock in the Euro-area
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Figure 13. Impulse responses to a one-standard deviation
monetary policy shock in the United States


that gradually takes place or not
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Figure 14. Impulse responses to a one-standard deviation
monetary policy shock in the Euro-area


that gradually takes place or not
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Figure 15. Density plots of welfare for different optimal
policies in the United States
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Figure 16. Density plots of welfare for different optimal
policies in the Euro-area
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Table 1. Prior distributions 
 


Parameters Density Mean Standard 
Deviation 


Percentiles 
(2.5; 50; 97.5) 


Mode 


Substitution elasticities     
ν 1+G 11 3.16 5.80 ; 10.67 ; 18.09 10.09 
γ 1+G 11 3.16 5.80 ; 10.67 ; 18.09 10.09 


Non-policy shocks     
ρg B .70 .22 .20 ; .75 ; .99 1.03 
σg IG1/2 .22 .11 .11 ; .19 ; .51 .15 
ρν B .70 .22 .20 ; .75 ; .99 1.03 
σν IG1/2 .22 .11 .11 ; .19 ; .51 .15 
ργ B .70 .22 .20 ; .75 ; .99 1.03 
σγ IG1/2 .22 .11 .11 ; .19 ; .51 .15 


Monetary policy     
φy G .33 .25 .03 ; .27 ; .97 .14 
φπ 1+G 1.24 .25 1.00 ;  1.16 ; 1.92 1.19 
ρε B .70 .22 .20 ; .75 ; .99 1.03 
σε IG1/2 .22 .11 .11 ; .19 ; .51 .15 


Inattentiveness     
δ U .50 .29 .03 ; .50 ; .98 [0,1] 
ω U .50 .29 .03 ; .50 ; .98 [0,1] 
λ U .50 .29 .03 ; .50 ; .98 [0,1] 


 
Notes: The densities are the gamma (G), beta (B), inverse gamma (IG) and uniform (U). 


 







Table 2. Posterior distributions for the United States 
 


Parameters  Mean Standard 
Deviation 


Percentiles 
(2.5; 50; 97.5) 


Mode 


Substitution elasticities     
ν  21.83 3.64 15.21 ; 21.69 ; 29.52 20.94 
γ  7.25 1.40 4.72 ; 7.18 ; 10.25 5.76 


Non-policy shocks     
ρg  .88 .05 .76 ; .89 ; .98 .88 
σg  .01 .002 .01 ; .01 ; .02 .01 
ρν  .65 .03 .60 ; .65 ; .70 .66 
σν  1.17 .41 .58 ; 1.10 ; 2.20 .98 
ργ  .59 .05 .46 ; .60 ; .67 .63 
σγ  .33 .12 .15 ; .31 ; .61 .25 


Monetary policy     
φy  .43 .10 .26 ; .42 ; .64 .40 
φπ  1.28 .20 1.01 ; 1.26 ; 1.72 1.14 
ρε  .90 .02 .85 ; 90 ; .94 .89 
σε  .01 .002 .01 ; .01 ; .02 .01 


Inattentiveness     
δ  .17 .04 .12 ; .17 ; .26 .18 
ω  .22 .03 .17 ; .22 ; .28 .22 
λ  .68 .03 .63 ; .68 ; .74 .67 


 
Notes: The moments are computed using 100,000 draws from the posterior, which come from 
mixing 5 independent MCMC simulated Metropolis chains of 40,000 draws discarding the first 
20,000. Convergence was assessed using the Brooks-Gellman scale reduction factors and by 
plotting between-chain and within-chain variances. 
 


 
Table 3. Variance decompositions for the United States 


 
   Shock   


Variable Monetary 
Aggregate 


productivity 
Aggregate 


demand Goods markup Labor markup 
Inflation 


 
.76 


[.52 ; .89] 
.05 


[.03 ; .08]  
.01 


[.00 ; .08] 
.17 


[.07 ; .40] 
.00 


[.00 ; .01] 
Output 
growth 


.16 
[.10 ; .25] 


.17 
[.11 ; .23] 


.47 
[.33 ; .61] 


.14 
[.07 ; .25] 


.05 
[.02 ; .12] 


Hours .45 
[.19 ; .69] 


.05 
[.01 ; .12] 


.36 
[.15 ; .69] 


.08 
[.03 ; .17] 


.03 
[.01 ; .10] 


Interest 
rate 


.26 
[.12 ; .44] 


.09 
[.06 ; .13] 


.02 
[.01 ; .08] 


.48 
[.28 ; .70] 


.13 
[.05 ; .25] 


Wage 
growth 


.08 
[.04 ; .14] 


.26 
[.14 ; .38] 


.01 
[.00 ; .03] 


.61 
[.44 ; .78] 


.03 
[.01 ; .07] 


      
Notes: Median and 95% percentiles cell-by-cell using 50,000 draws of the posterior density, so 
rows will not add up to one exactly. 


 







 
Table 4. Predictive moments for key U.S. facts 


 


Moment Data Prior 
Mean 


Posterior 
Mean 


Posterior Percentiles 
(2.5; 50; 97.5) 


StDev(πt) .01 .03 .02 .02 ; .02 ; .03 


StDev(Δyt) .01 .08 .02 .01 ; .02 ; .02 


Corr(πt , πt-1) .83 .94 .89 .78 ; .90 ; .96 


Corr(πt+2 - πt-2 , yt - yt
trend ) .46 .49 .31 .09 ; .31 ; .50 


StDev(Δ(w-p)t)/StDev(Δ(y-l)t) .70 .60 1.05 .82 ; 1.03 ; 1.39 


StDev(yt-yt-1)/0.5StDev(yt-yt-4) .79 1.19 .91 .80 ; .91 ; 1.04 


 
Notes: Posterior moments computed using 50,000 draws from the posterior density and 
simulating pseudo-samples of the same length as original sample. The output trend is calculated 
using an HP filter with smoothing parameter 1600. 
 







 
 


Table 5. Posterior distributions for the Euro-area 
 


Parameters   Mean Standard 
Deviation 


Percentiles 
(2.5; 50; 97.5) 


Mode 


Substitution elasticities     
ν  12.32 2.98 7.27 ; 12.03 ; 18.67 9.20 
γ  14.90 1.96 10.95 ; 14.92 ; 18.96 15.82 


Non-policy shocks     
ρg  .98 .01 .95 ; .99 ; 1.00 .99 
σg  .01 .002 .005 ; .01 ; .01 .01 
ρν  .46 .12 .21 ; .46 ; .67 .38 
σν  .07 .02 .03 ; .06 ; .13 .03 
ργ  .53 .10 .28 ; .56 ; .66 .55 
σγ  .21 .09 .06 ; .20 ; .41 .17 


Monetary policy     
φy  1.49 .37 .90 ; 1.43 ; 2.36 1.61 
φπ  1.23 .16 1.01 ; 1.21 ; 1.60 1.17 
ρε  .79 .05 .69 ; .80 ; .89 .88 
σε  .02 .01 .01 ; .02 ; .03 .01 


Inattentiveness     
δ  .07 .02 .03 ; .07 ; .11 .08 
ω  .66 .04 .59 ; .66 ; .72 .68 
λ  .34 .05 .22 ; .34 ; .43 .26 


 
Notes: Same as table 2, but now using 900,000 draws from 5 independent chains of 200,000 
draws each, and discarding the first 20,000 draws. 


 
 


Table 6. Variance decompositions for the Euro-area 
 
   Shock   


Variable Monetary 
Aggregate 


productivity 
Aggregate 


demand Goods markup Labor markup 
Inflation 


 
.08 


[.01 ; .53] 
.78 


[.42 ; .95] 
.09 


[.01 ; .29] 
.00 


[.00 ; .00] 
.00 


[.00 ; .00] 
Output 
growth 


.16 
[.04 ; .44] 


.14 
[.05 ; .26] 


.63 
[.35 ; .88] 


.00 
[.00 ; .03] 


.03 
[.00 ; .14] 


Hours .06 
[.01 ; .36] 


.05 
[.01 ; .19] 


.87 
[.52 ; .98] 


.00 
[.00 ; .01] 


.00 
[.00 ; 04] 


Interest 
rate 


.24 
[.05 ; .60] 


.47 
[.19 ; .85] 


.06 
[.02 ; .19] 


.02 
[.00 ; .10] 


.12 
[.01 ; .44] 


Wage 
growth 


.47 
[.24 ; .77] 


.40 
[.19 ; .58] 


.07 
[.02 ; .21] 


.02 
[.00 ; .08] 


.00 
[.00 ; .04] 


      
Notes: Same as table 3. 







 
Table 7. Predictive moments for key E.U. facts 


 


Moment Data At Prior 
Mean 


Posterior 
Mean 


Posterior Percentiles 
(2.5; 50; 97.5) 


StDev(πt) .002 .03 .02 .005; .01 ; .05 


StDev(Δyt) .004 .08 .01 .005 ; .01 ; .01 


Corr(πt , πt-1) .39 .92 .98 .91 ; .98 ; .1.00 


Corr(πt+2 - πt-2 , yt - yt
trend ) .36 .46 .15 -.39 ; .16 ; .63 


StDev(Δ(w-p)t)/StDev(Δ(y-l)t) 1.22 .59 2.51 1.46 ; 2.39 ; 4.28 


StDev(yt-yt-1)/0.5StDev(yt-yt-4) .64 1.23 .99 .75 ; .97 ; 1.34 


 
Notes: Same as table 4. 







 
 


Table 8. Optimal policy and welfare 
 


Policy rule 
 


Parameters Welfare gain from status quo 
(in % of consumption) 


United States 
 


  


   Eliminate policy errors 1.28 ; 0.43 5.00 
   Optimal Taylor rule 1.62, 1.81 5.54 
   Elastic price standard 0.95 2.60 
   Unconditional optimum  6.29 


   
Euro-area 
 


  


   Eliminate policy errors 1.22 ; 1.48 1.44 
   Optimal Taylor rule 19.00 ; 0.54 2.04 
   Elastic price standard 0.01 1.95 
   Unconditional optimum  2.70 
 
Notes: Numbers in the last column are in percentage units. 


 
 
 
 


Table 9. Robustly optimal policy and expected welfare 
 


Policy rule 
 


Optimal 
Parameters 


Robust 
Parameters 


Expected 
welfare gain 1  


Expected 
welfare gain 2 


United States 
 


    


   Optimal Taylor rule 1.62 ; 1.81 2.31 ; 1.98 0.02 6.89 
   Elastic price standard 0.95 0.67 0.01 3.69 
     
Euro-area 
 


    


   Optimal Taylor rule 19.00 ; 0.54 18.25 ; 0.68 0.00 2.60 
   Elastic price standard 0.01 0.00 0.00 2.39 
 
Notes: Expected welfare gain 1 has the gain in expected welfare from using robustly optimal 
parameters rather than optimal parameters. Welfare gain 2 has expected welfare gain relative to 
status quo. The numbers in the last two columns are in percentage units. 







 
Table A.1. Posterior distributions for the Euro-area usiong data from 1979:3 


 
Parameters   Mean Standard 


Deviation 
Percentiles 


(2.5; 50; 97.5) 
Mode 


Substitution elasticities     
ν  9.34 2.63 5.11 ; 9.04 ; 15.41 6.97 
γ  9.50 2.12 5.85 ; 9.32 ; 14.15 8.88 


Non-policy shocks     
ρg  .95 .04 .86 ; .96 ; 1.00 .94 
σg  .01 .001 .004 ; .007; .01 .01 
ρν  .29 .06 .17 ; .30 ; .41 .32 
σν  .57 .37 .14 ; .47 ; 1.56 .17 
ργ  .92 .03 .84 ; .92 ; .97 .88 
σγ  .68 .38 .26 ; .58 ; 1.76 .47 


Monetary policy     
φy  .20 .07 .08 ; .20 ; .33 .28 
φπ  1.19 .10 1.05 ; 1.18 ; 1.42 1.22 
ρε  .23 .08 .07 ; .23 ; .39 .17 
σε  .01 .008 .01 ; .01 ; .02 .01 


Inattentiveness     
δ  .01 .01 .003 ; .01 ; .04 .02 
ω  .95 .04 .86 ; .95 ; 1.00 .98 
λ  .28 .12 .16 ; .23 ; .67 .42 


 
Notes: Same as table 5. 
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Abstract 


 


Among the variables that play critical roles in the design of monetary policy, several are 
unobservable. These include such key variables as the neutral real rate of interest, the 
output gap, and the natural rate of unemployment. While individual central banks have 
undertaken efforts to estimate these unobservables, the approaches have generally been 
country specific and have not provided either systematic estimation or comparison 
across countries. We adopt a common estimation approach, applied to a parsimonious 
monetary-policy model, to provide consistent estimates of key unobservables for the 
U.S., the Eurozone, and Japan, and several inflation-targeting countries: Australia, 
Canada, Chile, New Zealand, Norway, Sweden, and the U.K.  Doing so allows us to 
obtain comparable measures of unobservables across a range of countries. We exploit 
our estimates to investigate issues of commonalities and convergence across countries 
in these key but unobservable variables. 
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1. Introduction 


 


“In informal terms, we are uncertain 
 about where the economy has been, 


 where it is now and where it is going” 
Donald Kohn 


quoted in The Economist, Oct. 20, 2007 
 


In recent years, the design of monetary policy has focused on gaps – the output gap, the interest 


rate gap, and the unemployment rate gap have all played a role in policy discussions. Standard 


models used for policy analysis are either specified in terms of such gaps or they imply 


important roles for these gap variables in the implementation of monetary policy. In the case of 


each, the gap is defined as the difference (often in percentage terms) between an observable 


variable, such as output or unemployment, and an unobserved variable, such as potential output 


or the natural rate of unemployment. 


 


The presence of unobservables in the definitions of these gaps poses significant problems for 


central banks as they implement monetary policy. These problems are both conceptual in nature 


(what is the right definition of the output gap, potential output, or the neutral real interest rate?) 


and practical (which of many empirical strategies for estimating unobservables should be 


used?). These problems are compounded by the fact that real-time data used to estimate 


unobservables will be revised in the future, implying that the best estimates available at the time 


policy decisions must be taken may, in hindsight, diverge significantly from estimates based on 


subsequent vintages of data.  


 


To estimate these key unobservables, economists have drawn on a variety of methodologies. 


Univariate approaches based on statistical methods designed to decompose a time series into 


trend and cycle have been widely used to estimate variables such as potential output or the 


natural rate of unemployment. In multivariate approaches, the joint behavior of several variables 


whose trend or cyclical elements may be related are employed. Multivariate strategies offer the 


possibility of bringing economic structure to bear on the estimation problem by incorporating 


restrictions implied by an economic model. For example, Okun’s Law suggests a relationship 


between the output gap and the gap between unemployment and the natural rate of 


unemployment. Thus, the joint behavior of output and unemployment may provide information 


that is useful in estimating both these gaps. However, the results obtained by previous 


researchers studying different time periods or different economies are difficult to compare 


across countries since estimation methodologies often differ significantly. This hinders the 
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ability to assess how business cycles might be linked across countries, how potential output or 


the neutral real interest rate in different countries might be related, and how closely related the 


various gaps might be across a sample of countries. 


 


While the literature on international business cycles had employed common methods to estimate 


output gaps (Backus, Kehoe, and Kydland 1992), this work typically employed univariate 


statistical techniques (i.e., the H-P filter) to extract the cyclical component of output. A 


univariate approach ignores the information that is potentially available if one considers the 


joint behavior of several macro variables that are affected by the same set of unobservable 


variables. Variable definitions, sample periods, and the set of unobservables examined also vary 


across applications to individual countries. And while individual central banks have undertaken 


efforts to estimate these unobservable variables, their approaches have generally been country 


specific and have not provided either systematic estimation or comparison across countries. 


 


Recently, Garnier and Wilhelmsen (2005) and Benati and Vitale (2007) have adopted a joint 


estimation approach to uncover important unobservables for several countries. Garnier and 


Wihelmsen focus on the U.S., the Euro area, and Germany, while Benati and Vitale study the 


U.S., the U.K., the Euro area, Sweden, and Australia. However, this approach has not been 


extended to include a larger number of inflation targeting economies nor has it included any 


emerging or developing economies. Yet many developing economies have adopted inflation 


targeting, and so unobservables such as the output gap and the neutral real interest rate play a 


particularly important role in their conduct of monetary policy.  


 


Our objective is to provide a consistent approach to estimating potential output, the neutral rate 


of interest, and the natural rate of unemployment using data from several countries. This will 


then allow us to compare macroeconomic developments among these countries. The next 


section provides a brief discussion of the role of unobservables in the design of monetary 


policy. This discussion serves in part to motivate the variables – potential output, the neutral 


real interest rate and the natural rate of unemployment – on which our empirical analysis 


focuses. Section 3 then briefly sets out our empirical strategy. Section 4 discusses the model, the 


estimation approach, the data, and the basic results. Second 5 focuses on the cases of the U.S. 


and Chile and provides some robustness checks on our basic results. Section 6 then uses our 


estimated series on the key unobservables to provide evidence on the Great Moderation, the co-


movements of the unobservables across the economies in our sample, and convergence of 


variables such as the neutral real interest rate. Section 7 concludes and discusses extensions. 


 


2. The role and importance of unobservables in monetary policy 
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In this section, we discuss the role that key unobservables play in policy design. We then briefly 


review the way errors in estimating potential GDP and the natural rate of unemployment have 


contributed to critical policy mistakes.  


 


  2.1 Unobservable variables and policy design 


The theoretical foundations both for monetary policy analysis and for the empirical models 


employed by central banks contain several important variables that are not directly observable. 


The output gap, where the output gap is the (log) difference between real GDP and an 


unobserved time-varying benchmark such as potential GDP, and the unemployment rate gap, 


the difference between the actual unemployment rate and the natural rate of unemployment, are 


typically the driving forces explaining inflation. Central banks may also need to monitor theses 


unobservables out of a direct concern for macroeconomic stability. Both potential GDP and the 


natural rate of unemployment must be inferred from observable macro variables. Policy makers 


must monitor difficult to measure expectations of inflation to ensure that private sector 


expectations are consistent with the central bank’s inflation targets (i.e., the need to ensure 


expectations are anchored) and because movements in inflation expectations can contribute to 


fluctuations in actual inflation. And they need to adjust policy interest rates to reflect changes in 


the economy’s neutral real rate of interest.  


 


The critical role of these unobservable variables in designing monetary policy can be illustrated 


using a simple new Keynesian model. This benchmark model consists of a forward-looking 


Phillips Curve, an expectational IS relationship, and a specification of policy either in terms of 


an objective function (which the central bank is then assumed to maximize) or a decision rule 


(see Clarida, Gali, and Gertler 1999).  


 


If the central bank’s objective is to minimize volatility of inflation and the gap between output 


and potential output, optimal policy (under discretion) can be described in terms of what 


Svensson and Woodford (2005) have called a targeting rule. Such a rule involves ensuring that a 


weighted sum of the output gap and the inflation gap (inflation minus the inflation target) is 


always kept equal to zero. Intuitively, the output gap should be negative when inflation is above 


target as this will tend to produce a fall in inflation, acting to bring inflation back to its target 


level. And the output gap should be positive when inflation is below target. Just such a targeting 


relationship between the output gap and inflation is described by the Bank of Norway in its 


inflation report in discussing the desirable properties of future interest rate paths. The 


discussions of interest rate projections by the Reserve Bank of New Zealand in its monetary 


policy statements are consistent with a similar though implicit targeting rule. In following such 


a rule, the central bank knows its inflation target, and it has direct measures of both inflation and 
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output (though there may be serious real-time measurement errors in the later, it is directly 


observable in principle), but it must estimate the level of potential output.  


 


Potential output is not the only unobserved variable the central bank must estimate as it 


implements policy. To actually implement an optimal targeting rule, the central bank must still 


determine how to move its policy interest rate in order to maintain the required relationship 


between the output and inflation gaps. To determine the nominal interest rate that will 


implement the optimal policy requires knowledge of the relationship between interest rates and 


real spending, a relationship commonly summarized in new Keynesian models by an 


expectational IS curve. Using a standard specification of the IS relationship, one finds that the 


optimal interest rate will satisfy the following relationship (see Clarida, Gali, and Gertler 1999): 


 1
* )1(1 +⎥


⎦


⎤
⎢
⎣


⎡ −
++= tttt Eri π


ρλ
ρσκ


 (1) 


 


where i is the nominal rate of interest, π  is the inflation rate, and r*  is the neutral real interest 


rate, the rate consistent with a zero output gap.4 The parameters σ, κ, λ, and ρ are, respectively, 


the inverse of the interest elasticity of aggregate demand, the output gap elasticity of inflation, 


the relative weight the policy maker places on output gap volatility relative to inflation 


volatility, and the degree of serial correlation in shocks to the inflation equation. Both the 


variables on the right side of equation (1) are unobservable or measurable only indirectly, for 


example via surveys or from asset prices or the term structure of interest rates.5 


 


To solve for the equilibrium under the interest rate rule given by (1), the IS and Phillips curve 


relationships must also be specified. The ones underlying the derivation of (1) take the form 


 ( )1 1
1


t t t t t t tx E x i E rπ
σ


∗
+ +


⎛ ⎞= − − −⎜ ⎟
⎝ ⎠


 (2) 


and 


 1 .t t t t tE x eπ β π κ+= + +  (3) 


 


It is clear from (1) that the neutral real interest rate will be of critical importance for getting the 


level of the policy rate right. Under an interest rate operating procedure for monetary policy, the 


level of the nominal rate when the inflation rate is equal to its target must be consistent with the 


                                                 
4 There are numerous ways to write this relationship and to define the various unobservables. For 
example, it would be more in keeping with standard new Keynesian models to define r* as the real 
interest rate consistent with output and the flexible-price equilibrium level of output being equal. 
5 If the inflation adjustment relationship incorporates lagged inflation, the targeting rule would also 
include further terms involving forecasts of future inflation rates and output gaps. 
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economy’s equilibrium real rate of return. When inflation is equal to its (constant) target level, 


the Fisher relationship requires that the nominal interest rate equal the neutral rate plus the 


target inflation rate. Thus, while most of the recent literature has emphasized the importance of 


the Taylor Principle – the need to adjust the nominal rate more than one for one with changes in 


inflation – equally important is the need to fully adjust the nominal rate in response to changes 


in the neutral real interest rate. Woodford (2003) has labeled the equilibrium real interest 


associated with the absence of fluctuations due to nominal distortions as the Wicksellian real 


rate. An optimal monetary policy that maintains zero inflation to “undo” the real distortions 


created by nominal rigidities would ensure that the gap between the nominal interest rate and 


the Wicksellian rate remains equal to zero.  


 


Unfortunately, this Wicksellian or neutral real rate is unobservable. It is, however, closely 


related to another key unobservable – the output gap. In the context of the simple model used to 


derive (1), the neutral real rate of interest is proportional to the growth rate of potential real 


output. Laubach and Williams (2003) use this relationship between these two unobservable 


variables to help them estimate the neutral real interest rate for the U.S.   


 


Equations (2) and (3) serve also to highlight the key role of unobservable variables. The output 


gap appears in both, as does expected future inflation, while the neutral real interest rate appears 


in the IS relationship. For a central bank to actually use this simple framework for policy 


analysis requires that methods be developed for estimating potential output (to obtain an output 


gap measure), expected inflation, and the neutral real interest rate.   


 


The difficulties in measuring the output gap go, in some sense, beyond the need to measure 


potential output, because the very definition of the output gap has evolved over the past twenty 


years. At the conceptual level, three distinct definitions have been employed. The first and most 


common definition of the output gap is in terms of the relationship between actual real GDP and 


potential GDP, where potential GDP is typically associated with the level of GDP that would be 


produced at full-employment of labor and capital at normal rates of utilization. This is the 


definition of the output gap that is most commonly used in models employed by central banks.   


 


In recent years, the development of the new Keynesian Phillips curve has focused attention on a 


second definition of the output gap, a definition that the underlying theory identifies as the key 


variable driving inflation. This is the output gap measured as the gap between actual real GDP 


and the level of GDP that would be produced in the absence of nominal wage and price 


rigidities. This flexible-price output gap provides a measure of economic fluctuations that are 


due to nominal rigidities. It is these nominal rigidities that allow monetary policy to have real 
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effects, but they also create real distortions. Standard new Keynesian models imply that 


monetary policy should aim at eliminating these distortions by minimizing fluctuations in the 


output gap.  


 


However, stabilizing the flexible-price output gap is difficult, not least because the economy’s 


equilibrium output that would arise if there were no nominal rigidities is clearly not observable, 


and it cannot be estimated using the (often) univariate statistical approaches employed to 


estimate potential output. Instead, any estimate must come from employing a dynamic 


stochastic general equilibrium (DSGE) model that can simulate the behavior of an economy that 


is not subject to nominal rigidities. Since the correct model of the economy is unknown, any 


estimate of the output gap will be subject to a great deal of uncertainty. Levin, Onatski, 


Williams, and Williams (2006) provide one example of a DSGE model that is estimated based 


on U.S. data and then used to construct a measure of the flexible-price output level and the 


associated flex-price output gap. To date, no central banks have employed such a definition of 


the output gap in their formal policy models.6 Yet there is significant ongoing work at many 


central banks on developing DSGE models and their application to estimate flexible-price 


output levels, as well as other unobservables. 


 


Finally, a third definition of the output gap is the gap between output and the welfare 


maximizing level of output. The gap defined in this manner is sometimes called the welfare gap. 


While it is this gap that, from a conceptual point of view, may be the most relevant for policy, it 


is also the hardest to measure. Standard new Keynesian models have the characteristic that the 


welfare gap and the flex-price output gap move together so that stabilizing one is equivalent to 


stabilizing the other, a property that Blanchard and Galí (2007) have labeled “the divine 


coincidence.” In general, however, this relationship between the two gap measures holds only 


under very special conditions. If real wages are sticky or there are other labor market frictions or 


fluctuations in distortionary taxes, the flex-price output gap and the welfare gap will diverge.  


 


Besides illustrating the general point that hard-to-measure variables are conceptually relevant 


for policy, equations (1) – (3) also highlight the variables that are among those that serve as the 


                                                 
6 A possible exception are models that have developed from the Bank of Canada’s Quarterly Projections 
Model (QPM), such as the Forecasting and Policy System model of the Reserve Bank of New Zealand. 
This model distinguishes between a long-run component, a short-run equilibrium component, and a 
cyclical component to output. The output gap is then defined relative to the short-run equilibrium level, 
and so might correspond to a flex-price output gap. However, the short-run equilibrium level of output is 
an estimate of a slow-moving trend, based on a multivariate filter. Variables (in addition to output) 
included in the trend estimation procedure include capacity utilization, unemployment, and inflation. 
QPM was replaced recently at the Bank of Canada by a new, open economy DSGE model, The Terms-of-
Trade Economic Model (ToTEM); see Murchison and Rennison (2006).  
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primary focus of our study. These are the neutral real rate of interest, potential output, and 


expected inflation. For our purposes, we define the output gap as the log of real GDP minus the 


log of potential GDP, which is the common definition among central banks. While not 


appearing explicitly in (1), the natural rate of unemployment, which is linked to potential 


output, is also an unobservable variable that we incorporate into our analysis.  


 


2.2 Unobservable variables and policy mistakes 


Unobservable variables play a critical role in the design and implementation of optimal 


monetary policy, but these same variables have also been center stage for a numbers of accounts 


of past policy errors (see Sargent 2007 for an overview and discussion). For example, 


Orphanides (2002, 2002), Erceg and Levin (2003), Reis (2003), and Primiceri (2006) all argue 


that errors by either policy makers or the public in estimating key macro variables were central 


to an understanding of critical episodes in the inflation history of the U.S. over the past 40 


years.  


 


Orphanides has focused on the Federal Reserve’s real-time overestimation of potential (trend) 


output following the productivity slowdown of the early 1970s. Simply put, overestimation of 


potential GDP implied an underestimation of the output gap. This in turn led to a policy stance 


that was, in retrospect, too expansionary and contributed to producing the Great Inflation of the 


1970s. Orphanides and Van Norden (2002) have documented the difficulties of estimating the 


output gap when, for policy purposes, this must be done using real-time data.7 McCallum (2001) 


has drawn the conclusion that policy makers should not respond strongly to movements in the 


estimated output gap.8 


 


Primiceri (2006) has argued that the Fed’s failure to estimate correctly potential output is only 


part of the story behind the Great Inflation.9 If that were the only mistake, he argues that 


inflation would not have risen so much nor for so long. The second factor contributing to the 


persistence of high inflation was an underestimation by the Fed of the persistence of inflation. 


Initial increases in inflation were not expected to persist and so policy did not react strongly. 


Because potential output was overestimated, economic slowdowns that were thought to be 


                                                 
7 The Reserve Bank of New Zealand (2004) provides a figure (figure 9, page 15) comparing their real-
time quarterly output gap estimates and estimates prepared using final data (as of Nov. 2002) for the 
period 1997-2002. There are sizable differences between the two; for instance, the final series changes 
sign four times during the period shown, while the real time series changes sign three times and never in 
the same quarter as the final estimate series. 
8 Orphanides and Williams (2002) find that policy rules that respond to the change in the unemployment 
rate gap or the output gap perform well. One reason might be that differencing eliminates much of the 
error in measuring the level of the output gap. 
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associated with negative output gaps did not seem to lower inflation. Thus, policy makers 


concluded that inflation was unresponsive to economic activity so that a major recession would 


be needed to lower inflation. Thus, perceiving they faced a large sacrifice ratio if they tried to 


lower inflation, policy makers hesitated to try to bring inflation down. Primiceri develops a 


simple general equilibrium model in which the policy maker learns about the natural rate and 


the degree of inflation persistence and his model accounts for both the policy mistakes of the 


1970s, as the Fed underestimated the natural rate of unemployment and overestimated the 


sacrifice ratio associated with lowering inflation, and then the disinflationary shift in policy 


under Volcker. Thus, both the difficulties in estimating unobservable variables and the fact that 


central banks do not know the true structure of the economy can contribute to policy errors.  


 


It is important to note that the public also faces the need to estimate unobservable variables. 


Erceg and Levin (2003) focus on shifts in the Fed’s implicit inflation target when these shifts 


are not publicly announced. In this case, the public becomes aware of the shift in target only 


gradually. Erceg and Levin characterize the Volcker disinflation as the result of a fall in the 


Fed’s target inflation rate. Since this target change was not made explicit through any public 


announcement, agents overestimated inflation, leading to a significant contraction in real 


economic activity. While our focus is on estimating unobservable variables for use in designing 


monetary policy, the work of Erceg and Levin provides a reminder of the consequences that can 


occur when the central bank’s inflation target is, from the perspective of the public, an 


unobservable. 


 


3. Alternative approaches to estimating the neutral real rate, the output gap, and the 


natural rate of unemployment 


There is a vast literature that has utilized a range of empirical techniques to estimate 


unobservable macro variables. Consequently, our survey will be brief and highly selective, 


focusing on those contributions of most direct relevance for our own empirical approach. For 


example, while a tremendous amount of work has employed univariate methods to estimate 


potential output or the natural rate of unemployment, we will not focus on these approaches. 


Instead, as an alternative to a univarate approach, we follow multivariate approaches that 


incorporate information from other macro variables, usually employing theory to guide the 


relationship between the variables or employing structural equations motivated by theory. We 


focus on multivariate approaches that are most directly relevant for the methods we use to 


obtain estimates of key unobservable variables. These approaches generally combine statistical 


                                                                                                                                               
9 Primiceri’s model is actually expressed in terms of the natural rate of unemployment rather than 
potential output. 
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representations borrowed from the literature on identifying trend and cyclical components of a 


time series with relationships among variables implied by an economic model.  


 


The general methodology we employ involves employing a multivariate Kalman filter to extract 


estimates of unobserved components from observed time series. The basic framework can be 


represented in quite general terms of a specification for the dynamic evolution of (i) a vector 


tZ of unobserved factors and (ii) a vector of observed variables tY  that are related to tZ . The 


evolution of the unobserved variables is given in state-space form by 


 1 1.t t tZ AZ u+ += +  (4) 


The measurement equations linking tY to tZ  take the form 


 1 / ,t t t t t t tY BY CZ DZ GX v−= + + + +   (5) 


where /t tZ is the time t estimate of the state vector tZ and tX is a vector of exogenous and 


observable variables. Both 1tu +  and tv are mean zero stochastic error terms. In section 4 we set 


out the specific formulations of equations (4) and (5) that we use in our empirical analysis.  


 


Time t estimates of tZ  are updated using the Kalman filter. Since  


 ( )1 / 1t t t t tY BY C D Z GX− −− − + −  


is the new information available from observing tY  in period t, the equation for updating 


estimates of Z is given by 


 ( )/ / 1 1 / 1 .t t t t t t t t tZ Z K Y BY C D Z GX− − −= + − − + −⎡ ⎤⎣ ⎦  (6) 


 


The basic structure given by equations (4) - (6) has been used extensively to estimate a range of 


unobservable variables. Data on the observables tY  and tX are used to estimate the parameter 


matrices A, B, C, D, and G.   


 


An early application of the Kalman filter approach to estimating potential GDP for the U.S. is 


provided by Kuttner (1994).10 Kuttner lets tZ consists of trend and cyclical components of 


output, with the trend following a random walk with drift and the cyclical component described 


by an AR(2) process. The vector tY  consists of actual real output and inflation and reflects a 


Phillips curve relationship. Output is the sum of its trend and cyclical components and inflation 


is a function of lagged output growth and the cyclical component of output.  
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More recently, a related approach to estimating potential GDP and the output in the U.S. has 


been taken by Basistha and Nelson (2007). Like Kuttner, they adopt a latent variable approach 


and incorporate a Phillips Curve relationship. In addition, they also include the unemployment 


rate and allow trend and cyclical components of output to be correlated. 


 


Laubach and Williams (2003) extend the Kuttner framework to incorporate the neutral real 


interest rate r∗  as an additional unobserved variable. They assume r∗  is a function of the 


growth rate of potential GDP and a stochastic component that follows an autoregressive 


process. They expand the set of measurement equations to include an IS relationship linking the 


output gap to the gap between the real interest rate and the neutral rate of interest.11 While this 


specification allows for an integrated approach to estimating potential GDP and the neutral real 


interest rate, Laubach and Williams employ a separate univariate inflation forecasting equation 


to obtain the estimate of expected inflation they need to construct the real interest rate.  


 


Fuentes, Gredig, and Larrain (2007) further extend the approach of Laubach and Williams by 


incorporating the unemployment rate and Okun’s Law linking the output gap and the gap 


between the unemployment rate and the natural rate of unemployment. The latter is assumed to 


follow a random walk. They compare the resulting measures of the output gap for Chile with 


gap estimates obtained from structural VARs and production function approaches. Interestingly, 


the Kalman filter based estimates provided the best out-of-sample forecasts for inflation. 


 


Each of these examples from the literature focused on a single country; the U.S. in the case of 


Kuttner (1994), Basistha and Nelson (2007), and Laubach and Williams (2003); and Chile in the 


case of Fuentes, Gredig, and Larraín (2007). Closest in formulation to our approach is a recent 


paper by Benati and Vitale (2007). They too focus on multiple unobservables – potential output, 


the natural rate of unemployment, the neutral real interest rate, and expected inflation, and they 


obtain estimates of each unobservable for five economies: the Euro area, the U.S., the U.K, 


Sweden, and Australia. Benati and Vitale allow for time-variation in the model parameters. We 


will restrict our attention to constant coefficient models. 


 


Bjorksten and Karagedikli (2003) report estimates of the neutral real interest rate for seven 


countries (Australia, Canada, New Zealand, Sweden, Switzerland, the U.S., and the U.K.) using 


a methodology based on long- and short-term interest rates. However, to extract real interest 


                                                                                                                                               
10 Orphanides and Williams (2002) provide an overview of the literature that has attemped to estimate 
natural rates of unemployment and the neutral real interest rates for the U.S. 
11 They also allow the growth rate of potential GDP to follow a random walk. 
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rates, they assume expected inflation is equal to actual inflation. They find a marked decline 


since 1998 in neutral real rates for all seven countries.12 


 


4. Empirical results 


4.1 Our approach 


Our approach, following the preceding literature, is based on a parsimonious new Keynesian 


specification. We use the core relationships in the new Keynesian model to guide our 


specification of the linkages between observable variables and the key unobservables as 


summarized in equation (5). The two relationships from the new Keynesian model that we draw 


upon are the IS equation and the Phillips curve. In addition, we make use of a Taylor rule to 


represent monetary policy and Okun’s Law linking the unemployment gap and the output gap.  


4.2 Model 


We start with a simple backward-looking IS relationship, as in Rudebusch and Svensson (1999), 


where the output gap (x) is determined by its own lag, the lagged real interest rate gap (the 


difference between the ex-ante real interest rate, r, and the unobserved neutral real interest rate, 


r*), and a serially uncorrelated error term (ε1):   


 *
1 1 2 1 1 1,( )t t t t tx x r rα α ε− − −= + − +  (7) 


        
The output gap is defined as the difference between actual output (y) and unobserved potential 


output or the natural level of output (y*): 


 *
t t tx y y= −  (8) 


The second relationship is a standard Phillips curve specification for inflation. We specify this 


equation in terms of the inflation gap rather than the level of inflation, where the inflation gap 


tπ  is the difference between actual inflation and either trend inflation (in the case of non-


inflation targeting countries) or between actual inflation and the target rate of inflation (for 


inflation targeters). The inflation gap is determined by its own lag, the expected inflation gap, 


the lagged output gap, and a serially uncorrelated error term (ε2) :    


 11 2 3 1 2,


e
t t t t txπ β π β π β ε− −= + + +  (9) 


   


The inflation gap is an observable variable, given by : 


 T
t t tπ π π= −  (10) 


                                                 
12 See also Basdevant, Bjorksten, and Karagedikli (2004). 
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where tπ  is actual inflation and T
tπ  is the trend or target rate. Similarly, the inflation 


expectations gap is defined as the difference between observed (estimated) inflation 


expectations and trend or target inflation: 


 
e e T
t t tπ π π= −  (11) 


We specify a standard Taylor rule that relates the observed ex-ante real interest rate (r) to the 


ex-ante real natural rate (r*), the real interest rate lag, the inflation expectations gap, the lagged 


output gap, and a serially uncorrelated error term(ε3):    


 * *
1 1 1 2 3 1 3,( )


e
tt t t t t tr r r r xδ δ π δ ε− − −= + − + + +  (12) 


Equations (7) - (12) comprise our basic model. As an extension of this model, we add Okun’s 


Law that relates the observed unemployment rate (u) to the unobserved natural rate of 


unemployment (u*), the lagged gap between the observed unemployment rate and the natural 


rate of unemployment, the output gap, and a serially uncorrelated error term (ε4):  


 * *
1 1 1 2 1 4,( )t t t t t tu u u u xγ γ ε− − −= + − + +  (13) 


Now we turn to the transition equations of the model corresponding to equation (4) in the 


schematic formulation of section 3. As in Laubach and Williams ((2002), potential output is 


taken to follow an I(2) process and unobserved potential output growth (g) follows a random 


walk: 


 * *
1 1 5,t t t ty y g ε− −= + +  (14) 


 1 6,t t tg g ε−= +  (15) 


where ε5 and ε6 are serially uncorrelated error terms. 


We specify random-walk processes for both the neutral real rate of interest and the natural rate 


of unemployment: 


 * *
1 7,t t tr r ε−= +  (16) 


 * *
1 8,t t tu u ε−= +  (17) 


where ε7 and ε8 are serially uncorrelated error terms. 


 


 4.3 Estimation method 


We follow closely Laubach and Williams’ (2002) procedure in estimating our model, adapting 


it to our specification. As they note, maximum-likelihood estimates of the standard deviations of 


the innovations to the transition equations of the unobservables, equations (14)-(17), are likely 


to be biased toward zero due to the pile-up problem discussed by Stock (1994). Hence we also 


use the Stock-Watson (1998) median unbiased estimator to obtain estimates of the signal-to-


noise ratios reflected by the ratios of the corresponding residual variances λg = σ6 / σ5,  λr = (1-
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δ1) σ7 / σ3, and λu = (1-γ1)σ8 / σ4. We impose these ratios when estimating the remaining model 


parameters by maximum likelihood.  


 


We also follow Laubach and Williams (2002) closely in the subsequent sequential-step 


estimation procedure. In the first step (following Kuttner 1994) we apply the Kalman filter to 


estimate jointly the IS relationship (after substituting equation (8) into (7)) and the Phillips 


curve (after substituting equations (10) and (11) into (9)). In this stage we omit the real interest 


rate gap from the IS equation and assume that potential output growth (g) is constant. From the 


latter preliminary estimation we obtain a preliminary potential output level series from which 


we compute an estimate of the (preliminary) constant potential output growth. Then we estimate 


equation (14) to test for structural breaks in the level of g. Using Stock and Watson’s (1998) 


Table 3, we determine a positive value for λg when the null of no-structural break is rejected.  


 


In the second step we apply the Kalman filter to estimate jointly the IS relationship, the Phillips 


curve, the Taylor rule (equation (12)), and the transition equations for potential output level 


(equation (14)) and potential output growth (equation (15)). At this stage we impose a 


preliminary constant neutral interest rate (r*) in the IS relation and the Taylor rule. We also 


impose the λg estimate obtained in the first step. From the latter preliminary estimation we 


obtain an estimate of the (preliminary) constant neutral rate interest rate. Then we estimate 


equation (12) to test for structural breaks in the level of r*. Using Stock and Watson’s (1998) 


Table 3, we determine a positive value for λr when the null of no-structural break is rejected. 


 


In step 3 we estimate jointly the IS relationship, the Phillips curve, the Taylor rule, and Okun’s 


Law (equation (13)), in addition to transition equations (14), (15), and (16). We impose a 


preliminary constant natural unemployment rate in Okun’s Law. We also impose the λg and λr 


estimates obtained in the first and second first steps. From the latter preliminary estimation we 


obtain an estimate of the (preliminary) constant neutral unemployment rate. Then we estimate 


equation (13) to test for structural breaks in the level of u*. Using Stock and Watson’s (1998) 


Table 3, we determine a positive value for λu when the null of no-structural break is rejected. 


 


Final step 4 comprises Kalman-filter estimation of the full model, imposing the estimates for λg, 


λr, and λu obtained sequentially in the preceding steps. This yields the final estimates for our 


model coefficients and time series of unobservables. As in Laubach and Williams, we compute 


confidence intervals and standard errors for the parameters and unobservables applying 


Hamilton’s (1986) Monte Carlo method. 


 


4.4 Data 
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Our sample covers 10 countries: the G-3 group comprised by the U.S., the Eurozone, and Japan, 


all of them with central banks that do not target explicitly or exclusively inflation; a group of 6 


industrial countries with inflation-targeting central banks, comprised by New Zealand, Canada, 


United Kingdom, Australia, Sweden, and Norway; and Chile, an emerging economy with an 


inflation-targeting central bank.13 


 


Time coverage of each country sample is determined by the availability of quarterly data. While 


the standard sample covers the 1970-2006 period. One exception on the long side is the U.S. 


(1960-2007) and on the short side are New Zealand (1974-2006), Norway (1979-2006), and in 


particular Chile (1986-2006). Data sources and definitions are reported in the Data Appendix. 


 


4.5 Estimation results 


Here we report estimation results for our state-space model in its base version (without Okun’s 


Law) for all countries. This implies omitting step 3 of the estimation method describe above. 


Thus, the model consists of equations (7)–(12) and (14)–(16). In section 5 below we report 


empirical results based on the extended model that includes equations (13) and (17) for the U.S. 


and Chile and the corresponding full 4-step estimation procedure. 


 


Tables 1-3 report country estimates for the two key ratios of the standard deviations of the 


residuals (λg and λr), all structural model parameters, and standard deviations of equation 


residuals. We report results for the full sample available for each country (ending in 2006:4) and 


a shorter data sample (1986:2 – 2006:4) for 9 countries and only for the shorter sample in the 


case of Chile. Figures 1-3 depict the estimated time series of observables and unobservables for 


each country, consistent with the full-sample estimations. 


 


Our estimation strategy is the following. When obtaining estimation results from the last (third) 


step, we report them directly. When not obtaining estimation results at either the second or third 


stages, we conduct a grid search of estimation results for an interval of values of standard 


deviation ratios (λg and λr), as reported on the footnotes of the tables. Therefore we report a 


varying number of results for each country. For example, for the U.S. (Table 1) we report only 


one set of results for each sample period, as we obtained estimates for all model parameters. In 


contrast, for Japan (Table 1) due to estimation problems we report a second set of results for 


each sample period, based on pre-determined median values for λg and λr, corresponding to an 


interval of values over which a grid search was conducted. 


 


                                                 
13 An attempt was made to include Israel (with 1986-2006 data) but we were not able to attain 
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While the estimation results differ in significant ways across the 10 countries, we point out the 


following general findings (abstracting from country-specific exceptions). 


 


(i) The potential growth rate and the neutral real interest rate are typically not constant 


– not even for the shorter 1986-2006 sample – as reflected by non-zero λg and λr and 


as depicted in figures 1-3. This has implications for construction of output gap 


measures as well as for the specification of Taylor rules. 


(ii) Point values and significance levels of structural parameter estimates vary from 


country to country, and sometimes from sample to sample for a given country. For 


example, parameter estimates conform to our priors in the full-sample estimations 


for the U.S., Canada, and Chile. At the other extreme is Japan, where parameter 


estimates were hard to obtain and, when estimated over a grid search, often did not 


conform to expected signs or significance levels. Thus, significant differences 


emerge among the 10 countries. 


(iii) The IS equation reflects generally very large output-gap inertia (reflected in the 


large and significant parameter estimate of its own lag). However the sensitivity of 


the output gap to the lagged real interest rate gap ranges from negative and 


significant to positive and significant. 


(iv) The Phillips curve generally reflects small but significant inflation-gap reversion, 


suggesting partial reversal of quarterly inflation shocks.  (The exception is Chile, 


which reflects positive inflation-gap persistence). Expected inflation shocks affect 


inflation gaps positively, significantly, and by a large magnitude in many countries. 


The lagged output gap raises inflation significantly, positively, and by a sizable 


magnitude in most countries. 


(v) The Taylor rule reflects significant, large inertia in central-bank rate real-interest 


rate innovations in all countries, less Japan. Most central banks raise nominal 


interest rates in response to a lagged inflation shocks but not enough to satisfy the 


Taylor principle (i.e., because we have specified the Taylor rule in terms of real 


interest rates, the Taylor Principle requires that  δ2 ≥ 0) . The exception is Chile, 


where the coefficient estimate was found to be not significantly different from 


zero.14 Finally, we obtained a wide range for the interest rate gap response to a 


lagged output gap shock: monetary policy ranges from counter-cyclical (U.S.) to a-


cyclical (Sweden) and to pro-cyclical (Japan). 


                                                                                                                                               
convergence of our estimation model. 
14 It is likely that Chile’s exceptional experience reflects the peculiarity that the policy interest rate was 
set directly in real (i.e., inflation-indexed) terms during most of the sample period (1986-2000).  
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(vi) Judging by conformity of parameter point estimates and significance levels to 


priors, the best country results were obtained for the U.S. (1960-2007) and Chile 


(1986-2006). 


 


Our estimates for unobservables reveal the following results: 


(i) Estimated time series for potential output growth reveal smooth behavior, but g 


changes over time in most countries (except the Eurozone and Australia), consistent 


with positive country estimates for λg. 


(ii) With relatively stable potential output growth, the variance of country output gaps 


is largely determined by the variance in actual output growth rates. 


(iii) Similar to potential output growth, the neutral real rate of interest also follows a 


smooth pattern in all countries, coherent with positive country estimates for λr. 


(iv) Generally we have obtained precise estimates for our three unobservables, as 


reflected by the narrow confidence intervals depicted in the figures. 


(v) We obtain similar estimates for potential output growth and the neutral real rate of 


interest rates across the long and short samples for most countries. The exceptions 


are Australia and Norway, for which we obtain neutral interest rates well above 


actual levels in the shorter samples. 


(vi) We also obtain similar estimates for output gaps across the long and short samples 


in many countries. However, strong departures from the latter are found in New 


Zealand, U.K., Australia, and Sweden, where the dynamic pattern, sign, and/or 


magnitudes of output gap estimates differ significantly in the 1986-2006 sample 


from those observed in the larger samples. This is likely to reflect small-sample 


bias. Hence we will conduct our tests of great moderation, co-movements, and 


convergence across countries on our large-sample estimates of unobservables.         


 


Before using the results that we have obtained in this section to examine further the behavior of 


the key unobservables, we extend the basic model to incorporate Okun’s Law for two of the 


countries in our sample: the U.S. and Chile. 


 


5. Extensions for the U.S. and Chile 


In this section we extend our basic model to include the unemployment gap (Okun’s Law) and 


apply it to the U.S. and Chile, for which we obtained the best results for the basic model. We 
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also test for robustness of the basic model results for the U.S. by replacing four-step-ahead 


inflation forecasts by eight-step-ahead forecasts.15 


 


5.1 Results for the U.S. 


For the extended model with Okun’s Law for the U.S., we proceed in the following way. When 


estimating freely all parameter values and unobservables, λu was estimated in the fourth step at a 


value of zero, implying a constant 5.6% natural rate of unemployment for the U.S. during 1960-


2007. Following the approach adopted for countries in section 4, we pursue next a grid search 


over alternative pre-set values of λu. The model parameter estimates consistent with λu = 0 and 


λu = 0.4 (the median value of our grid search) are reported in columns 1 and 2 of Table 4. Figure 


4 depicts the grid-search results for the unobservables. The findings can be summarized as 


follows: 


 


(i) Parameter estimates are generally similar for the extended model (in both columns 


1 and 2 of Table 4) to those reported for the basic model (Column 1, Table1). 


(ii) In the IS curve, the output gap becomes more sensitive to the lagged interest rate 


gap. 


(iii) The coefficient of lagged inflation in the Phillips curve now turns positive, with a 


corresponding reduction in size of the two other Phillips curve coefficients.  


(iv) For the newly introduced Okun’s Law, parameter estimates exhibit expected signs 


and are highly significant. The parameter estimate for the lagged unemployment 


gap reflects large unemployment inertia. The coefficient estimate of the lagged 


output gap is very large (-0.95) when the natural unemployment rate is estimated as 


constant and declines to -0.35 when the natural unemployment rate is variable, 


consistent with a value of λu set at 0.4. 


(v) Figure 4 depicts estimation ranges for unobservables for λu varying between 0.08 


and 0.72. The estimates for both potential output growth and the natural interest rate 


are robust to changes in λu, reflected in their narrow ranges depicted in Figure 4. 


Moreover, the estimated values and dynamics of both potential growth and the 


natural interest rate for the extended model are very close to those depicted for the 


basic model (upper panel, Figure 1a). 


(vi) However, the range of estimates for the output gap for different values of λu is 


larger. In addition, the median value for the new output gap estimate is less close to 


the estimate for the basic model. This should not come as a surprise, as the extended 


                                                 
15 We did not obtain model convergence when using eight-step-ahead inflation forecasts for Chile. We 
also conducted sensitivity analyses for the Phillips curves in both countries, by replacing 1-period 
inflation lags by four-quarter lags, obtaining virtually unchanged results. 
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model imposes a close relation between the output gap and the unemployment gap. 


Okun’s Law implies that the latter gaps are almost a mirror image of each other. 


(vii) The largest range of estimates depicted in Figure 4 is the one for the newly 


estimated natural rate of unemployment. For the median value of λu, the natural rate 


varies over time between 5.1% and 7.2%. Over the full range of λu values, the 


natural rate varies over time between 4.8% and 8.1%. This is consistent with recent 


findings of King and Morley (2007), who estimate the natural rate as the steady-


state of a VAR and attribute most of the volatility in observed unemployment to 


movements in the natural rate.  


 


Now we turn back to the parsimonious model, replacing the 4-step-ahead inflation forecast for 


the U.S. by an eight-step-ahead forecast. This change affects the measurement of inflation 


expectations in the three structural model equations. We obtain the following results for 


parameter estimates (column 3, Table 4): 


 


(i) The IS curve parameter estimates are not much modified (cf. column 1, Table 1). 


The parameter estimate for the inflation expectations gap in the Phillips curve 


declines almost by half in size but remains very significant. The parameter estimate 


for the inflation-forecast gap in the Taylor rule stays significant but is now more 


negative (from -0.13 to -0.22), implying a corresponding decline in the nominal 


interest setting reaction to an inflation expectations shock, from +0.87 to +0.78. 


Both results – for the Phillips curve and the Taylor rule – may suggest that 4-


quarter-ahead inflation expectations describe both the inflation process and interest 


rate setting behavior during 1960-2007 in the U.S. better than 8-quarter-ahead 


inflation expectations.  


(ii) Finally, with regard to the unobservables, the output gap, the neutral interest rate, 


and potential output growth exhibit similar patterns and values than those based on 


four-step-ahead inflation forecasts. 


 


5.2 Results for Chile 


For the extended model with Okun’s Law for Chile, we proceed in a similar way as we did for 


the U.S. However, the difference is that when estimating freely all parameter values and 


unobservables, the estimates for λg, λr, and λu are estimated at zero at the fourth stage estimation. 


Therefore we conduct separate grid searches over alternative pre-set values of the three signal-


to-noise coefficients. The model parameter estimates consistent with λg = λr = λu = 0, and with λg 


= 0.082, λr = 0.080, and λu = 0.4 (the median values of our grid searches) are reported in 
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columns 1 and 2, respectively, of Table 5. Figure 5 depicts in each row the corresponding grid-


search results for the unobservables. The findings are the following: 


 


(i) Parameter estimates are generally very similar for the extended model (comparing 


columns 1 and 2 of Table 5) to those reported for the basic model (corresponding 


columns 1 and 2, Table 3). 


(ii) The one important exception is the IS curve, where the output gap becomes more 


sensitive (and significant) to the lagged interest rate gap in the extended model with 


when the natural rates are allowed to vary over time (i.e., the λi’s are set at positive 


values). 


(iii) The coefficient of lagged inflation in the Phillips curve now turns positive, with a 


corresponding reduction in size of the two other Phillips curve coefficients.  


(iv) For the newly introduced Okun’s Law, parameter estimates exhibit expected signs 


and are highly significant. The parameter estimates for the lagged unemployment 


gap reflects moderate unemployment inertia. The coefficient estimate of the lagged 


output gap is large (around -0.6). 


(v) The estimation ranges depicted in the three rows of Figure 5 are relatively narrow 


for all unobservable variables. Obviously the widest range in each row is for the 


unobservable over which the grid search is conducted. 


(vi) The general dynamic pattern of three unobservables (potential output growth, 


output gap, and neutral interest rate) estimated for the extended model are similar to 


those obtained for the basic model. However there are differences in the estimated 


levels. 


(vii) Similar to the results for the extended model applied to the U.S., the differences in 


output gap estimates are not surprising as the extended model imposes a close 


relation between the output gap and the unemployment gap. Again, Okun’s Law 


implies that the latter gaps are almost a mirror image of each other. 


(viii) However, in contrast to the U.S., the range for the new estimates of the natural rate 


of unemployment is not as large in Chile. For the median value of λu, the natural 


rate varies over time between 7.7% and 8.1%. Over the full range of λu values, the 


natural rate varies over time between 7.5% and 8.5%. This is consistent with recent 


findings by Restrepo (2006) based on different models of estimation for the NAIRU 


in Chile.  


 


6. Great moderation, co-movements, and convergence in industrial countries 


The Great Moderation – the attainment of low inflation and low volatility in key 


macroeconomic variables since the 1990s, in stark contrast to the high inflation and real 
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instability of the mid 1970s and early 1980s – has been documented in academic research and 


policy evaluations.16 At the same time, there is a presumption that rising world trade and 


financial integration should lead to stronger business cycle co-movement across countries, as 


well as stronger convergence in real variables, like growth and real interest rates, particularly 


among industrial countries.  In this section we exploit our country time-series estimates of 


unobservables, in addition to the series of selected observables, to test for the great moderation, 


co-movements, and convergence in our sample of 9 industrial countries, using quarterly data for 


1970-2006.17 


 


6.1 Common trends in key unobservables 


We start by describing the trends in potential output growth (Figure 6) and the neutral real 


interest rate (Figure 7) across the nine countries.  


 


The most striking feature of the potential output growth estimates is the large reduction in cross-


country variation observed between 1970 and 2006. Leaving out Japan, country point estimates 


of potential growth ranged from nil (New Zealand) to 4% (Canada) in the early 1970s. In 


contrast, the range of potential growth estimates for 2006 narrowed down to an interval defined 


by the Eurozone’s constant potential growth rate (2.4%) and Australia’s constant rate (3.2%). 


The most striking increase in potential growth is New Zealand’s growth miracle, with potential 


growth rising from nil to 3.2%, in sharp contrast to Japan’s meltdown in potential output growth 


rate from 4.5% to 1.8% during the last four decades. Sweden and the U.K. exhibit a slight trend 


increase in potential growth, with the opposite pattern observed in Canada, Norway and the U.S. 


Similar to the case of growth, the cross-country dispersion in neutral real interest rates has 


declined strongly during the last four decades (Figure 7). In the early 1970s, neutral rates ranged 


from -1.9% (U.K.) to 3.1% (Eurozone). By 2006, the range had narrowed to an interval from 


1.5% (Japan) to 3.1% (Eurozone), with New Zealand being an exception. Six countries exhibit a 


U-shaped dynamic pattern of their neutral real rates of interest. This reflects the strong monetary 


adjustment in response to the “great inflation” of the late 1970s, with real policy rates peaking 


during the 1980s and early 1990s at levels of up to 6.5% (Australia in 1990). The stabilization 


success of the 1980s and 1990s that greatly contributed to the great moderation, led to the 


subsequent reduction in neutral rates observed in the 1990s and 2000s. The exception to the 


latter trend is New Zealand, where the neutral real interest rate has kept rising, attaining 4.8% in 


2006.  


                                                 
16 For example, the IMF’s most recent World Economic Outlook, devotes a well-documented chapter to 
the great moderation. 
17 We use our shorter time series for New Zealand and Norway, and we drop Chile, due to the lack of 
quarterly data before 1986. 
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6.2 Great moderation 


To investigate the great moderation, we report volatility trends for seven key variables: 


inflation, output growth, potential output growth, the output gap, the real interest rate, the 


natural real interest rate, and the interest rate gap. Three of these are observables (inflation, 


output growth, and the real interest rate) and four are unobservables (potential output growth, 


the output gap, the natural real interest rate, and the interest rate gap). We compute rolling 


standard deviations for the latter variables using a window of 74 quarters and report the 


associated confidence intervals obtained by bootstrap techniques.18  19 


 


This approach is informative about the great moderation, reflected in increased stability of key 


macro variables. We focus on both the level of the rolling standard deviation and the varying 


width of the confidence interval. The results are depicted separately for each variable in Figures 


8.1-8.g. The nine smaller figures on each page show rolling point estimates of the standard 


deviation and their estimated time-varying confidence intervals for each country, while the 


larger bottom figure depicts the nine point estimates for each country and the corresponding 


country mean to better represent the common volatility trend across our sample countries. The 


findings are the following. 


(i) The volatility of inflation has declined in all countries, except Norway; the mean 


volatility of inflation fell from 4.0% in 1970-1987 to 2.2% in 1988-2006 (Figure 


8.a).20 Moreover, this trend is also significant as reflected by the confidence 


intervals, which follow closely the point estimates of the standard deviations, 


narrowing around point estimates toward the end of the sample period. The 


exception is again Norway, where point estimates decline while confidence 


intervals rise after 1988. The largest reductions in inflation volatility are observed in 


Australia, Canada, and New Zealand, roughly from 6.0% to circa 2.2%. The Euro 


zone exhibits the lowest inflation volatility during most of the sample span.  


                                                 
18 We use a window size of 74 quarters (or 18.5 years), which is half our 37-year sample coverage from 
1970 to 2006. We choose this rather large window to show more clearly long-term volatility trends, 
avoiding excessive noise in standard deviations that shows up when using conventional 40-quarter (10-
year) rolling windows.  
19 We apply a bootstrap technique for estimating time-varying confidence intervals because of its superior 
asymptotic properties in small samples, in comparison to standard confidence intervals. Hall’s confidence 
intervals are calculated using the stationary bootstrap method of Politis and Romano (1994). This 
technique guarantees stationary artificial series by allowing a random block size (indeed, it follows a 
geometric distribution) when re-sampling the data. We set the mean of the block size at 3 and perform 
2000 replications.  
20 It is well known that the correlation between the first and second moment of inflation is very large. 
Hence the declining trends in inflation volatility described here are matched by declining trends in 
inflation levels. 
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(ii) The reduction of the volatility of output growth in all nine countries is remarkable, 


reflected both by declining point estimates and narrowing confidence intervals. The 


country average level of output growth volatility fell roughly by half, from 5.0% in 


1970-1987 to 2.7% in 1988-2006. The largest growth stabilization was recorded in 


New Zealand, from 14% in the 1970s and 1980s to 5% in the 1990s and 2000s. 


Australia, Sweden, and the U.K. also exhibit large reductions in growth volatility. 


Again the Eurozone exhibits the highest level of stability throughout the last 37 


years.  


(iii) Now we turn to our first unobservable, potential output growth.21 As all estimated 


unobservables, potential growth is estimated either as a constant (in the Eurozone 


and Australia) or, if variable (in the other countries), it exhibits a smooth pattern 


over time, without high-frequency volatility. Therefore its volatility – like that of 


the neutral rate of interest, reported below – is lower by an order of magnitude to 


the volatilities exhibited by our observable variables. The country average volatility 


(for the seven countries where potential output varies over time) declines only 


marginally over time. Opposite trends are observed in different countries; New 


Zealand records a strong trend decline in potential growth volatility, while a 


growing trend is observed in Japan up to 2000, partially reverted thereafter. 


(iv) There is a slight reduction in the country average volatility of the output gap (our 


second unobservable), from 1.6% in 1970-1987 to 1.4% in 1988-2006. There are 


moderate to large reductions in the volatility of the output gap in six countries, no 


clear trends in two countries, and a slight trend rise in one country (Australia). The 


U.K. exhibits the most stable output gap throughout the full 1970-2006 period. 


(v) A general pattern of declining volatility is also found for the actual real interest rate: 


the country average volatility falls from 3.8% to 2.3%. The largest reductions in 


interest rate volatility are recorded in New Zealand and the U.K. Norway does not 


exhibit a trend reduction because its interest rate volatility is already low from the 


sample start. The exception is Sweden, influenced by its sharp rise in interest rate 


volatility in the third quarter of 1992, as a result of its short high-interest rate hike.  


(vi) Like in the case of potential output growth, the results for the volatility of our 


estimated neutral real rate of interest are mixed. The average country volatility of 


the neural rate declines by half, from 1.2% in 1970-1987 to 0.6% in 1988-2006. The 


largest decline in the volatility of the neutral rate is recorded by the U.K., while the 


                                                 
21 We should recall that the descriptive statistics discussed below for our estimates of unobservable are 
obviously conditional on our estimates, and therefore should be taken with caution, in comparison to 
those reported for observables like inflation, actual growth, and actual interest rates.  
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volatility rises in Norway. Japan records the lowest neutral rate volatility, close to 


zero, throughout the full sample period. 


(vii) The results for the interest rate gap largely mimic those of the actual interest rate as 


the natural interest rate exhibits very low variability compared to the actual rate. 


 


The evidence presented here is strongly supportive of a great moderation in key macro variables 


in industrial countries. The strong trend reduction in volatilities of three observed variables 


(inflation, output growth, and the real rate of interest) and the moderate decline in volatilities of 


the unobservable neutral interest rate and the two unobservable gap measures (the output gap 


and the interest rate gap), as well as the narrowing of the corresponding confidence intervals, 


are proof of the gains attained in macroeconomic stability during the past 15 years. The 


narrowing of country differences in volatilities that came about with the reduction in country 


volatilities during the last four decades also suggests stronger co-movements across countries, 


which is our next topic. 


 


6.3 Testing for co-movements 


Now we focus on co-movements of key variables across countries. We look at the same 


variables as above, less inflation. Cross-country correlations are reported for each variable for 


the full sample period (1970s-2006) in Table 6. We focus on pair-wise regional patterns. The 


findings follow: 


(i) Output growth correlations among the G3 are low but significant. The correlations 


between the G3 and relevant third countries (Canada and European economies) are 


generally larger. 


(ii) Our estimates for potential output growth in the Eurozone and Australia are 


constant, so we focus on correlations of third countries with the U.S.  Japan, 


Canada, and Norway display large correlations with the U.S. The large and negative 


correlations of the New Zealand, Sweden, and the U.K. with the U.S. reflect their 


opposite potential output growth trends. 


(iii) Output gap correlations between the Eurozone and every included country are either 


large and negative or zero, reflecting highly non-synchronous business-cycle 


conditions of the Eurozone with other industrial countries. This stands in contrast to 


the U.S., whose output gap is highly and positively correlated with most countries.  


(iv) Among the G3, actual real interest rates are positively correlated. The same is true 


for most pair-wise correlations, except Japan’s. This reflects the common, long 


cycle of low-high-low real interest rates observed in most countries during the last 


four decades.   
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(v) Even stronger correlations are observed in the case of neutral real interest rates, 


again except Japan, reflecting the common world trend in monetary policy observed 


in most industrial countries. 


(vi) Cross-country interest rate gap correlations are similar to actual interest rate 


correlations, but often smaller and less significant.  


 


In order to describe cross-country co-movements, we follow the approach adopted above in 


documenting volatility trends. Here we focus on rolling correlations of key variables between 


the U.S. and the eight industrial economies. We report point estimates of correlation coefficients 


and their confidence intervals for 74-quarter windows during 1970-2006, using the above 


mentioned stationary bootstrap technique. Our results are the following. 


(i) There is no common trend in output growth correlations with the U.S. While output 


growth correlations with the U.S. rise in Canada, the U.K., Australia, and Sweden, 


they decline in Japan, New Zealand, and Norway. 


(ii) Potential output growth correlations turn from positive (and mostly significant) to 


negative (and significant) in New Zealand, Canada, U.K., and Sweden. 


(iii) Except the Eurozone and Japan, output gap correlations of all other countries with 


the U.S. rise over time, confirming increasing cyclical synchronization between 


small and medium-sized industrial economies and the U.S. economy. 


(iv) Actual real interest rate correlations with the U.S. display a U-shaped pattern over 


the last four decades, reaching their lowest values during the 1980s-early 1990s and 


rising to high levels again in the late 1990s - 2000s. This suggests rising monetary 


integration (or declining independence) during the last decade. 


(v) Regarding neutral real interest rate correlations with the U.S., the U-shaped pattern 


is confirmed in most economies, while in Japan and Norway correlations turn from 


negative and significant and positive and significant. New Zealand displays the 


opposite pattern, positive and significant to negative and significant. 


(vi) The country pattern of interest rate gap correlations with the U.S. replicates that of 


actual interest rate correlations, reflecting the smoothness of neutral rates. 


 


Country averages of the rolling correlation coefficients of country variables with those of the 


U.S. display slightly rising trends for the output gap, the actual interest rate, the neutral interest 


rate, and the interest rate gap (Figure 9, lower panels). The opposite is observed regarding 


average trends in actual and potential output growth with the U.S., which decline over time. 


 


6.4 Convergence across countries  
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In this section we test for convergence in key variables across countries.  It is important to note 


that rising correlations over time do not imply convergence in levels. Therefore we carry out 


this final set of exercises on convergence, complementing the previous evidence on increasing 


co-movements. 


We test for convergence across countries using the following simple autoregressive models for 


the difference in country j’s variable v with respect to that of the U.S. or the Eurozone: 


tusj


p


i
itusitjitustj uvvvv ,,


1
,,0,, )( +−+=− ∑


=
−−αα


 (18)  


teurozonej


p


i
iteurozoneitjiteurozonetj uvvvv ,,


1
,,0,, )( +−+=− ∑


=
−−αα  


In the AR(p) model, we have convergence across countries if the AR polynomial is stationary.22 


To test for stationarity we use a grid bootstrap method to estimate confidence intervals for the 


parameters of interest (Hansen 1999).23   


The variable v could represent observable variables (output growth and the interest rate), our 


estimates for unobservables (potential output growth and the neutral rate of interest), and our 


estimated unobservable gaps (the output gap and the interest rate gap). We will not test for 


convergence in levels of cross-country gap measures, as they tend to zero by construction.   


 


The convergence tests for actual output growth and interest rates reveal the following results. 


(i) For actual growth convergence with the U.S., we find that all countries are 


characterized by an AR(1) models, except Sweden with an AR(2) process. We find 


(weak) evidence of convergence with the U.S. for all countries, although αj is only 


significant in New Zealand, Sweden, Norway, and Chile. For the remaining 


countries we are not able of rejecting a white-noise process.24 For all countries we 


obtain small half-lives of shocks (HLS), on average of only 0.6 quarters. 


(ii) When we examine actual growth convergence with the Eurozone, the relationships 


are characterized by higher-order AR processes in Japan, U.K., Sweden, and 


Norway.  We find evidence of convergence with the Eurozone for all countries. The 


smallest HLS is 0.19 quarters (Australia) and the highest is 2.33 quarters (U.K.); the 


average HLS is 1.08 quarters. 


                                                 
22 For example, convergence of an AR(1) model requires that 11 <α ; convergence of an AR(2) model 
requires that 121 <+ αα , 112 <−αα  , and 12 −>α . Hamilton (1994) provides a more detailed discussion 
of stationarity conditions. 
23 The technique works as follows. Pick a grid over the parameters of interest and calculate the confidence 
interval by bootstrap at each parameter value, then smoothen the estimated function for the confidence 
interval using a kernel regression, and finally obtain the confidence interval estimated by the kernel for a 
given value of the parameter. Lag lengths (p lags) are determined by using the AIC, HQC, and BIC 
criteria. 
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(iii) Turning to convergence of actual interest rates with U.S. interest rates, we estimate 


for almost all countries an AR(1) process, except Chile with an AR(2) process. We 


find that all countries converge to the U.S. (and all estimated parameters are 


significant). As above, we also estimate HLS coefficients, which are much larger 


than those obtained for growth convergence. HLS coefficients range from 1.8 


quarters (Sweden) to 7.5 quarters (Chile), with an average HLS of 3.65 quarters. 


(iv) For interest rate convergence with the Eurozone, we estimate for all countries an 


AR(1) process, less Canada with an AR(2). All countries’ interest rates converge to 


the Eurozone’s. Our HLS estimates range from 0.83 quarters (Sweden) to 5.5 


quarters (Chile), with an average HLS of 2.55 quarters. 


 


Our estimates for the two key unobservables reveal the following results. 


(i) We did not find country convergence of our estimated country unobservables (the 


potential output growth rate and the neutral real rate of interest) with either the U.S. 


or the Eurozone. This simply reflects the fact that country differentials in 


unobservables – with either the U.S. or the Eurozone – are not stationary in the 


1970-2006 sample. 


 


7. Conclusions and Possible Extensions 


It is well recognized that the conduct of monetary policy is crucially dependent on several key 


unobservables – the output gap, the neutral real rate of interest, and expected inflation being the 


most critical. Individual central banks have developed methodologies for estimating these 


variables, and several researchers have attempted to estimate them by focusing on a single 


country (usually the U.S.) or on a small number of developed economies. We have extended 


this literature by providing new estimates of key unobservables for ten economies, including 


several inflation targeters and, among this group, one emerging market economy (Chile).  


 


We adopted a very parsimonious model that we employed for all ten countries. This 


undoubtedly was the reason that our estimation results for the ten economies were mixed.  


However, for both the longer sample and the shorter sample periods, the evidence pointed to 


time variation in trend output growth, the neutral real rate of interest, and (for the U.S. and 


Chile) the natural rate of unemployment. This time variation has important implications for the 


conduct of monetary policy. For example, if trend growth of potential output were constant, 


then policy rules that focus on the growth rate of output relative to the growth rate of potential 


(speed limit policies of the type analyzed in Walsh 2003) might serve to eliminate (or at least 


                                                                                                                                               
24 All autocorrelations and partial correlations are not significantly different from zero. 
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significantly reduce) measurement problems in estimating the level of potential output. But if 


the growth rate of potential output is also subject to stochastic variation, as we find it to be, the 


problem of estimating the level of potential cannot be eliminated by simply focusing on growth 


rates.  


 


Similarly, time variation in the neutral real interest rate implies that simple Taylor rules for the 


policy interest rate that very commonly assume the equilibrium real interest rate is constant, 


may lead to policy errors.  


 


Consistent with notions of a great moderation, measures of inflation volatility showed a marked 


and common decline over the past decade. Output growth also declined in volatility. However, 


little of this decline in output growth volatility seems due to a decline in the volatility of the 


growth rate of potential output. The volatility of the latter has fallen slightly over the past 


twenty years, but this decline is small relative to the overall reduction in output growth 


volatility. Given these results, it is perhaps surprising that the volatility of the output gap 


displays only a modest decline over the sample. This reflects, in part, a rise in the average 


output gap volatility among our sample countries over the past decade. This is an interesting 


finding since it offers evidence consistent with standard theoretical models that greater inflation 


stability should come at the cost of some increase in output gap volatility. The failure of output 


gap volatility to fully reflect the decline in output growth volatility suggests that there may have 


been an increase in the volatility of the level of potential output over this period.  


 


We find evidence that the volatility of the neutral real interest rate has declined when we look at 


the average across the sample economies. However, this masks significant differences among 


the individual economies. 


   


Interestingly, we find neutral real interest rates to be more highly correlated across countries 


than either actual real rates or Wicksellian interest rate gaps. The notable exception to this 


finding is Japan. While neutral real rates were highly correlated across countries, this did not 


reflect a common pattern of convergence to the level of the U.S. or Eurozone neutral real rates. 


In fact, the neutral real rate differentials were non-stationary, indicating no long-run tendency to 


converge. 


 


There are several extensions of the analysis that would be interesting to pursue.  We would like 


to extend the approach to allow for richer and potentially different dynamics across the set of 


countries. Undoubtedly, one reason for some of our mixed results for individual countries arises 
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from our use of a common specification of dynamics across all countries, particularly since our 


parsimonious model incorporated a fairly simple dynamic structure.  


 


It would also be useful to extend the sample to include more emerging market and developing 


economies. Many of these economies have adopted inflation targeting frameworks in which the 


output gap and the neutral real interest rate are central to the design of policy. These economies 


also are small open economies, making them candidates for exploring issues of convergence and 


co-movements among these countries and the large industrialized economies.  
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Data Appendix 


 


Variable Description Source Countries


Consumer price index IFS
Japan, New Zealand, Canada, 
U.K., Australia, Sweden, and 


Norway
Core consumer price index INE and BCCh Chile


Price index for personal consumption expenditures LW U.S.
Consumption deflactor ECB Eurozone


Inflation 
targets


A composite measure which join the HP-filtered inflation 
rate and the observed inflation targets for inflation 


targeters. For non-inflation targerters (Japan, U.S. and the 
Eurozone) we use the HP-filtered series for the inflation 


measure


Authors' 
construction All countries


Inflation 
expectation


Calculations based on four step-ahed forecasts stemming 
from an AR(4) for the actual inflation rate


Authors' 
construction All countries


OECD
Japan, New Zealand, Canada, 
U.K., Australia, Sweden, and 


Norway
ECB Eurozone


BCCh Chile
LW U.S.


OECD
Japan, New Zealand, Canada, 
U.K., Australia, Sweden, and 


Norway and U.S.
ECB Eurozone
INE Chile


OECD
Japan, New Zealand, Canada, 
U.K., Australia, Sweden, and 


Norway
ECB Eurozone


Real monetary policy rate. Previous to 1994 indexed 
CBC's 90-day bond rate. Since 2001, official nominal 


MPR less expected inflation from inflation reports.
BCCh Chile


Monetary policy rate LW U.S.


BCCh: Central Bank of Chile
ECB: European Central Bank
IFS: International Financial Statistics
LW: Lauch and Williams (2003)


Inflation 
measure


Interest rate


Seasonally adjusted unemployment rate


Short-term nominal interest rate. The real interest rate is 
calculated as the difference of the nominal interest rate and 


our estimation of the inflation expectations.


UR


Seasonally adjusted real GDPGDP
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Table 1: Parameter estimates for the G3 
 
 


 U.S. Eurozone 
1960:01 
2007:02 


1986:01 
2007:02 


1970:02 
2006:04 


1986:02 
2006:04 Parameters 


(1) (2) (3) (4) 


gλ  0.0475 0.0612 0.0000 0.0000 


rλ  0.0215 0.1399 0.0214 - 


1α  0.9492 
(0.0351) 


1.2285 
(0.1193) 


0.9365 
(0.0582) 


0.9740 
(0.0183) 


2α  -0.0710 
(0.0226) 


-0.1355 
(0.0844) 


0.0264 
(0.0325) 


- 
(-) 


1β  -0.0838 
(0.0565) 


-0.0502 
(0.0849) 


0.0144 
(0.0650) 


-0.2482 
(0.0794) 


2β  0.8039 
(0.0486) 


1.2426 
(0.1173) 


0.6498 
(0.0459) 


1.1070 
(0.0899) 


3β  0.4172 
(0.1189) 


-0.3384 
(0.1346) 


-0.0279 
(0.0272) 


0.0481 
(0.0593) 


1δ  0.8632 
(0.0233) 


0.0251 
(0.1427) 


0.3652 
(0.0490) 


- 
(-) 


2δ  -0.1329 
(0.0289) 


-0.9141 
(0.1119) 


-0.5706 
(0.0506) 


- 
(-) 


3δ  0.1272 
(0.0752) 


2.2387 
(0.5900) 


1.0071 
(0.1251) 


- 
(-) 


yσ  0.4831 
(0.0951) 


0.1947 
(0.0462) 


0.3581 
(0.0498) 


0.4267 
(0.3034) 


πσ  0.6790 
(0.0319) 


0.7292 
(0.0406) 


0.7362 
(0.0468) 


0.4680 
(0.0401) 


rσ  1.1502 
(0.0317) 


0.0000 
(5081.2000) 


0.6101 
(0.0384) 


- 
(-) 


*y
σ  0.6543 


(0.1044) 
0.4367 


(3687.0000) 
0.4776 


(0.1334) 
0.1833 


(0.1583) 
Note: Standard errors in parentheses. 
(1) The estimations are from the third step.  
(2) The estimations are from the third step.  
(3) The estimations are from the third step.  
(4) The estimations are from the first step. We did not obtain estimations after the first  
step due to the matrix singular problem. 
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Table 1 (cont.): Parameter estimates for the G3 
 
 


 Japan 
1970:02 
2006:04 


1986:02 
2006:04 Parameters 


(1) (2) (3) (4) 


gλ  0.0000 0.0400 0.0000 0.0400 


rλ  - 0.0400 - 0.0400 


1α  0.8227 
(0.0707) 


1.0603 
(0.0285) 


0.9753 
(0.0077) 


1.0784 
(0.0446) 


2α  - 
(-) 


0.0562 
(0.0282) 


-  
(-) 


0.1030 
(0.0494) 


1β  -0.2137 
(0.0478) 


0.0557 
(7711.2291) 


-0.4258 
(0.0920) 


-0.0802 
(1557.7195) 


2β  0.6607 
(0.0309 ) 


0.1374 
(0.0672) 


1.3892 
(0.1317) 


-0.0728 
(0.1139) 


3β  2.2984 
(0.4361) 


0.5016 
(0.0583) 


0.0563  
(0.0308) 


0.4485 
(0.1613) 


1δ  - 
(-) 


0.0236 
(0.0238) 


- 
(-) 


0.0616 
(0.0761 


2δ  - 
(-) 


-0.7107 
(0.0336) 


- 
(-) 


-0.8420 
(0.0616) 


3δ  - 
(-) 


-2.2838 
(0.9590) 


- 
(-) 


-1.2997 
(0.3804) 


yσ  0.4647 
(0.1000) 


0.2167 
(0.0924) 


0.7196 
(0.4655) 


0.2091 
(0.0762) 


πσ  1.3389 
(0.1248) 


2.2620 
(0.1502) 


1.0289 
(0.0859) 


1.3858 
(0.1207) 


rσ  - 
(-) 


0.3874 
(0.0688) 


- 
(-) 


0.1678 
(0.0396) 


*y
σ  0.8164 


(0.1592) 
0.8946 


(6510.0068) 
0.3170 


(0.6622) 
0.8532 


(1304.8673) 
Note: Standard errors in parentheses. 
(1) The estimations are from the first step, since rλ  is not estimated in the second  


step when we impose gλ =0 due to the matrix singular problem. 


(2) The estimations are from the third step, where rλ  and gλ  are obtained across  


a grid search in the interval [0.005; 0.075]. 
(3) The estimations are from the first step, since rλ  is not estimated in the second 


 step when we impose gλ =0 due to the matrix singular problem. 


(4) The estimations are from the third step, where rλ  and gλ  are obtained across 


 a grid search in the interval [0.005; 0.075]. 
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Table 2: Parameter estimates for New Zealand and Canada 
 
 


 New  Zealand Canada 
1974:02 
2006:04 


1986:02 
2006:04 


1970:02 
2006:04 


1986:02 
2006:04 Parameters 


(1) (2) (3) (4) (5) (6) (7) (8) 


gλ  0.0544 0.0544 0.0757 0.0757 0.0484 0.0000 0.0484 0.0484 


rλ  0.0000 0.0544 0.0871 0.0757 0.0698 - 0.0698 0.8198 


1α  0.914 
(0.0643) 


0.9462 
(0.0505) 


0.7153 
(0.1345) 


0.6256 
(0.0927) 


0.9598 
(0.0582) 


0.9916 
(0.0187) 


0.8788  
(0.0946) 


0.8773 
(0.0813) 


2α  -0.0091 
(0.0281) 


0.0203 
(0.0396) 


0.2821 
(0.0729) 


0.2577 
(0.0643) 


-0.0790 
(0.0291) 


- 
(-) 


0.0305  
(0.0342) 


0.0369 
(0.0464) 


1β  -0.1923 
(0.0703) 


-0.1983 
(0.0685) 


-0.2158 
(0.221) 


-0.1067 
(44246.3385) 


0.0844 
(14868.7) 


-0.3020 
(0.0759) 


-0.2260  
(10298.66) 


-0.2260 
(10274.93) 


2β  1.4305 
(0.0897) 


1.4288 
(0.0834) 


1.2403 
(0.214) 


-0.1816 
(0.2006) 


0.0223 
(0.0747) 


1.2527 
(0.1191) 


-0.1199  
(0.0886) 


-0.2318 
(0.0878) 


3β  0.5697 
(0.2459) 


0.5743 
(0.2219) 


0.9306 
(0.2942) 


1.1411 
(0.1346) 


0.6890 
(0.1242 


0.0739 
(0.2246) 


0.7680 
 (0.1301) 


0.8807 
(0.1433) 


1δ  0.7038 
(0.0491) 


0.5875 
(0.0472) 


0.1262 
(0.0621) 


0.1475 
(0.0651) 


0.7370 
(0.0420) 


- 
(-) 


0.2825  
(0.0697) 


0.1968 
(0.0684) 


2δ  -0.3204 
(0.0857) 


-0.3742 
(0.0779) 


-0.6219 
(0.1614) 


-0.5968 
(0.1567) 


-0.2602 
(0.0635) 


- 
(-) 


-0.9390  
(0.0883) 


-0.9290 
(0.0796) 


3δ  -0.2211 
(0.142) 


-0.1838 
(0.1383) 


-0.1313 
(0.1412) 


-0.2096 
(0.1815) 


0.3684 
(0.1469) 


- 
(-) 


2.2223  
(0.4015) 


1.5811 
(0.3244) 


yσ  1.1969 
(0.3918) 


1.183 
(0.3701) 


1.0281 
(0.1749) 


1.0015 
(0.1928) 


0.4408 
(0.0978) 


0.5978 
(0.9679) 


0.2605 
 (0.0624) 


0.2982 
(0.0724) 


πσ  1.5029 
(0.1417) 


1.4946 
(0.1309) 


1.5014 
(0.2658) 


1.5179 
(0.2073) 


1.3423 
(0.0707) 


1.1695 
(0.0833) 


1.3798 
 (0.1163) 


1.2553 
(0.1032) 


rσ  2.1501 
(0.0847) 


2.0427 
(0.0697) 


1.5995 
(0.1426) 


1.6071 
(0.1417) 


1.0691 
(0.0576) 


- 
(-) 


0.4273  
(0.0557) 


0.3548 
(0.0415) 


*y
σ  1.9964 


(0.7595) 
2.0137 


(0.6157) 
0.9803 


(0.2825) 
0.9577 


(37739.0760) 
0.5649 


(11505.45) 
0.0000 


(185845.55) 
0.5019  


(7749.17) 
0.4724 


(7613.58) 
Note: Standard errors in parentheses. 
(1) The estimations are from the second step.  We did not obtain estimations in the third step due to the matrix  
singular problem. 
(2) The estimations are from the third step, where rλ  is obtained across a grid search in the interval [0.0444; 0.1244]. 
(3) The estimations are from the third step.  
(4) The estimations are from the third step, where rλ and gλ are obtained across a grid search in the interval [0.0275; 


0.9775].  
(5) The estimations are from the third step.  
(6) The estimations are from the first step, since rλ  is not estimated in the second step when we impose gλ =0  


due to the matrix singular problem. 
(7) The estimations are from the third step, where gλ  and rλ  are obtained in the estimation with the sample 1970-2006. 


(8) The estimations are from the third step, where rλ is obtained across a grid search in the interval [0.0098; 2.0198].  
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Table 2 (cont.): Parameter estimates for U.K. and Australia 
 
 


 U.K. Australia 
1970:02 
2006:04 


1986:02 
2006:04 


1970:02 
2006:04 


1986:02 
2006:04 Parameters 


(1) (2) (3) (4) (5) (6) (7) (8) 


gλ  0.0275 0.0275 0.0000 0.0275 0.0000 0.0069 0.0069 0.0569 


rλ  - 0.0900 0.0000 0.0600 0.0522 0.0000 0.0522 0.0522 


1α  0.8796 
(0.0575) 


0.6669 
(0.1249) 


0.9776 
(0.0345) 


0.9854 
(0.0156) 


0.9363 
(0.0415) 


0.9669 
(0.05) 


0.9906 
(0.0432) 


0.9291 
(0.1031) 


2α  - 
(-) 


0.0407 
(0.0195) 


-0.036 
(0.0388) 


-0.0490 
(0.0427) 


0.0022 
(0.0321) 


-0.0237 
(0.0303) 


-0.0036 
(0.0453) 


0.0062 
(0.0247) 


1β  -0.1142 
(0.0601) 


-0.169 
(0.0759) 


-0.2266 
(0.1021) 


-0.2245 
(0.1017) 


-0.2231 
(0.0553) 


-0.4366 
(0.1275) 


-0.4316 
(0.1214) 


-0.2872 
(15262.2512) 


2β  0.9532 
(0.0391) 


0.8837 
(0.0545) 


1.3391 
(0.1148) 


1.3271 
(0.0984) 


1.0026 
(0.0979) 


1.3629 
(0.117) 


1.3581 
(0.1111) 


-0.4366 
(0.1165) 


3β  1.0792 
(0.3806) 


2.4103 
(0.7842) 


0.2045 
(0.1227) 


0.2063 
(0.0891) 


0.3114 
(0.114) 


0.3246 
(0.1883) 


0.3191 
(0.1497) 


1.2311 
(0.1387) 


1δ  - 
(-) 


0.4519 
(0.0331) 


0.8953 
(0.0555) 


0.7431 
(0.0694) 


0.7168 
(0.0481) 


0.8507 
(0.0526) 


0.7758 
(0.0706) 


0.7554 
(0.0773) 


2δ  - 
(-) 


-0.7096 
(0.046) 


-0.1097 
(0.0935) 


-0.0995 
(0.0805) 


-0.3327 
(0.0496) 


-0.2668 
(0.1081) 


-0.2945 
(0.0932) 


-0.3612 
(0.0946) 


3δ  - 
(-) 


0.6368 
(0.2713) 


0.0282 
(0.0403) 


0.0523 
(0.0497) 


0.0438 
(0.0752) 


0.1157 
(0.0976) 


0.1345 
(0.0931) 


0.6577 
(0.3732) 


yσ  0.6381 
(0.1161) 


0.4554 
(0.1017) 


0.1404 
(0.159) 


0.4713 
(0.1190) 


1.0046 
(0.1178) 


0.616 
(0.1922) 


0.6615 
(0.1262) 


0.3051 
(0.0995) 


πσ  1.77 
(0.1337) 


1.5288 
(0.1767) 


0.8628 
(0.0611) 


0.8644 
(0.0599) 


2.0193 
(0.1177) 


1.4473 
(0.1283) 


1.4495 
(0.126) 


1.4616 
(0.1383) 


rσ  - 
(-) 


1.6097 
(0.0818) 


0.788 
(0.0568) 


0.7557 
(0.0563) 


1.6796 
(0.0757) 


0.9827 
(0.083) 


0.9362 
(0.0731) 


0.8986 
(0.0756) 


*y
σ  0.6383 


(0.1174) 
0.7789 
(0.284) 


0 
(4092) 


0.0000 
(3802.0530) 


0.0000 
(12158.6) 


0.2168 
(0.3725) 


0.0008 
(157.37) 


0.5638 
(11804.8755) 


Note: Standard errors in parentheses. 
(1) The estimations are from the first step, since rλ  is not estimated in the second step when we impose gλ =0.0275 due to the 


matrix singular problem. 
(2) The estimations are from the third step, where rλ   is obtained across a grid search in the interval [0.0444; 0.1244]. 
(3) The estimations are from the second step. We did not obtain estimations in the third step due to the matrix singular problem.  
(4) The estimations are from the third step, where rλ   is obtained in the estimation with the sample 1970-2006 and rλ  is obtained 
across a grid search in the interval [0.055; 0.065]. 
(5) The estimations are from the third step.  
(6) The estimations are from the second step. We did not obtain estimations in the third step due to the matrix singular problem. 
(7) The estimations are from the third step, where rλ  is obtained in the estimation with the sample 1970-2006. 


(8) The estimations are from the third step, where rλ and gλ are obtained across a grid search in the interval [0.0275; 0.9775].  
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Table 2 (cont.): Parameter estimates for Sweden and Norway 
 
 
 Sweden Norway 


1970:02 
2006:04 


1986:02 
2006:04 


1979:02 
2006:04 


1986:02 
2006:04 Parameters 


(1) (2) (3) (4) (5) (6) (7) 


gλ  0.0262 0.0000 0.0262 0.0677 0.0677 0.1186 0.1186 


rλ  0.0315 - 0.0315 0.000 0.040 0.000 0.040 


1α  0.9177 
(0.0478) 


0.9913 
(0.0274) 


0.9403 
(0.0522) 


0.9236 
(0.0405) 


0.9375 
(0.0613) 


0.0072 
(0.2289) 


-0.7573 
(0.1780) 


2α  -0.0452 
(0.0190) 


- 
(-) 


-0.0558 
(0.0110) 


-0.0958 
(0.0658) 


-0.0050 
(0.0208) 


-0.1925 
(0.1273) 


0.5243 
(0.2039) 


1β  -0.1680 
(16775.9) 


-0.3390 
(0.0888) 


-0.0646 
(11442.1623) 


-0.3339 
(0.0444) 


-0.1700 
(16845.7489) 


-0.3609 
(0.0572) 


-0.3064 
(25668.8387) 


2β  -0.3429 
(0.0594) 


1.3353 
(0.1098) 


-0.2998 
(0.1031) 


1.4904 
(0.0928) 


-0.2921 
(0.0500) 


1.2578  
(0.0891) 


-0.3553 
(0.0531) 


3β  1.3183 
(0.1133) 


0.2620 
(0.3898) 


1.3436 
(0.1289) 


0.3326 
(0.1267) 


1.5101 
(0.0997) 


0.2158 
(0.2943) 


1.1926 
(0.0766) 


1δ  0.5615 
(0.0292) 


- 
(-) 


0.3929 
(0.0581) 


0.7958  
(0.0485) 


0.6415  
(0.0615) 


0.8777 
(0.0708) 


0.9868 
(0.0115) 


2δ  -0.4751 
(0.1683) 


- 
(-) 


-0.7365 
(0.4081) 


-0.3852 
(0.0842) 


-0.5778 
(0.0919) 


-0.4053 
(0.1509) 


-0.4583 
(0.1064) 


3δ  -0.4555 
(0.3784) 


- 
(-) 


-0.5290 
(1.0947) 


-0.1139 
(0.0560) 


-1.1227 
(0.2599) 


-0.2346 
(0.2826) 


-0.4790 
(0.1677) 


yσ  0.3447 
(0.1196) 


0.6823 
(0.4974) 


0.1191 
(0.1642) 


0.9041 
(0.2227) 


0.2402 
(0.0890) 


0.7054  
(0.1376) 


0.3312 
(0.1086) 


πσ  1.9639 
(0.1272) 


1.6336 
(0.1287) 


1.7076 
(0.1579) 


1.3759 
(0.0770) 


1.4408 
(0.0894) 


1.4839 
(0.1064) 


1.2810 
(0.0977) 


rσ  2.6759 
(0.0620) 


- 
(-) 


3.1712 
(0.1470) 


1.1974 
(0.0727) 


1.0270 
(0.0693) 


1.2259 
(0.0822) 


0.3762 
(0.2991) 


*y
σ  0.9841 


(14365.4) 
0.0000 


(106856.8391) 
0.5951 


(8956.6283) 
0.7633 


(0.4370) 
1.1710 


(16930.1425) 
0.5428 


(3.2854) 
0.8557 


(21516.3255) 
Note: Standard errors in parentheses. 
(1) The estimations are from the third step.  
(2) The estimations are from the first step, since rλ  is not estimated in the second step when we impose gλ =0.00 due to the matrix 


singular problem. 
(3) The estimations are from the third step, where rλ  is obtained in the estimation with the sample 1970-2006.  
(4) The estimations are from the second step. We did not obtain estimations in the third step due to the matrix singular problem. 
(5) The estimations are from the third step, where rλ  is obtained across a grid search in the interval [0.0050; 0.0750]. 
(6) The estimations are from the second step. We did not obtain estimations in the third step due to the matrix singular problem. (7) 
The estimations are from the third step, where rλ  is obtained across a grid search in the interval [0.0050; 0.0750]. 


. 
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Table 3: Parameter estimates for Chile 
 
 


 Chile 
1986:02 
2006:04 Parameters 


(1) (2) 


gλ  0.0000 0.0820 


rλ  0.0000 0.0800 


1α  1.0771   
(0.0540) 


0.9412   
(0.1074) 


2α  -0.2461   
(0.1245)  


-0.1076   
(0.0961) 


1β  0.4639  
(0.0697)  


0.4325   
(0.0946) 


2β  0.5078   
(0.1612)  


0.5940   
(0.1959) 


3β  0.0142   
(0.0251)  


0.2756   
(0.2216) 


1δ  0.6996   
(0.1242)  


0.6552   
(0.0861) 


2δ  -0.0151   
(0.2658)  


0.1188   
(0.2049) 


3δ  0.0733   
(0.0809)  


0.3680   
(0.2525) 


yσ  1.2847   
(0.9877)  


1.0436   
(0.2924) 


πσ  1.8274   
(0.1110)  


1.7188   
(0.1230) 


rσ  1.3993   
(0.0750)  


1.2777   
(0.0833) 


*y
σ  0.0001  


(8810.1) 
 0.7456    
(0.3177) 


                     Note: Standard errors in parentheses. 
(1) The estimations are from the second step. We did not obtain estimations in the third step  
due to the matrix singular problem. (2)  The estimations are from the third step, where gλ  


and rλ  are obtained across a grid search in the intervals [0.062; 0.102] and [0.06; 0.10],  
respectively. 
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Table 4: Parameter estimates for alternative models for the U.S., 1960-2007 
 
 


 U.S. 
1960:1 - 2007:2 Parameters (1) (2) (3) 


 Extended Model 
(with Okun’s Law) 


8-step ahead 
inflation 
forecasts 


gλ  0.0475  0.0475  0.0586 


rλ  0.0215 0.0215 0.0304 


uλ  0.0000 0.4000 --- 


1α   0.9539   
(0.0302) 


0.9558   
(0.0331) 


0.9503   
(0.0441) 


2α  -0.0252   
(0.0100) 


-0.0681   
(0.0213) 


-0.0546   
(0.0216) 


1β  0.1097   
(0.0599) 


0.0602   
(0.0593) 


0.0680   
(0.1031) 


2β  0.6525   
(0.0525) 


0.7032   
(0.0474) 


0.4514   
(0.0482) 


3β  0.3926   
(0.1876) 


0.2820   
(0.0968) 


0.4337   
(0.1427) 


1γ  0.4956   
(0.0999) 


0.5635   
(0.0879) - 


2γ  -0.9466   
(0.3234) 


-0.3523    
(0.1010) - 


1δ  0.8756   
(0.0316) 


0.8697   
(0.0256) 


0.7880   
(0.0262) 


2δ  -0.1478   
(0.0286) 


-0.1353   
(0.0298) 


-0.2193   
(0.0201) 


3δ  0.1731   
(0.1587) 


0.1250   
(0.0825) 


0.1910   
(0.1075) 


yσ  0.2411   
(0.0780) 


0.4731   
(0.1053) 


0.5176 
(0.1060) 


πσ  0.8223   
(0.0385) 


0.7750   
(0.0340) 


0.8250   
(0.0411) 


uσ  0.0442   
(0.0643) 


0.1253   
(0.0144) - 


rσ  1.1552   
(0.0283) 


1.1498   
(0.0316) 


1.2768   
(0.0352) 


*y
σ  0.7969   


(0.3020) 
0.6656   


(0.1485) 
0.6293 


(0.1288) 
Note: Standard errors in parentheses. 
(1) The estimations are from the fourth step of the extended model with Okun’s Law.  
(2) The estimations are from the fourth step, where uλ  is obtained across a grid-search in the interval [0.08; 0.72].  


(3) The estimations are from the third step of the modified standard model with eight-step-ahead inflation forecast. 
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Table 5: Parameter estimates for an alternative model for Chile, 1986-2007 


 
 


 Chile 
1986.2 - 2006.4 Parameters (1) (2) 


 Extended Model 
(with Okun’s Law) 


gλ  0.0000 0.0820 


rλ  0.0000 0.0800 


uλ  0.0000 0.4000 


1α  1.0033   
(0.0515) 


1.0329   
(0.0433) 


2α  -0.0644   
(0.0425) 


-0.1583   
(0.0685) 


1β  0.4501   
(0.0803) 


0.4533   
(0.0842) 


2β  0.5191   
(0.1703) 


0.5182   
(0.1687) 


3β  0.1474   
(0.1614) 


0.1173   
(0.1420) 


1γ  0.2501   
(0.1791) 


0.2045   
(0.2190) 


2γ  -0.6591   
(0.3348) 


-0.5356   
(0.2237) 


1δ  0.7821   
(0.0600) 


0.6996   
(0.0724) 


2δ  0.0205   
(0.2750) 


-0.0073   
(0.2139) 


3δ  0.3329   
(0.2328) 


0.2654   
(0.1804) 


yσ  0.5644   
(0.2246) 


0.5899   
(0.1810) 


πσ  1.8052   
(0.1135) 


1.8071   
(0.1175) 


uσ  0.1935   
(0.0971) 


0.2151   
(0.0671) 


rσ  1.3852   
(0.0743) 


1.3135   
(0.0704) 


*y
σ  1.2730   


(0.6356) 
1.1429   


(0.5518) 
Note: Standard errors in parentheses. 
(1)  The estimations are from the fourth step.  
(2) The estimations are from the fourth step, where gλ , rλ , and uλ  are obtained  


across a grid-search in the intervals [0.062; 0.102], [0.06; 0.10], and [0.08; 0.72],  
respectively. 
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Table 6:  Cross country correlations of key variables, 1970:2-2006:41 


 
 


actual output growth USA Euro Japan New Zealand Canada United Kingdom Australia Sweden Norway


USA 1.00 0.24 0.19 0.24 0.50 0.29 0.30 0.18 0.15
Euro - 1.00 0.31 0.25 0.32 0.37 0.10 0.32 0.30
Japan - - 1.00 -0.07 0.13 0.28 -0.02 -0.01 -0.08
New Zealand - - - 1.00 0.20 0.08 0.12 0.24 0.26
Canada - - - - 1.00 0.27 0.31 0.11 0.08
United Kingdom - - - - - 1.00 0.05 0.28 -0.01
Australia - - - - - - 1.00 0.08 0.01
Sweden - - - - - - - 1.00 0.22
Norway - - - - - - - - 1.00


potential output growth USA Euro Japan New Zealand Canada United Kingdom Australia Sweden Norway


USA 1.00 0.00 0.82 -0.61 0.55 -0.64 0.00 -0.73 0.66
Euro* - 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
Japan - - 1.00 -0.83 0.58 -0.90 0.00 -0.75 0.27
New Zealand - - - 1.00 -0.56 0.85 0.00 0.70 -0.30
Canada - - - - 1.00 -0.34 0.00 -0.05 0.16
United Kingdom - - - - - 1.00 0.00 0.80 -0.31
Australia* - - - - - - 1.00 0.00 0.00
Sweden - - - - - - - 1.00 -0.34
Norway - - - - - - - - 1.00


output gap USA Euro Japan New Zealand Canada United Kingdom Australia Sweden Norway


USA 1.00 -0.28 0.27 0.29 0.66 0.50 0.53 0.47 0.32
Euro - 1.00 -0.77 -0.75 -0.20 0.04 -0.56 -0.60 -0.57
Japan - - 1.00 0.48 0.11 0.02 0.48 0.42 0.21
New Zealand - - - 1.00 0.26 -0.12 0.42 0.44 0.80
Canada - - - - 1.00 0.38 0.66 0.52 0.34
United Kingdom - - - - - 1.00 0.40 0.34 0.04
Australia - - - - - - 1.00 0.65 0.27
Sweden - - - - - - - 1.00 0.38
Norway - - - - - - - - 1.00  
Note: Bold numbers indicate significant correlation coefficients based on Hall’s confidence intervals calculated using the stationary 
bootstrap technique while underlined numbers indicate significant correlation coefficients based on t-distribution. 
1. The sample period is 1974:2-2006:4 and 1979:2-2006:4 for New Zealand and Norway, respectively. 
* The potential output growth estimate is constant for the Eurozone and Australia. 
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Table 6 (cont.):  Cross country correlations of key variables, 1970:2-2006:41 
 
 


actual interest rate USA Euro Japan New Zealand Canada United Kingdom Australia Sweden Norway


USA 1.00 0.49 0.26 0.24 0.71 0.39 0.52 0.22 0.13
Euro - 1.00 0.52 0.48 0.63 0.55 0.69 0.65 0.60
Japan - - 1.00 0.06 0.22 -0.09 0.18 0.25 0.62
New Zealand - - - 1.00 0.27 0.61 0.57 0.29 0.16
Canada - - - - 1.00 0.53 0.60 0.32 0.39
United Kingdom - - - - - 1.00 0.66 0.37 0.40
Australia - - - - - - 1.00 0.38 0.30
Sweden - - - - - - - 1.00 0.33
Norway - - - - - - - - 1.00


natural interest rate USA Euro Japan New Zealand Canada United Kingdom Australia Sweden Norway


USA 1.00 0.64 0.37 0.17 0.90 0.76 0.78 0.48 0.91
Euro - 1.00 0.14 0.60 0.83 0.74 0.73 0.68 0.60
Japan - - 1.00 -0.63 0.21 -0.20 -0.15 -0.38 0.99
New Zealand - - - 1.00 0.45 0.78 0.74 0.82 -0.63
Canada - - - - 1.00 0.90 0.91 0.77 0.77
United Kingdom - - - - - 1.00 0.99 0.89 0.57
Australia - - - - - - 1.00 0.89 0.54
Sweden - - - - - - - 1.00 -0.05
Norway - - - - - - - - 1.00


interest rate gap USA Euro Japan New Zealand Canada United Kingdom Australia Sweden Norway


USA 1.00 0.41 0.21 0.18 0.58 0.16 0.39 0.17 -0.24
Euro - 1.00 0.52 0.31 0.13 0.04 0.26 0.54 0.42
Japan - - 1.00 0.07 -0.04 -0.39 -0.05 0.23 0.39
New Zealand - - - 1.00 -0.10 0.24 0.23 0.11 0.14
Canada - - - - 1.00 0.22 0.27 0.01 -0.11
United Kingdom - - - - - 1.00 0.34 0.01 0.09
Australia - - - - - - 1.00 0.06 -0.09
Sweden - - - - - - - 1.00 0.27
Norway - - - - - - - - 1.00  
Note: Bold numbers indicate significant correlation coefficients based on Hall’s confidence intervals calculated using the stationary 
bootstrap technique while underlined numbers indicate significant correlation coefficients based on t-distribution. 
1. The sample period is 1974:2-2006:4 and 1979:2-2006:4 for New Zealand and Norway, respectively. 
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7.a Convergence of Actual Output Growth, 1970:2-2006:41 


 
 
 


 
 
 
 
  
 


 


 


 


Notes:  Significant estimates in boldface. 
1. Except Chile, for which the sample is 1986-2006. 
 
(1) We use the grid bootstrap (Hansen, 1999) for autoregressive models to compute confidence intervals for all AR coefficients. 
(2) We use AIC, BIC and HQC criteria to determine lag lengths.  
(3) The value of the constant in the AR model. 
(4) Estimated AR coefficients. 
(5) Half-life of a unit shock (HLS) coefficient, which is defined as HLS=abs(log(1/2)/log(α)) for AR(1) model (with α ≥ 0). The 
HLS for AR(p) models can be calculated directly from the impulse response functions. 
 
We did not find convergence for the unobservables (natural rate of interest and potential output growth) in both cases (with U.S. 
and Eurozone), since the series are not I(0) (stationary). In these cases we have that HLS coefficients are explosive ( ∞  or a large 
number). 


Convergence with the U.S. 
I(0) Order Drift AR coefficients HLS Country (1) (2) (3) (4) (5) 


Eurozone Yes 1 0 0.1260 - 0.3346 
Japan Yes 1 0 0.1105 - 0.3146 
New Zealand Yes 1 0 -0.1836 - 0.6122 
Canada Yes 1 0 -0.0273 - 0.5128 
U.K. Yes 1 -0.6998 -0.1092 - 0.3129 
Australia Yes 1 0 -0.0684 - 0.5365 
Sweden Yes 2 0 -0.0162 0.1742 1.6091 
Norway Yes 1 0 -0.3124 - 0.7272 
Chile Yes 1 2.6974 0.2233 - 0.4623 
    Average HLS 0.6024 


Convergence with the Eurozone 
I(0) Order Drift AR coefficients HLS  


Country (1) (2) (3) (4) (5) 
Japan Yes 4 0 0.0797 0.1253 0.2402 -0.1871 1.7196 
New Zealand Yes 1 0 -0.2010 - - - 0.6253 
Canada Yes 1 0.6894 0.2240 - - - 0.4632 
U.K. Yes 3 0 -0.0377 0.1720 0.1801 - 2.3339 
Australia Yes 1 0 0.0244 - - - 0.1866 
Sweden Yes 3 0 -0.1829 0.2448 0.1837 - 1.5852 
Norway Yes 3 0 -0.2135 0.3031 0.1768 - 1.1330 
Chile Yes 1 3.3966 0.2991 - - - 0.5742 
      Average HLS 1.0776 
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7.b Convergence of the Actual Rate of Interest, 1970:2-2006:41 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 


Notes: Significant parameters in boldface. 
1.  Except Chile, for which the sample is 1986-2006. 
(1) We use the grid bootstrap (Hansen, 1999) for autoregressive models to compute confidence intervals for all 
AR coefficients. 
(2) We use AIC, BIC and HQC criteria to determine lag lengths.  
(3) The value of the constant in the AR model. 
(4) Estimated AR coefficients. 
(5) Half-life of a unit shock (HLS) coefficient, which is defined as HLS=abs(log(1/2)/log(α)) for AR(1) model 
(with α ≥ 0). The HLS for AR(p) models can be calculated directly from the impulse response functions. 


 
 


Convergence with the U.S. 
I(0) Order Drift AR coefficients HLS  


Country (1) (2) (3) (4) (5) 
Eurozone Yes 1 0 0.8650 - 4.7794 
Japan Yes 1 0 0.8274 - 3.6584 
New Zealand Yes 1 0 0.7494 - 2.4027 
Canada Yes 1 0 0.7571 - 2.4910 
U.K. Yes 1 0 0.7625 - 2.5562 
Australia Yes 1 0 0.7107 - 2.0296 
Sweden Yes 1 0 0.6806 - 1.8014 
Norway Yes 1 0 0.8826 - 5.5503 
Chile Yes 2 0 0.7066 0.2182 7.5142 
    Average HLS 3.6425 


Convergence with the Eurozone 
I(0) Order Drift AR coefficients HLS Country (1) (2) (3) (4) (5) 


Japan Yes 1 0 0.7554 - 2.7410 
New Zealand Yes 1 0 0.7060 - 1.9910 
Canada Yes 2 0 1.0074 -0.2645 2.9601 
U.K. Yes 1 0 0.6695 - 1.7275 
Australia Yes 1 0 0.5953 - 1.3363 
Sweden Yes 1 0 0.4365 - 0.8361 
Norway Yes 1 0 0.8115 - 3.3185 
Chile Yes 1 0 0.8813 - 5.4856 
    Average HLS 2.5495 
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Figure 1.a: Inflation, output, and interest rate in the U.S., 1960:1-2007:2 and 
1986:1-2007:2 


 


 
Note: actual inflation, inflation forecast and inflation trend in blue, red and green lines, respectively, in the up-left figure of the 
panels. 
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Figure 1.b: Inflation, output, and interest rate in the Eurozone, 1970:2-2006:4 
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Figure 1.c: Inflation, output, and interest rate in Japan, 1970:2-2006:4 
 


 


 
Note: the second panel shows the unobservables for different grid values for 


gλ (first row) and rλ (second row). 
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Figure 2.a: Inflation, output, and interest rate in New Zealand, 1974:2-
2006:4/1986:2-2006:4 
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Figure 2.b: Inflation, output, and interest rate in Canada, 1970:2-2006:4/1986:2-
2006:4 
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Figure 2.c: Inflation, output, and interest rate in the U.K., 1970:2-2006:4/1986:2-
2006:4 
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Figure 2.d: Inflation, output, and interest rate in Australia, 1970:2-2006:4/1986:2-
2006:4 
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 Figure 2.e: Inflation, output, and interest rate in Sweden, 1970:2-2006:4/1986:2-
2006:4 
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Figure 2.f: Inflation, output, and interest rate in Norway, 1979:2-2006:4/1986:2-
2006:4 
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Figure 3: Inflation, output, and interest rate in Chile, 1986:2-2006:4 
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Figure 4: Potential growth rate, output gap, neutral interest rate, and natural 
unemployment rate in the U.S., 1960:1 - 2007:2 
(Grid-search results for extended model) 
 


 
Note: the panel shows the unobservables for different grid values of uλ . 
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Figure 5: Potential growth rate, output gap, neutral interest rate, and natural unemployment rate in Chile, 1986:2 - 2006:4 
(Grid-search results for extended model) 


 
 


Note: the panel shows the unobservables for different grid values of 
gλ (first row), rλ (second row) and uλ (third row). 
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Figure 6: Potential output growth in nine countries, 1970:2-2006:4 
 


 
 
 


Figure 7: Neutral real interest rate in nine countries, 1970:2-2006:4 
 


 
 


Note: the sample period for New Zealand and Norway begins in 1974:2  
and 1979:2, respectively. 
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Figure 8.a: Inflation volatility trends in nine countries, 1970:2-2006:4 
 


 
 


 
 


 
 


Notes: 
The sample period for New Zealand and Norway begins in 1974:2 and 1979:2, respectively. 
The window size for the rolling estimations is 74 quarters. For instance, the first point estimate corresponds 
to 1988:3 which is based in the period 1970:2-1988:3. 


Figure 8.b: Actual output growth volatility trends in nine countries, 1970:2-2006:4 
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Figure 8.c: Potential output growth volatility trends in nine countries, 1970:2-
2006:4 
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Figure 8.d: Output gap volatility trends in nine countries, 1970:2-2006:4 
 


 
 
 
 


 







 


 


 61


Figure 8.e: Actual interest rate volatility trends in nine countries, 1970:2-2006:4 
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Figure 8.f: Natural interest rate volatility trends in nine countries, 1970:2-2006:4 
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Figure 8.g: Interest rate gap volatility trends in nine countries, 1970:2-2006:4 
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Figure 9.a: Actual output growth correlation with U.S., 1970:2-2006:4 
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Figure 9.b: Potential output growth correlation with U.S., 1970:2-2006:4 
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Figure 9.c: Output gap correlation with U.S., 1970:2-2006:4 
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Figure 9.d: Actual interest rate correlation with U.S., 1970:2-2006:4 
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Figure 9.e: Natural interest rate correlation with U.S., 1970:2-2006:4 
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Figure 9.f: Interest rate gap correlation with U.S., 1970:2-2006:4 
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1 Introduction


Disinflation episodes and strategies have been studied extensively under the assumption


of rational expectations. However, this assumption attributes substantial knowledge and


”computing” capacity to market participants. More recently, many contributions to the


monetary policy literature have allowed departures from rational expectations. In this


vein, the present paper introduces adaptive learning in theNew-Keynesian Phillips curve


and assesses inflation stabilization under inflation targeting strategies. The analysis is


motivated by the disinflation performance of Latin Americaninflation-targeting central


banks, in particular, the Chilean central bank’s experience with gradual disinflation based


on announced short-term inflation targets.


A novel element of the analysis is endogenous indexation. Atthe start of the disinfla-


tion episode indexation is complete and price-setters expect highly persistent inflation.


As price-setting firms learn over time they re-assess the likelihood of announced inflation


targets and adjust indexation of contracts accordingly. The findings in the paper confirm


that learning and endogenous indexation help lower the costs of disinflation. A gradual


disinflation approach can take advantage of these beneficialeffects. An interesting new


result is the finding that announcing and achieving short-term targets for inflation may


reduce disinflation costs relative to the announcement of a long-run inflation target that


will only be achieved after many years of gradual disinflation. A sophisticated central


bank with complete information regarding the learning process of price-setters would be


able to improve policy performance. As such information is typically not available in


practice, an alternative approach with central bank learning is proposed.


The paper proceeds as follows. Section 2 contrasts the costsof disinflation under the


simplest forward-looking New-Keynesian Phillips curve and a traditional accelerationist


Phillips curve. The latter relationship will re-emerge later in the paper at the start of


disinflation given a structural New-Keynesian Phillips curve with complete backward-


looking indexation and adaptive expectations. Section 3 emphasizes some lessons from


the Chilean disinflation experience. The New-Keynesian Phillips curve with adaptive


learning and endogenous indexation is introduced in section 4. Section 5 compares


immediate and gradual disinflation strategies. Section 6 assesses the performance of


temporary inflation targets with learning and endogenous indexation. Section 7 presents


alternative approaches to optimal policy design with learning and section 8 concludes.


2 Costly disinflation


As is well-known the macroeconomic policy goals of stabilizing output and inflation


do not come into conflict in the simplest, micro-founded New-Keynesian Phillips curve


(cf. Walsh (2003), Woodford (2003)). This controversial property–sometimes termed
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the ”divine coincidence”–is based on the following specification


(πt −πS) = βEt [(πt+1−πS)]+λxt (1)


whereπt refers to the inflation rate andxt to the output gap. This relationship is derived


assuming that price-setting firms only adjust prices optimally once they receive a signal


to do so as proposed by Calvo (1983). There is a constant probability 1 − θ of such a


signal. The slope parameterλ is a function ofθ and the discount factorβ.


In the periods when firms do not adjust prices optimally, price changes are tied to


the steady-state inflation rate denoted byπS
t . Steady-state inflation and average inflation


are equal to the central bank’s inflation targetπ∗. If the central bank adjusts the inflation


target downwards inflation expectations as well as actual inflation follow immediately.


Thus, inflation is achieved without any loss of output.


This property stands in contrast to the conventional wisdomthat setting monetary


policy in order to achieve the inflation target at any and all times is suboptimal due to


resulting output variations. This concern is embodied in the traditional accelerationist


Phillips curve:


πt = πt−1+ λxt (2)


Clearly, this inflation-output relationship does not exhibit the divine coincidence prop-


erty. Disinflation is costly and requires tough policies by the central bank. The sacrifice


ratio, that is the cumulative output loss per percentage point of disinflation, is constant


and equal to the inverse ofλ. If the above equation were to constitute a structural rela-


tionship, then the sacrifice ratio could not be affected by policy and would be indepen-


dent ofπ∗ whether or notπ∗ is announced.


This paper revisits questions regarding the cost of disinflation previously analyzed


in models with rational expectations in an environment withadaptive learning follow-


ing recent contributions by Orphanides and Williams (2005,2006) and Gaspar, Smets


and Vestin (2005,2006).1 Similar to recent analyzes of the New-Keynesian models it


incorporates indexation to past inflation by price-settersthat are only rarely able to fully


re-optimize price-setting in a forward-looking manner. Annovel element is endogenous


indexation triggered by learning. Firms actively considerwhether lagged inflation or the


policy-makers announced inflation target constitutes a more likely long-run mean of in-


flation based on the most recent data. Once the probability ofthe inflation target is high


enough, these firms use the next optimal price-adjustment opportunity (i.e. the signal in


the Calvo framework) to also switch the index for indexationin future periods without


such adjustment opportunities.


Before proceeding to investigate the impact of learning, endogenous indexation and


inflation targets on the cost of disinflation some instructive elements of the Chilean dis-


1See also the influential monograph by Evans and Honkapohja (2001).


2







inflation experience are reviewed.


3 The Chilean Experience


The adoption of inflation targeting and its success in stabilizing inflation in several Latin


American countries provides a set of fascinating case studies concerning the design of


monetary stabilization policies. The case of Chile is particularly interesting. There exists


an impressive literature studying the Chilean experience using the most sophisticated


modeling and empirical techniques (cf. Aguirre and Schmidt-Hebbel (2005), Caputo,


Liendo and Medina (2007), Caputo, Medina and Soto (2006), Cespedes, Ochoa and


Soto (2005), Herrera (2002), Lefort and Schmidt-Hebbel (2002) and Schmidt-Hebbel


and Werner (2002) and others).


The Chilean disinflation stands out as a very gradual disinflation. Nevertheless,


the central bank was very successful in terms of achieving pre-announced temporary


inflation targets. Associated output losses appear to have been limited. Aguirre and


Schmidt-Hebbel (2005) write that the Chilean central bank initially identified two major


difficulties in searching for a disinflation strategy: low policy credibility and widespread


backward-looking price indexation in goods, labor, and financial markets. These authors


argue that the central bank was able to overcome the consequences of backward-looking


price indexation and related inflation inertia, to improve policy credibility, and to influ-


ence private-sector inflation expectations, by adopting a forward-looking inflation target


as the explicit nominal anchor for conducting monetary policy.


The central bank’s first official target was publicly announced in September 1990


and set for a range of 15 to 20 % for the rate of annual CPI inflation between December


1990 and December 1991. From 1991 to 1999 inflation targets were set on an annual


basis for the following calendar year as target ranges or as point targets.Figure 1 reports


the inflation targets along with actual inflation.


Aguirre and Schmidt-Hebbel argue that Chile’s annual inflation targets during 1991-


2000, even though announced for the short-term, were observationally equivalent to hard


policy targets in full-fledged IT regimes and provide some evidence. Empirical inves-


tigations of New-Keynesian Phillips curves for Chile such as Cspedes, Ochoa and Soto


(2005) report evidence of structural change during the late1990s. This change is exhib-


ited in a higher weight of expected future inflation - and a correspondingly lower weight


of lagged inflation - when producers set their prices. These authors provide evidence


that the extent of indexation declined over time. For a sample from 1990 to 2000 they


estimate a degree of backward-looking indexation around 0.85, essentially indistinguish-


able from the limiting case of complete indexation. With thesample extended to 2005,


however, the degree of indexation declines to around 0.66.2.


2Further interesting findings on more elaborate New-Keynesian models with additional rigidities in
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Figure 1: Inflation Targets and Actual Inflation in Chile, 1990-2002*


Source: Banco Central de Chile.


Note: *This figure is taken from Schmidt-Hebbel and Werner (2002) and uses data up to 2002.
It will be replaced with an updated figure using data from 1990to 2007 supplied to the author by
the Central Bank of Chile.


In the remainder of this paper, we explore possible links between the particular infla-


tion targeting strategy and the degree of inflation persistence perceived by price setters


as well as endogenous reduction in backward-looking indexation.


4 Adaptive learning and endogenous indexation


Indexation in the New-Keynesian Phillips curve


Christiano, Eichenbaum and Evans (2001, 2005) have shown that the basic New-Keynesian


Phillips curve can be extended to incorporate indexation topast inflation. Price-setting


firms that do not receive a signal to adjust prices optimally implement a pricing rule


based on past inflation. Assuming that a shareκ of price-setting firms indexes to past


inflation while the remaining(1− κ) firms index to the steady-state inflation rate the


basic New-Keynesian Phillips curve takes the following form:


πt − (κπt−1+(1−κ)πS) = βEt [(πt+1− (κπt +(1−κ)πS))]+λxt (3)


Solving for current inflation, it follows that inflation at timet depends on a weighted


labor markets and the importing sector are available from Caputo, Liendo and Medina (2007) and Caputo,
Medina and Soto (2006)
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average of past inflation and expected future inflation with the weight depending on the


share of firms that implement backward-looking indexation:


πt =
κ


1+ βκ
πt−1 +


β
1+ βκ


Et [πt+1]+
λ


1+ βκ
xt +


(1−κ)(1−β)


1+ βκ
πS (4)


This specification has been estimated for many countries including Chile. It is useful


to note that in the limiting case of complete indexation,κ = 1, the inflation equation


simplifies to


πt =
1


1+ β
πt−1 +


β
1+ β


Et [πt+1]+
λ


1+ β
xt (5)


and is independent of steady-state inflationπS.


Introducing adaptive learning


Expectations play a key role in determining inflation dynamics. Since the 1980s research


on inflation dynamics and monetary policy has relied extensively on the assumption of


rational expectations and explored its implications for policy design. However, a draw-


back of the rational expectations approach is that it imputes a probably unrealistic extent


of knowledge to market participants. More recently, researchers have started to consider


departures from rational expectations assuming that economic agents behave like econo-


metricians in forming expectations. This approach, often-called adaptive expectations


or least-squares learning, has been widely applied following the influential monograph


of Evans and Honkapohja (2001).


Orphanides and Williams (2005, 2006) and Gaspar, Smets and Vestin (2005, 2006),


for example, study monetary policy performance when price-setting market participants


form expectations about future inflation in a least-squaresregression fashion. Departing


from rational expectations requires researchers to choosefrom a variety of least squares


learning specifications. Branch and Evans (2006) provide a useful, short exposition of


alternative approaches and assess how well they fit survey expectations.


Following this line of research price-setting firms are assumed to estimate the fol-


lowing reduced-form regression for inflation:


πt = γtπt−1 + εt (6)


The parameterγt carries a time subscript to allow for high and low inflation episodes with


time-varying degrees of inflation persistence and indexation. Thus, market participants


consider such variations in their regression model of inflation.3 Recursive estimation


3For comparison, we also consider recursive least squares under the assumption thatγ is constant.
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then implies the following updating equations:


ct = ct−1 + Σt−1πt−1F−1(πt −ct−1πt−1)


Σt = Σt−1−Σt−1XtF
−1X′


t Σt−1 + σγ (7)


where F = XtΣt−1X′
t + σε


ct denotes the price setters’ estimate of the inflation persistence parameter in periodt


and Σt its variance. For a derivation based on the Kalman filter see Harvey (1992).


These updating equations are also consistent with Bayes rule assuming normal shock


distributions and beliefs (see Zellner (1971)).


The price setters’ expectation of future inflation assumingleast squares learning


ELS
t [πt+1] corresponds to


ELS
t [πt+1] = ct−1πt . (8)


As in Gaspar, Smets and Vestin (2006) it is assumed that the estimatect−1 does not yet


incorporate the most recent inflation observationπt .4 Using equation 8 to substitute out


the expectation of future inflation in the Phillips curve onecan solve for the following


reduced-form inflation equation:


πt =
κ


1+ β(κ−ct−1)
πt−1 +


λ
1+ β(κ−ct−1)


xt +
(1−κ)(1−β)


1+ β(κ−ct−1)
πS (9)


As pointed out by others adaptive learning, specifically thetime-varying estimatect−1,


exerts an influence on the observed degree of inflation persistence. In addition, the de-


gree of inflation persistence depends on the specific policy strategy. We come back to


the question of the consistency of the price-setting firms beliefs and observed inflation


persistence in the next section.


Learning and endogenous indexation


So far, the degree of backward-looking indexationκ has been treated as constant. A


novel element of this paper is to introduce a time-varying degree of indexationκt and to


link the determination ofκt with the learning process of price setting firms. To this end


it is necessary to define how firms that get to decide on the proper index to be applied in


the future assess the likely steady-state inflation rate.


Firms are assumed to consider two alternative values for thesteady-state–namely the


central bank’s announced inflation targetπ∗ and the preceding period’s rate of inflation


πt−1. st = Prob(πS= π∗) denotes the probability that the announced inflation targetis the


better indicator of future steady-state inflation. Every time a new inflation observation


4Alternative approaches would be either to use only lagged information, i.e.ELS
t [πt+1] = c2


t−1πt−1 or
to useELS


t [πt+1] = ctπt . The latter specification would require solving a more complicated fixed point
problem.
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becomes available this probability is updated as follows:


st+1 =
ste(−0.5σ−1(πt−π∗)2)


ste(−0.5σ−1(πt−π∗))2 +(1−st)e(−0.5σ−1(πt−πt−1))2 (10)


This updating equation is consistent with Bayes rule given normal shocks and beliefs.5


The degree of indexationκt is allowed to vary between complete indexation, i.e.


κt = 1, and a minimal value ofκ measuring the exogenous degree of indexation, i.e.


κt ∈ [κ,1]. At any point in time there is a probability ofθ that a firm receives a signal


to adjust the current price optimally. Whenever such a signal arrives, the firm is also


allowed to choose the rate for indexation that will apply to future periods without price


adjustment signals. It has two choices, the past inflation rate, πt−1, and the announced


inflation target,π∗.


The firm only chooses to switch the rate for indexation when there is overwhelming


evidence in favor of such a switch. Specifically, if the current choice of indexation rate


is πt−1, it will only switch to π∗ if the probability ofπ∗ is greater than a trigger valuēS,


i.e. if st > S̄. Similarly, if the current choice of indexation rate isπ∗ the firm will only


switch back toπt−1 if the probability ofπt−1 is greater than the same trigger value, i.e.


1−st > S̄.


We note that all firms face the same information regarding inflation. Thus,st is


symmetric across firms. Since the probability of a price- andindex-adjustment signal


is θ, a share ofθ firms switches the rate of indexation at any point in time if there is


overwhelming evidence for such a shift. Thus,κt is governed by the following process:


κt =















































κt−1 + θ if st > S̄andκt ≤ 1−θ


κt−1−θ if (1−st) > S̄andκt ≥ θ+ κ


κt−1 else


(11)


Since the share of firms using backward-looking indexation varies over time, the


reduced-form inflation equation (9) needs to be re-written:


πt =
κt−1


1+ β(κt−1−ct−1)
πt−1 +


λ
1+ β(κt−1−ct−1)


xt +
(1−κt−1)(1−β)


1+ β(κt−1−ct−1)
πS(12)


As a short-hand we will denote the time-varying, reduced-form parameters byδ(1,2,3),t


and write the inflation equation as follows:


πt = δ1,tπt−1 + δ2,txt + δ3,t (13)


5See Wieland (2000).
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It remains to describe the determination of the output gapxt and policy objectives in


order to study disinflation under inflation targeting policies.


5 Inflation targeting: Immediate versus gradual disinflation


An inflation-targeting central bank is typically assumed todesign policy according to the


following per-period loss function l(.):


l(πt ,xt) = (πt −π∗)2 + αx2
t (14)


The parameterα determines the central bank’s preference for minimizing output losses


relative to inflation deviations from the targetπ∗. To keep the analysis simple the central


bank is assumed to control the output gapxt directly and to observe the model param-


eters and the beliefs of the price settersct−1. Thus, the central bank observesδ(1,2,3),t


in equation (13). However, the central bank does not attemptto exploit the dynamic


learning process of price-setters in conducting policy.6 Thus, the dynamic optimization


problem of the central bank corresponds to:


Min
xt


Et


[


∞


∑
t=1


βt−1(πt −π∗)2 + αx2
t


]


(15)


s.t. πt = δ1,tπt−1 + δ2,txt + δ3,t


The limiting cases of strict inflation targeting,α = 0, and pure output stabilization,α →


∞, are easily considered.


The latter policy implies always settingxt = 0. Inflation persistence would be gov-


erned exclusively by the time-varying parameterδ1,t and inflation–depending on the


beliefs of price setters regarding inflation persistence–could even spiral out of control.


In contrast, strict inflation targeting would ensure that the inflation target is met at all


times independent of the price setting firms’ beliefs. It would imply the following policy


rule for the output gap


xt = −δ4,t(δ1,tπt−1 + δ3,t −π∗) (16)


with δ4,t = δ−1
1,t . Note, with an inflation target of zero,δ3,t = 0 at all times.


The dynamically optimal policy given central bank preferences that assign a positive


(but not infinite) weightα to the output gap falls in between these two extremes, i.e.


0 < δ4,t < δ−1
1,t . Orphanides and Wieland (2000) provide an analytical formula for the


case ofδ1,t = 1. Dynamically optimal policies for alternative values ofδ1,t are easily


6We return to this proposal in the last section under the heading of a ”sophisticated” central bank. This
terminology is taken from Gaspar, Smets and Vestin (2006).
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computed numerically with the algorithm provided along with that paper.7


Having specified the complete macroeconomic model we can proceed to evaluate


alternative disinflation strategies. This requires defining an initial scenario with high in-


flation. Initial inflation is set at 20 percentage points,π = 0.2, not too dissimilar from the


average inflation rate of Chile prior to the start of inflationtargeting. Firms that cannot


always adjust prices optimally in such a period of high and highly variable inflation will


opt for indexation. Thus, the initial scenario is characterized by complete indexation


κ0 = 1. Similarly, beliefs of price-setters in such a period are best characterized by a


unit root, i.e. c0 = 1. These initial conditions represent an equilibrium if policy aims


exclusively at stabilizing output, i.e.x0 = 0. Inflation then follows a random walk.


Given the above-mentioned initial conditions the reduced-form inflation equation


(13) simplifies further to


πt = πt−1+ λxt (17)


corresponding exactly to equation (2), the accelerationist Phillips curve discussed in


section 2. The cost of disinflation is very high and the sacrifice ratio given these beliefs


is constant. The parameter values used in the subsequent simulations are summarized in


Table 1.


Table 1: Parameter values and initial beliefs


Parameter Value Economic interpretation


β 0.99 Discount factor.
λ 0.5 Slope of Phillips curve.
κt κ0 = 1 Degree of indexation tot −1 inflation.
χt χ0 = 1 Price setters initial belief regarding inflation persistence.
Σt χ0 = 10 Price setters initial variance.
st σ0 = 0.1 Price/index setters initial belief regardingProb(πS= π∗).
π∗ 0.2/0 Initial inflation is at 0.2, long-run inflation target is 0.
κ 0.05 Degree of minimal exogenous indexation.
S̄ 0.8 Trigger probability for switching the rate for indexation.
θ 0.1 Probability of index-adjustment signal.
σ 0.01 Variance of noise (added later).
σγ 1 Belief regarding variability ofγ.


These initial conditions set the stage for the entry of an independent inflation-targeting


central bank. 8 As a first step, we contrast theimmediatedisinflation approach that


would be implemented under strict inflation targeting with amoregradualapproach that


is realized with a positive weight on output in the central bank’s preferences. Given the


parameter values defined in Table 1 the optimal policy coefficient for immediate disin-


flation that corresponds to the inverse of the slope of the reduced-form inflation equation


7The matlab code is available from www.volkerwieland.com.
8For a fascinating account of the implications of learning for inflation and stabilization when money


growth and inflation are determined by the government’s budget constraint rather than an independent
central bank the reader is referred to Sargent, Williams andZha (2007).
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is equal toδ4,0 = δ−1
1,0 = 2. While this policy achieves the long-run inflation target of zero


percent immediately, it also results in an output loss of 40%. This outcome is shown by


the solid blue line inFigure 2 . The cumulative output loss due to the disinflation of 20


percentage points is within the first period, i.e. period 10.Clearly, this approach is more


of academic interest and could not be implemented in practice.


Figure 2: Immediate versus Gradual Disinflation
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Interestingly, aggressive disinflation drives down price setter’s estimate of inflation


persistence,ct , to about 0.8. Furthermore, it convinces firms that get to choose the


rate for indexation that the future steady-state rate of inflation will coincide with the


policymaker’s inflation target. As a result, the share of firms that use backward-looking


indexation to the preceding inflation rate declines to the minimum exogenous degree


of indexation,κ within about 10 periods. Unfortunately, the strict inflation targeting


approach cannot take advantage of the subsequent reductionin the cost of disinflation


due to the beneficial evolution of the perceived degree of inflation persistence,ct as well


as the degree of indexation,κt .


The gradual approach to disinflation (shown by the red dottedline in Figure 2) is


computed with a weightα on output in the central bank’s preferences such that the policy
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response coefficientδ4 corresponds initially to 0.22, that is about one tenth of thepolicy


response needed to meet the target immediately. Consequently, the initial output decline


is much smaller but will be sustained for a much longer time. The inflation rate declines


gradually and reaches the long-run target of zero by about period 35. The cumulative


sum of output gap losses is much smaller under the gradual approach and converges to


about 28% after about 25 periods. The reason for the decline in the sacrifice ratio is to


be found in adaptive learning. As price-setters observe thedownward drift of inflation


they revise their estimate of inflation persistence downwards. This reduction inct adds


disinflationary impetus and reduces the costs of disinflation.


However, due to the slow decline in inflation firms adjusting the rate of price in-


dexation see now reason to switch from backward-looking indexation to the announced


inflation target. The announced target is just too far way andprogress towards it too slow


to change the probability weights on lagged inflation versusthe announced target. As a


result endogenous indexation does not come into play in terms of reducing the costs of


disinflation under such a gradual strategy.


6 Inflation targeting: Temporary inflation targets


Two strategic aspects of the Chilean disinflation experience have been emphasized in


section 3. One aspect was the very gradual disinflation whilethe second aspect con-


cerned the announcement of short-lived, temporary inflation targets. These temporary


targets appear to have been pursued very actively. Thus, we investigate whether such an-


nounced temporary targets,π∗
t , could have a beneficial effect on learning and the degree


of indexation thereby further lower the costs of disinflation.


Cespedes, Ochoa and Soto (2005) took into account temporarytargets in estimating


New-Keynesian Phillips curves for Chile under the assumption of rational expectations.


They show that the forward-looking Phillips curve then needs to account for the current


and future inflation target as follows:


πt =
κ


1+ βκ
πt−1+


β
1+ βκ


Et [πt+1]+
λ


1+ βκ
xt +


(1−κ)


1+ βκ
(π∗


t −βπ∗
t+1) (18)


The reduced-form inflation equation in our model with adaptive learning and endoge-


nous indexation is then modified accordingly:


πt =
κt−1


1+ β(κt−1−ct−1)
πt−1 +


λ
1+ β(κt−1−ct−1)


xt


+
(1−κt−1)


1+ β(κt−1−ct−1)
(π∗


t −βπ∗
t+1) (19)


As an example, we consider a gradual, albeit mechanical reduction in the inflationπ∗
t
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by 2 percentage points every 2 years. The pursuit of this temporary inflation target,


however, is as vigorous as possible. After deciding on the inflation target for the next


period, the central bank acts in order to meet this temporarytarget. Consequently, the


optimal policy response conditional on the temporary target corresponds to the policy


response under strict inflation targeting, i.e. the policy rule corresponds to:


xt = −δ4,t(δ1,tπt−1 + δ3,t −π∗
t ) (20)


with δ4,t = δ−1
1,t , andδ(1,2,3) consistent with equation (19).


Figure 3: Temporary Inflation Targets versus Gradual Disinflation
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The disinflation performance under such announced, temporary targets is shown by


the green, dashed-dotted line inFigure 3. It is contrasted to the previously discussed


gradual disinflation with an announced long-run target shown again by the red-dotted


line. By announcing and meeting the temporary inflation targets the central bank suc-


ceeds in raising the likelihood of the announced target relative to past inflation as the


better variable for indexing. Thus, firms that receive a signal allowing for an adjustment


of the rate applicable for indexation in future periods fairly quickly switch to the an-
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nounced inflation targets of the central bank. As a result thedegree of backward-looking


indexation declines fairly rapidly by period 20.


Since the temporary inflation targets are only lowered gradually the central bank can


take advantage of lower disinflation costs in the later stages of the disinflation process.


As a result, the cumulative loss of output is smaller than under the gradual disinflation


with an announced long-run target. The perceived degree of persistence,ct however,


declines similarly under the two strategies. Thus, its impact in terms of reducing the


costs of disinflation remains similar under both strategies.


So far, this analysis has been conducted in the absence of unforeseeable shocks.


Next, white noise shocks,εt , with varianceσ2 = 0.01 are introduced.


πt =
κ


1+ βκ
πt−1 +


β
1+ βκ


Et [πt+1]+
λ


1+ βκ
xt +


(1−κ)


1+ βκ
(π∗


t −βπ∗
t+1)+ εt (21)


The timing of expectations formation, policy actions and shocks is such that the shocks


are realized after timet expectations have been formed and policy has been set. Thus,


the shocks introduce noise in inflation that cannot be affected by current policy actions.


However, such variations in the rate of inflation lead to variations in the output gap if


policy responds to past inflation. More interestingly, suchvariation accelerates the speed


of learning and further reduces the costs of disinflation as shown inFigure 4.


Of course, this is just a single draw of shocks. The strategy with temporary inflation


targets need not always outperform the gradual disinflationstrategy in terms of output


losses.9


9A sensitivity study will be included in the next version of the paper.
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Figure 4: Shocks Accelerate Learning
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7 A ”sophisticated” central bank versus one that learns


A ”sophisticated” central bank


The results obtained so far suggest that policy performancecould be further im-


proved by allowing the central bank to exploit the dynamic learning process of price-


setters in designing policy. Such an approach has been studied under the heading of


”sophisticated” central banking by Gaspar, Smets and Vestin (2006). Such a sophisti-


cated central bank would solve the following dynamic optimization problem:


Min
xt


Et


[


∞


∑
t=1


βt−1(πt −π∗)2 + αx2
t


]


(22)


s.t. πt = δ1,tπt−1 + δ2,txt + δ3,t


and s.t. equations(7),(8), (10) and(11).
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The optimal policy takes into account the nonlinear updating equations that determine


the recursive estimation of the degree of inflation persistence, i.e. equations (7) and (8).


This effect has been studied by the above authors. In our model, an additional policy


channel arise due to the nonlinear dynamics of endogenous indexation. This channel is


represented by equations (10) and (11) in the above optimization problem.


This optimization problem could by set up in two different ways. The first approach


would be to specify the output gap as policy control variablegiven an announced, long-


run targetπ∗. The second approach, inspired by the positive performanceof announced


temporary targets in the preceding section, would involve the optimal choice of tempo-


rary targetsπ∗
t . A choice of temporary target would automatically imply a given output


gap according to the strict inflation targeting policy derived previously in the paper.


The above optimization problem can be expressed as nonlinear dynamic program-


ming problem with four state variables:(πt−1,ct−1,Σt−1,st−1). Numerical approxima-


tion of such a problem is complicated but within reach of current methodology. However,


optimal policy design in this manner relies on rather courageous information assump-


tions regarding the central bank’s knowledge of private sector expectations formation.


Not only is it assumed to observe the private sector’s beliefs, it also knows the exact


learning dynamics. The optimal policy of such an extremely knowledgeable central


bank forms a useful benchmark for model-based comparison but it does not represent a


strategy that could be implemented in practice.


A central bank that learns


An alternative approach that could be implemented with the information available to


central banks in practice takes again recourse to learning.The central bank may learn


about inflation dynamics via recursive estimation or least squares learning. Contrary


to the price-setting firms in the model that were assumed to learn about the reduced-


form relationship between current and lagged inflation, thecentral bank can spend more


resources on learning. Certainly, central bank econometricians estimate Phillips curves


on a regular basis including the effect of policy on the inflation process via the output


gapxt in the Phillips curve.


In the model studied in this paper, central bank learning canbe applied to the inflation


equation derived under recursive least squares learning byprice-setting firms, that is,


πt = δ1,tπt−1+ δ2,txt + δ3,t (23)


Following Wieland (2006)10 central bank beliefs regarding these three time-varying pa-


rameters may be summarized by a vectordt = (d1,t ,d2,t ,d3,t) and associated covariance


10Other related work on central bank learning of interest in this context includes Cogley, Colacito and
Sargent (2005), Ellison (2006), Svensson and Williams (2006) and Wieland (2000a,b).
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The vector of state variables that characterize central bank beliefs contains nine vari-


ables, the three means, three variances and three covariances. The associated updating


equations for recursive least squares with time-varying parameters:11











d1,t


d2,t


d3,t









=











d1,t−1


d2,t−1


d3,t−1









+ Σt−1XtF


−1(πt −d1,t−1πt−1−d2,t−1xt −d3,t−1)


(25)


Σd,t = Σd,t−1−Σd,t−1XtF
−1X′


t Σd,t−1 + σd where F = XtΣd,t−1X′
t + ση


F refers to the conditional variance of inflation.


In contrast to the sophisticated central bank discussed above, the information re-


quirements for such a learning central bank are much less stringent. Only inflation and


output observations are needed. Potential output could be subsumed in the time-varying


intercept. Thus, an area of fruitful future analysis would be to re-assess the disinfla-


tion policies in the preceding section under the assumptionthat the central bank learns


about the time-varying parameters governing the inflation process according to updating


process defined above.12


8 Conclusion


This paper investigated disinflation with different inflation targeting strategies in an


economy with adaptive learning by price-setters and endogenous indexation. As the cen-


tral bank acts to bring inflation under control, price-setting firms revise their beliefs re-


garding the degree of persistence. Thus, adaptive learninglowers the cost of disinflation


and a gradual approach to disinflation can take advantage of this beneficial effect. Firms


that choose the rate for indexation also re-assess the likelihood that announced inflation


targets determine steady-state inflation and adjust indexation of contracts accordingly. A


strategy of announcing and immediately achieving relatively modest short-term targets


for inflation is found to influence the likelihood that firms switch from backward-looking


indexation to the central bank’s announced targets more effectively than a strategy with


11A derivation of the updating equations using Bayes rule or Kalman filter see Zellner (1971) and Harvey
(1992) respectively.


12Computing a dynamically policy which takes into account central bank learning dynamics is probably
not feasible however, with more than two unobserved time-varying parameters.
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a long-run target that is achieved only gradually.


In future work it would be of interest to compute the fully optimal policy taking


advantage of the learning dynamics in the model. Such a policy would form a useful


benchmark for comparison with simpler, practically implementable policies. Such an


implementable policy with central bank learning is proposed here.
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Abstract


This paper examines the robustness characteristics of optimal control policies derived under
the assumption of rational expectations to alternative models of expectations formation
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1 Introduction


For nearly as long as macroeconomic models have existed, economists have proposed ap-


plying optimal control theory to the problem of monetary policy (see Chow (1976) for an


early example). Support for this approach has waxed and waned in the past, reflecting in


part swings in economists’ confidence in macroeconometric models. Recently there has been


renewed interest among academics and at central banks in applying optimal control to mon-


etary policy, as spelled out in Svensson and Woodford (2003) , Svensson (2002), Woodford


(2003), and Gianonni and Woodford (2005). Indeed, as described in Svensson and Tetlow


(2006), analytical and computational advances now make it possible to operationalize this


approach using the Federal Reserve Board’s large-scale nonlinear macroeconomic model.


One potential shortcoming of the optimal control approach is that it ignores uncertainty


about the specification of the model. In principle, one could incorporate various types of


uncertainty to the analysis of optimal policy. However, this is infeasible in practice, given


current methods and computational power. As a result, existing optimal control policy


analysis is done using a single reference model.


Given the prominence accorded to optimal control in the monetary policy literature


and increasingly at central banks, it seems an especially propitious moment to examine the


robustness properties of optimal control and other monetary policies when the reference


model may be misspecified. The literature on monetary policy under uncertainty has tended


to fall into one of two camps. The first, robust control, is closely related to optimal control,


but allows local perturbations to the model structure of a general nature. Robust control


methods of the type analyzed by Hansen and Sargent (2007), are best suited for relatively


modest deviations from the reference model. The second approach, and the one that we


follow in this paper, evaluates the performance of monetary policies across a set of possible


non-nested models that embed substantive differences in structure, that is, moderate-sized


deviations from a reference model.1 This approach has been advocated by McCallum (1998)
1Svensson and Noah Williams (2006) have developed a methodology to compute optimal policy under


model uncertainty using a Markov-switching framework; however, computing optimal policies under model
uncertainty by this method is extremely computationally intensive and its application to real-world problems
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and Taylor (1993), and has been implemented in numerous papers, including Taylor (1999),


Levin, Wieland, and Williams (1999, 2003), Orphanides and Williams (2002), and Brock,


Durlauf, and West (2005). A key finding in this literature is that properly calibrated simple


possible rules that are generalizations of the Taylor Rule (Taylor 1993) can be very robust


across a wide set of models. Moreover, optimal control policies can perform very poorly if


the reference model is badly misspecified, as shown in Levin and Williams (2003).


In this paper, we reexamine the robustness of optimal control policies designed under


the assumption of rational expectations to alternative models of expectations formation


and uncertainty about the natural rates of interest and unemployment. The literature has


tended to focus on issues of misspecification of the dynamics in structural equations. We


abstract from these issues and assume that the basic structure of the central bank’s reference


model is correctly specified. Instead, we take seriously the information problems facing real-


world agents, which may cause expectations to deviate from those implied by the model of


the economy they inhabit (see Taylor (1975) for an early analysis of this issue and Sargent


(2007) for a recent discussion). Evidence that survey measures of expectations are inefficient


and display significant disagreement at each point in time, (see, for example, Mankiw, Reis,


and Wolfers (2004) and Williams (2004)), call into question the assumption of rational


expectations and suggest the need for monetary policies that are robust to deviations from


rational expectations. We therefore assume that agents have imperfect knowledge of the


precise structure of the economy and continuously learn by reestimating their forecasting


models as new data become available. We consider various learning models that yield very


good forecasts in our model economy.


We also allow for exogenous time variation in the natural rates of interest and unem-


ployment that the central bank measures with error. We assume that the central bank has


a good understanding of the process describing the evolution of these natural rates, but


doe snot observe them directly. Instead, the central bank must estimate the natural rates


using available data. We consider both the case where the central bank uses the optimal


is infeasible.
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Kalman filter to estimate the natural rates, and the case where the central bank estimate


of the key gain parameter of the Kalman filter is incorrect. Laubach and Williams (2003)


and Clark and Kozciki (2005) document the imprecision in estimates of the gain parameter


in the Kalman filter, making uncertainty about this key parameter a real-world problem for


central bank estimates of natural rates.


We compare the performance of the optimal control policy to two types of simple mon-


etary policy rules that have been found to be robust to model uncertainty of various types


in the literature. The first is a forward-looking version of a Taylor-type policy rule, of the


type that Levin, et al (2003) found to perform very well in a number of estimated rational


expectations models of the U.S. economy. The second is rule proposed by Orphanides and


Williams (2007) that differs from the first rule in that policy responds to the change in the


measure of economic activity, rather than the level. This type of rule has been shown to be


robust to mismeasurement of natural rates in the economy (Orphanides and Williams, 2002,


2007) and found to perform very well in a counterfactual analysis of monetary policy during


1996–2003 undertaken by Tetlow (2006). Both of these rules are strikingly parsimonious–


they are characterized by only two free parameters.


We find that the optimal control policy constructed assuming rational expectations per-


forms relatively poorly in our estimated model of the U.S. economy when agents do not


possess perfect knowledge of the economy but instead must learn. The performance dete-


riorates further when we additionally allow for natural rate mismeasurement. The optimal


control policy attempts to fine tune the economy very precisely, which works well when


private expectations are perfectly aligned with those implied by rational expectations. But,


when agents learn, expectations can deviate from those implied by rational expectations,


and the finely-tuned optimal control policy can go astray. In particular, by implicitly as-


suming that inflation expectations are always well anchored, the optimal control policy


responds insufficiently strongly to movements in inflation, which results in excessive vari-


ability of inflation.


In contrast, the two simple monetary policy rules that we study perform very well under
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learning and with natural rate mismeasurement. These rules clearly outperform the optimal


control policy when agents learn. The relatively small advantage that the optimal control


policy has over these robust rules when the model is correctly specified implies a small


“insurance” payment to gain the sizable robustness benefits found here.


The remainder of the paper is organized as follows. Section 2 describes the model and


reports the estimation results. Section 3 describes the central bank objective and the three


alternative monetary policies. Section 4 describes the models of expectations formation.


Section 5 discusses the simulation methods. Section 6 reports and analyzes the monetary


policies under the assumption of rational expectations. Section 7 analyzes the performance


of monetary policies with learning. Section 8 considers the robustness of the simple rules


to alternative central bank forecasting models. Section 8 concludes.


2 An Estimated Model of the U.S. Economy


Our analysis is conducted using a simple quarterly model motivated by the recent literature


on micro-founded models incorporating some inertia in inflation and output (see Woodford,


2003, for a fuller discussion). The specification of the model is closely related to that in


Gianonni and Woodford (2005), Smets (2003), and others. The key difference is that instead


of the output gap concept in these models, we employ the unemployment gap concept as the


cyclical measure of real economic activity. The two concepts are closely related in practice


by Okun’s law and the properties of the model are largely invariant to this choice. In


addition, the empirical problem of measuring the natural rate of unemployment—needed to


define the unemployment gap—is essentially similar to the problem of measuring the level


of potential output—needed to define the output gap.


2.1 The Model


The structural model consists of two equations that describe the behavior of the unemploy-


ment rate and the inflation rate. In addition, there are equations describing the time series


properties of the exogenous shocks. To close the model, the short-term interest rate is set


by the central bank, as described in the next section.


4







The “IS curve” equation is motivated by the Euler equation for consumption with ad-


justment costs or habit:


ut = φuue
t+1 + (1− φu)ut−1 + αu (iet − πe


t+1 − r∗t ) + vt, (1)


vt = ρvvt−1 + ev,t, ev ∼ N(0, σ2
ev


). (2)


We specify the IS equation in terms of the unemployment rather than output to facilitate the


estimation of the equation using real-time data. This equation relates the unemployment


rate, ut, to the unemployment rate expected in the next period, one lag of the unemploy-


ment rate, and the difference between the expected ex ante real interest rate—equal to the


difference between the nominal short-term interest rate, it, and the expected inflation rate in


the following period, πt+1—and the natural rate of interest, r∗t . The unemployment rate is


subject to a shock, vt, that is assumed to follow an AR(1) process with innovation variance


σ2
ev


. The AR(1) specification for the shocks is based on the evidence of serial correlation in


the residuals of the estimated unemployment equation, as discussed below.


The “Phillips curve” equation is motivated by the New Keynesian Phillips curve with


indexation:


πt = φππe
t+1 + (1− φπ)πt−1 + απ(ut − u∗t ) + eπ,t, eπ ∼ N(0, σ2


eπ
). (3)


It relates inflation, πt, (measured as the annualized percent change in the GNP or GDP


price index, depending on the period) during quarter t to lagged inflation, expected future


inflation, denoted by πe
t+1, and the difference between the unemployment rate, ut, and


and the natural rate of unemployment, u∗t , during the current quarter. The parameter


φπ measures the importance of expected inflation on the determination of inflation, while


(1−φπ) captures the effects of inflation indexation. The “mark-up” shock, eπ,t, is assumed


to be a white noise disturbance with variance σ2
eπ


.


In the model simulations, we abstract from time variation in the natural rates of interest


and unemployment and assume for convenience that these variables are constant. We


further assume that they known by the central bank. See Orphanides and Williams (2007)


for analysis of time-varying natural rates in a model with learning.
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We model the low frequency behavior of the natural rates of unemployment and interest


as exogenous AR(1) processes independent of all other variables:


u∗t = (1− ρu∗)ū∗ + ρr∗u
∗
t−1 + eu∗,t, eu∗ ∼ N(0, σ2


e∗u), (4)


r∗t = (1− ρr∗)r̄∗ + ρu∗r
∗
t−1 + er∗,t, er∗ ∼ N(0, σ2


e∗r ). (5)


We assume these processes are stationary based on the finding using the standard ADF


test that one can reject the null of nonstationarity of both the unemployment rate and real


federal funds rate over 1950–2003 at the 5 percent level. The unconditional mean values


of the natural rates are irrelevant for our analysis and so we set them both to zero in our


analysis.2


2.2 Model Estimation and Calibration


We estimate the IS curve and Phillips curve equations using forecasts from the Survey of


Professional Forecasters (SPF) as proxies for the expectations that appear in the equations.3


We assume that expectations are formed in the previous quarter; that is, we assume that the


expectations affecting inflation and unemployment in period t are those collected in quarter


t− 1. This matches the informational structure in many theoretical models (see Woodford,


2003, and Giannoni and Woodford, 2005). To match the inflation and unemployment


data as best as possible with these forecasts, we use first announced estimates of these


series, obtained from the Real-Time Dataset for Macroeconomists maintained by the Federal


Reserve Bank of Philadelphia. In estimating the inflation equation, we use the Congressional


Budget Office (2001) estimates of the natural rate of unemployment as proxies for the true


values. The data sample used in estimation of the model runs from 1969:4 to 2004:2, where


the starting date is the first sample point in the SPF.
2Because we e ignore the zero lower bound on nominal interest rates as well as any other potential source


of nonlinear behavior in the structural model, the unconditional means of variables are irrelevant. Inclusion
of the zero bound would severely complicate the analysis and is left for future work.


3Specifically, we use the mean forecasts of the unemployment rate and three-month treasury bill rate. We
construct inflation forecasts using the annualized log difference of the GNP or GDP price deflator, which we
construct from the reported forecasts of real and nominal GNP or GDP. The Survey is currently maintained
by the Federal Reserve Bank of Philadelphia. See Croushore (1993) and Croushore and Stark (2001) for
details on the survey methodology.
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The estimation results are reported below, with standard errors indicated in parentheses.


We estimate the IS curve equation using least squares with AR(1) residuals. Unrestricted


estimation of the IS curve equation yields a point estimate for φu of 0.39, with a standard


error of 0.15. This estimate is below the lower bound of 0.5 implied by theory; however, the


null hypothesis of a value of 0.5 is not rejected by the data.4 We therefore impose φu = 0.5


in estimating the remaining parameters of the equation. Note that the estimated equation


also includes a constant term (not shown) that provides an estimate of the natural real


interest rate, which is assumed to constant for the purpose of estimating this equation.


ut = 0.5ue
t+1 + 0.5ut−1 +0.056


(0.022)


(r̃e
t − r∗) + vt, (6)


vt = 0.513
(0.085)


vt−1 + ev,t, σ̂ev = 0.30, (7)


πt = 0.5πe
t+1 + 0.5πt−1 − 0.294


(0.087)


(ue
t − u∗t ) + eπ,t, σ̂eπ = 1.35, (8)


Unrestricted estimation of the Phillips curve equation yields a point estimate for φπ


of 0.51, just barely above the lower bound implied by theory.5 For symmetry with our


treatment of the IS curve, we impose the φπ = 0.5 and estimated the remaining parameters


using OLS. The estimated residuals for this equation show no signs of serial correlation in


the price equation (DW = 2.09), consistent with the assumption of the model.


As discussed in Orphanides and Williams (2002), there is considerable uncertainty re-


garding the magnitude and persistence of low-frequency fluctuations in the natural rates of


unemployment and interest.6 We do not estimate a model of natural rates in this paper;


instead, we calibrate the parameters of the AR(1) processes based on estimates fund else-


where in the literature. To capture the highly persistent movements in natural rates we set


the autocorrelation parameters, ρu∗ and ρr∗ , to 0.99.
4This finding is consistent with the results reported in Giannoni and Woodford (2005), who in a similar


model, find that the corresponding coefficient is constrained to be at its theoretical lower bound.
5For comparison, Giannoni and Woodford (2005) find that the corresponding coefficient is constrained


to be at its theoretical lower bound of 0.5.
6Recent papers that estimate the natural rates of unemployment and interest include Staiger, Stock, and


Watson (1997), Laubach (2001), Laubach and Williams (2003), Clark and Kozicki (2005).
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We consider alternative calibrations of the variances of the innovations to the natural


rate processes, indexed by the parameter s. In particular, we consider three cases. In the


first case, denoted s = 0, the variances are assumed to equal zero; that is, the natural rates


are constant over time. In the second case, denote by s = 1,we calibrate the innovation


variances to be consistent with estimates of time variation in the natural rates in postwar


U.S. data. Specifically, we set the innovation standard deviation of the natural rate of


unemployment to 0.07 and that of the natural rate of interest to 0.085. These values


imply an unconditional standard deviation of the natural rate of unemployment (interest)


of 0.50 (0.60), in the low end of the range of standard deviations of smoothed estimates of


these natural rates suggested by various estimation methods. In the third case, denoted by


s = 2, we double the standard deviations of the innovations to the natural rate processes,


consistent with low end of the range of standard deviations of smoothed estimates of these


natural rates suggested by various estimation methods.


3 Optimal Control Monetary Policy


We evaluate the performance of alternative monetary policies under model uncertainty. The


monetary policy instrument is the nominal short-term interest rate. We assume that the


central bank observes all variables from all previous periods, including private-sector fore-


casts, when making the current period policy decision. We further assume that the central


bank has access to a commitment technology; that is, we study policy under commitment.


The central bank’s objective is to minimize a loss equal to the weighted sum of the


unconditional variances of the inflation rate, the unemployment gap, and the change in the


nominal federal funds rate:


L = V ar(π − π∗) + λV ar(u− u∗) + νV ar(∆(i)), (9)


where V ar(x) denotes the unconditional variance of variable x. We assume an inflation


target of zero percent. As a benchmark for our analysis, we assume λ = 4 and ν = 1. Based


on an Okun’s gap type relationship, the variance of the unemployment gap is about 1/4


that of the output gap, so this choice of λ corresponds to equal weights on inflation and
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output gap variability.


The optimal control policy is that which minimizes the loss subject to the equations


describing the economy. This is constructed, as is typical in the literature and practice,


assuming that the policymaker knows the true parameters of the structural model and


assumes all agents use rational expectations and the central bank’s knows the natural rates


of unemployment and interest. Note that for the optimal control policy, as well as the


simple policy rules described below, we use lagged information in the determination of the


interest rate, reflecting the lag in data releases. The optimal control policy is described


by s set of equations that describe the first-order optimality condition for policy and the


behavior of the Lagrange multipliers associated with the constraints on the optimization


problem implied by the structural equations of the model economy.


Because we are interested in describing the setting of policy in a potentially misspecified


model, it is useful to represent the optimal control policy in an equation that relates the


policy instrument to observable variables, rather than in terms of Lagrange multipliers that


depend on the model. However, there are infinitely many such representations, a subset of


which do not yield a determinate rational expectations equilibrium. We consider several


alternative representations that are closely related to those that have been studied in the


literature.


In the first representation, which we denote “OC,” the optimal control policy is described


by a feedback rule where the setting of policy depends on the observed past values of the


inflation rate, the unemployment gap (the difference between the unemployment rate and


the natural rate of unemployment), and the interest rate gap (the difference between the


ex post real interest rate and the natural rate of interest). We find that this representation


yields a determinate rational expectations equilibrium. We find that including three lags


of these variables is sufficient to mimic the optimal control outcome assuming naturals are


known. In the following, we focus on this three-lag specification. Note that this formulation


implicitly assumes that the central bank uses the structural model with rational expectations


to generate forecasts.
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The second representation of the optimal control policy is a form of a forecast-targeting


policy similar to that proposed by Svensson and Woodford (2003). In principle, this form


of the optimal control policy requires the inclusion of infinitely many leads of the objective


variables. However, Gianonni and Woodford (2005) show that this policy can be well


approximated by including only a few leads of the target variables. As discussed below, we


find that a specification in which the policy instrument depends on the first three leads of


the inflation rate and the unemployment rate and three lags of the policy instrument yields


outcomes under rational expectations nearly identical to those under the optimal control


policy. We denote this representation of the optimal control policy by “OC-FT.”


3.1 Central Bank Estimation of Natural Rates


Given the time variation in the natural rates, the central bank needs to have real-time


estimates of natural rates. We assume that the central bank does not observe the natural


rates and must instead estimate them in real time.


We assume that the central bank uses the Kalman filter to estimate both natural rates.


Given the assumptions of the model, this is the optimal filter. In particular, the real-time


estimate of the natural rate of interest is given by:


û∗t = 0.99 û∗t−1 + λu
{[


πt − (φπ πe
t+1 + (1− φπ) πt−1 + απ ue


t )
]
/(−απ)− 0.99 û∗t−1


}
, (10)


where λu is the Kalman gain associated that depends on the relative variances of the inno-


vations to inflation and the natural rate of unemployment. The term multiplied by λu is the


”surprise” inflation, conditional on the prior estimate of the natural rate of unemployment,


scaled so that it is in unemployment rate units. The corresponding equation for the central


bank estimate of the natural rate of interest is given by:


r̂∗t = 0.99 r̂∗t−1 + λr
{[


ut − (φu ue
t+1 + (1− φu) ut−1 + αu (iet − πe


t+1))
]
/(−αu)− 0.99 r̂∗t−1


}
,


(11)


Note that this specification of the updating rules corresponds to the optimal filters for


our model. It implicitly assumes that the central bank perfectly knows the specification and


slope parameters of the structural model, including the laws of motion of the natural rate of
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unemployment. As a result, our assumptions represent a best case for the central bank with


respect its ability to estimate natural rates. In other work, we examine the implications


of model uncertainty regarding the data generating processes for natural rates (Orphanides


and Williams 2005, 2007). The optimal values of the gains and the associated unconditional


standard deviations of the natural rate mismeasurement are reported in Table 1.


In the following, we allow for some uncertainty regarding the estimation of natural rates.


In particular, as noted above, estimates of the Kalman gain tend to be very imprecise. We


therefore consider the possibility that the central bank uses incorrect estimates of λr and


λu. Specifically, we examine the effects of the central bank using the optimal gain based on


a particular value of s when the true data generating process is given by a different value of


s between 0 and 2. For example the central bank may assume that natural rates are highly


variables (s = 2) in estimating natural rates, when in fact they are constant (s = 0).


4 Expectations Formation


Because we are interested in robustness of monetary policies to uncertainty about how


expectations are formed, we consider several different models of expectations formation.


One model is rational expectations, where private agents are assumed to know all features


of the model including the realized values of natural rates. We assume the model with


rational expectations is the central bank’s reference model that it uses to compute optimal


monetary policies. The remaining models that we study involve real-time perpetual learning


on the part of private agents. The models differ in the particular perceived laws of motion


(PLM) of the economy that agents assume for their forecasting model.


4.1 Perpetual Learning


In the models of learning that we consider, we assume that private agents and, in some cases,


the central bank form expectations using an estimated reduced-form forecasting model.


Specifically, following Orphanides and Williams (2005a), we posit that private agents engage


in perpetual learning, that is they reestimate their forecasting model using a constant-
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gain least squares algorithm that weights recent data more heavily than past data.7 This


approach to modeling learning allows for the possible presence of time variation in the


economy, including the natural rates of interest and unemployment. It also implies that


agents’ estimates are always subject to sampling variation, that is, the estimates do not


eventually converge to fixed values.


We assume agents forecast inflation, the unemployment rate, and the short-term interest


rate using a unrestricted vector autoregression model (VAR) containing lags of these three


variables and a constant. VAR models are well-suited for our purposes. First, variants of


VARs are commonly used in real-world macroeconomic forecasting, making this a reasonable


choice on realism grounds. Second, the rational expectations equilibrium of our model


implies a reduced-form VAR of this form.


We consider three alternative specifications of the VAR used for forecasting, with lag


lengths of one, two, and three quarters. The VAR with three lags nests the reduced-


form of the model under the assumptions of rational expectations. In particular, under


this assumption, the minimum state space reduced-form of the equilibrium implied by the


Phillips and IS curves includes two lags each of the inflation rate and interest rate and three


lags of the unemployment rate. The monetary policy rule may imply additional states for


the economy, depending on the specification of the rule. For the rules that we consider,


the three-lag VAR nests the reduced-form of the rational expectations equilibrium with


constant natural rates.8 We also consider VARs with shorter lag lengths to capture the


possibility that agents do not know the true reduced-form structure of the economy. In


addition, we know from the forecasting literature that parsimonious VARs can perform


better at forecasting in small samples, so agents may optimally choose under-parameterized


VARs to improve forecast accuracy.


At the end of each period, agents update their estimates of their forecasting model using
7See also Sargent (1999), Cogley and Sargent (2001), and Evans and Honkapohja (2001) for related


treatments of learning.
8Time-varying natural rates add additional variables to the reduced-form representation of the economy,


but as shown below a VAR(3) is a very close approximation to the reduced-form of the economy in that
case.
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data through the current period. To fix notation, let Yt denote the 1× 3 vector consisting


of the inflation rate, the unemployment rate, and the interest rate, each measured at time


t: Yt = (πt, ut, it). For a VAR with l lags, let Xt be the (3 · l + 1)× 1 vector of regressors in


the forecast model: Xt = (1, πt−1, ut−1, it−1, . . . , πt−l, ut−l, it−l). Let ct be the (3 · l + 1)× 3


vector of coefficients of the forecasting model. Using data through period t, the coefficients


of the forecasting model can be written in recursive form:


ct = ct−1 + κR−1
t Xt(Yt −X ′


tct−1), (12)


Rt = Rt−1 + κ(XtX
′
t −Rt−1), (13)


where κ is the gain. With these estimates in hand, agents construct multi-period forecasts


needed for their decisons.


For some specifications of the VAR, Rt may not be full rank. For example, if policy


follows the LWW rule and agents form expectations using a VAR(3), then R will be less


than full rank under rational expectations. To avoid this problem, in each period of the


model simulations, we check the rank of Rt. If it is less than full rank, we assume that


agents apply a standard Ridge regression (Hoerl and Kennard, 1970), where Rt is replaced


by Rt + 0.00001 ∗ I(k), and k is the dimension of R.


4.2 Calibrating the Learning Rate


A key parameter in the learning model is the private agent updating parameter, κ. Esti-


mates of this parameter tend to be imprecise and sensitive to model specification, but tend


to lie between 0 and 0.04.9 We take 0.02 to be a reasonable benchmark value for κ, a value


that implies that the mean age of the weighted sample is about the same as for standard


least squares with a sample of 25 years. Given the uncertainty about this parameter, we


report results for values of κ between 0.01 (equivalent in mean sample age to a sample of


about 50 years) to 0.03 (equivalent in mean sample age to a sample of about 16 years).


For comparison, we also report results for the case of κ = 0. In this case, agents do not


update the coefficients of the forecast model. Instead, the coefficient values are fixed at the
9See Orphanides and Williams (2005), Milani (2005), Sheridan (2003), and Branch and Evans (2006).
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initial values that are set as explained in the next section. We discuss below the forecasting


performance of private agent’s forecasts under alternative learning rates.


5 Simulation Method


In the case of rational expectations with constant and known natural rates, we compute


model unconditional moments numerically as described in Levin, Wieland, and Williams


(1999). In all other cases, we compute approximations of the unconditional moments using


stochastic simulations of the model.


5.1 Stochastic Simulations


For the stochastic simulations, we initialize all model variables to their respective steady-


state values, which we assume to be zero. The initial conditions of C and R are set to the


steady-state values implied by the forecasting PLM in the rational expectations equilibrium


with known natural rates.


Each period, innovations are generated from independent Gaussian distributions with


variances reported above. The private agent’s forecasting model is updated each period


and a new set of forecasts computed, as are the central bank’s natural rate estimates. We


simulate the model for 44,000 periods and discard the first 4000 periods to eliminate the


effects of initial conditions. We compute the unconditional moments from the remaining


40,000 periods (10,000 years) of simulated data.


5.2 The Projection Facility


Private agents’ learning process injects a nonlinear structure into the model that may cause


the model display explosive behavior in a simulation. In simulations where the model is


beginning to display signs of explosive behavior, we follow Marcet and Sargent (1989) and


stipulate modifications to the model that curtail the explosive behavior.


One potential source of explosive behavior is that the forecasting model itself may be-


come explosive. We take the view that in practice private forecasters reject explosive models.


Correspondingly, in each period of the simulation, we compute the maximum root of the
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forecasting VAR (excluding the constants). If this root falls below the critical value of 1, the


forecast model is updated as described above; if not, we assume that the forecast model is


not updated and the matrices C and R are held at their respective values from the previous


period.10 This constraint is typically encountered in less than one percent of the simulation


periods; however, in the case of of a high updating rate (κ = 0.03) and large natural rate


variation (s = 2), this constraint can be encountered up to three percent of the time.


This constraint on the forecasting model is insufficient to assure that the model economy


does not exhibit explosive behavior in all simulations. For this reason, we impose a second


condition that eliminates explosive behavior. In particular, the inflation rate, nominal


interest rate, and the unemployment gap are not allowed to exceed in absolute value six


times their respective unconditional standard deviations (computed under the assumption


of rational expectations and known natural rates) from their respective steady-state values.


This constraint on the model is invoked extremely rarely in the simulations. However, in


some instances, the projection facility is invoked a very high percentage of the time. This


occurs because the model gets stuck at the bound of allowable interest rate variability.


When that occurs, we adjust the bound on allowable interest rate variability modestly and


find a simulation where the projection facility is invoked very rarely. This bound has a


relatively small effect on simulation outcomes otherwise, so making this modification has


little effect on our results.


6 Performance of the Optimal Control Policy


We first evaluate the performance of the two representations of the optimal control policy in


the model assuming rational expectations. We then examine the performance when agents


learn.
10We chose this critical value so that the test would have a small effect on model simulation behavior


while eliminating explosive behavior in the forecasting model.
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7 Outcomes under Rational Expectations


The impulse responses to the two inflation and unemployment shocks are nearly identical


for these two policies under rational expectations, as shown in Figure 1. The implied


central bank losses are likewise nearly identical at 6.593. The optimal policy possesses two


key features. First, it generates noticeable secondary cycles associated with a a very high


degree of policy inertia. Second, the response of the nominal interest rate to the inflation


shock is very muted, with the interest rate rising only about 30 basis points in response to a


1.3 percentage point shock to inflation. Under rational expectations, this gradual and mild


policy response is sufficient to bring inflation under control due to the fact that expectations


are the future course of policy is perfectly understood by the public. As we will see, when


these assumptions fail, this approach to policy can have unfortunate consequences.


8 Outcomes under Learning


We now turn to the performance of the different policies when agents learn. We start by


evaluating the forecast performance of the various PLMs. We then turn to policy rule


evaluation.


8.1 Forecast Model Selection


Table 2 shows the root-mean-squared one-step-ahead forecast errors in the model simula-


tions with constant natural rates under the OC policy for different values of the learning


parameters, κ, and the three specifications of the PLM. The first four rows show the re-


sults when the public forms expectations using the three-lag VAR, the second four rows


show the results when the public forecasts using a two-lag VAR, and the final four rows


show the results when the public uses a one-lag VAR. For each case, we report the forecast


performance of the various VARs.


Overall, for inflation and unemployment forecasts, all three VARs do about equally well.


In fact, the under-parameterized VARs with one and two lags tend to do slightly better than


the three-lag VAR, when agents are learning κ > 0. The interest rate forecast are better
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with the three-lag VAR, reflecting the fact that the interest rate depends on variables not


included in the one- and two-lag VARs.11


We now examine whether each forecast model is self-confirming, by which we mean that


agents residing in an economy where all other agents used model X for forecasting would


also choose model X to forecast. We do this by simulating the model assuming all agents


use a VAR with l lags and then compute the forecast errors of the alternative forecast


models. The off-diagonal blocks in Table 2 reports the results for the case of the optimal


control policy.


Under the OC policy, the VAR(3) is self-confirming in that the RMS forecast errors


are equal or larger for the alternative models. That said, the forecasting performance for


inflation and unemployment of the VAR(2) model is nearly indistinguishable from that of


the VAR(3) model, suggesting agents would on average be close to indifferent between the


two models. Interestingly, the VAR(2) model is close to self-confirming as well. If all agents


use the VAR(2) for forecasting, forecasts of the unemployment rate and inflation from the


VAR(3) and VAR(1) would on average be about as accurate or worse than those form the


VAR(2). The VAR(3) does slightly better at forecasting the interest rate. The VAR(1) does


not appear to be self-confirming. The other models do better at forecasting unemployment


and the interest rate, and only slightly worse at forecasting inflation when all agents use


the VAR(1) for forecasting.


Table 3 reports the forecast accuracy of the three VARs in model simulations with


constant and known natural rates under the OC policy assuming our benchmark value of


s = 1 and assuming that the central bank estimates natural rates using the optimal values


of the Kalman gains. This table reports only the forecast accuracy for the VAR that is


actually used in determining expectations in the model simulations (and corresponds to the


diagonal blocks of Table 2). The results are very similar to those for the case of constant
11The three-lag VAR encompasses the optimal control policy, so under that policy the interest rate forecasts


errors would be zero if it were not for the effects when the projection facility on excessive variability of interest
rates is invoked. We experimented with a version that imposes a much more relaxed restriction on interest
rate fluctuations. With this modification, the interest rate forecast errors were zero and the performance of
the rule was nearly the same as reported in the paper.
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natural rates. One difference is that the forecast errors for the short-term interest rate are


higher than with constant natural rates. The introduction of natural rate mismeasurement


introduces serially correlated monetary policy shocks to the model. These additional shocks


interfere with the ability of private agents’ to forecast future policy actions.


In summary, all three VAR models seem to be reasonable for forecasting; and on this


basis it is hard to dismiss any of them. The one exception is that interest rate forecasts


are generally better in the VAR with three lags, but the forecasting accuracy of the other


variables often suffers slightly in the VAR when agents are leaning. The VAR(3) and VAR(2)


are close to self-confirming; however, the VAR(1) is not. Overall, we view the VAR(1) as


the least plausible model.


8.2 Outcomes with Learning


We now examine the performance of the two representations of the optimal control policy


computed under the assumption of rational expectations in an environment where agents


are learning. We first consider the OC policy, then look at the OC-FT policy.


The behavior of the economy with learning under the OC policy is seen in the impulse


responses to inflation and unemployment shocks, shown in Figure 2. For the simulations


underlying this figure, we assume that private agents use the three-lag VAR with κ = 0.02


in forming expectations and that natural rates vary with s = 1. We assume that the central


bank knows the value of s and uses the optimal Kalman gains. In the model with learning,


the impulse response to a shock depends on the initial conditions. We therefore show the


distribution of IRFs taken over the unconditional joint distribution of the c and R matrices


and the endogenous variables in the model, as described in Orphanides and Williams (2007).


Note that these are not confidence bands per se, but only reflect the effects of differing initial


conditions on the response to a shock.


When agent learns, the OC policy does not effectively contain movements in inflation.


Under rational expectations, the optimal control policy is characterized by a relatively


modest rise in interest rates, but still manages to engineer a reduction of inflation through


a period of below-target inflation starting about a year after the onset of the shock. However,
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with learning, the range of responses of inflation to both shocks is very large, indicating


that this policy is effective at containing inflation only when agents’ expectations formation


is close to that implied by the rational expectations equilibrium.


Macroeconomic performance under the OC policy deteriorates with learning, with the


magnitude in fluctuations in all three objective variables increasing in the updating rate, κ.


Table 4 reports the results from these experiments assuming constant natural rates. The


upper part of the table reports results where agents use a three-lag VAR in forming forecasts.


The first row in this part of the table reports the results where agents do not learn, but


instead hold fixed the coefficients of their forecasting model. Because the three-lag VAR


nests the reduced-form of the rational expectations equilibrium, this case corresponds to


rational expectations.12


The effects of learning under the OC policy are quite large: In the benchmark case of


κ = 0.02, and agents use a three-lag VAR for forecasting, the central bank loss is double


what it would be absent learning. The main problem with the optimal control rule is that


it is designed to stabilize inflation in an a “perfect” world of rational expectations. Under


learning, the modest policy responses to outbreaks of inflation or deflation are insufficient


to keep inflation and inflation expectations under strict control. In effect, this policy is


designed to “fine tune” policy responses, an approach that breaks down when the assumed


structure of the economy turns out to be incorrect.


If agents use under-parameterized VARs for forecasting but do not learn, performance


is somewhat worse than under rational expectations. Evidently, in this model, the optimal


control policy works best if expectations are perfectly aligned with those implied by the


policy. Interestingly, with these VAR forecasting models, the deleterious effects of learning


are generally smaller in the case of the three-lag VAR. The parsimony of these forecasting


models may minimize random fluctuations in the VAR coefficients that tend to plague


larger-scale VARs.
12Note that the simulated moments reported here differ slightly from those computed analytically and


reported in the previous section. These differences reflect the fact that a simulation of 40,000 periods is not
sufficient to match unconditional moments exactly.
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The combination of natural rate mismeasurement and private sector learning causes


macroeconomic performance to deteriorate further under the OC policy. Table 5 reports


the results for the OC policy when private agents use a three-lag VAR for forecasting for the


three values of s. In each case, we assume that central bank knows the value of s and uses


the corresponding optimal Kalman gains. As noted above, natural rate mismeasurement by


the central bank introduces serially correlated monetary policy shocks to the model. These


shocks directly increase aggregate variability and by adding additional noise to private


forecasts have an indirect deleterious effect on macroeconomic performance.


The deterioration in macroeconomic performance due to natural rate mismeasurement


is much more pronounced if the central bank’s Kalman gains are too low. Table 6 reports


the outcomes for the three values of s under different assumptions regarding the central


bank’s estimate of s and thereby the Kalman gains. The costs of over-filtering the data are


smaller than those of under-filtering.


We now turn to the performance of the OC-FT policy with learning. With a forecast-


based representation of optimal policy, we face of choice of how the central bank makes


its forecast that it uses in setting policy. We consider two alternatives. In the first, we


assume that the central bank computes its forecast using the structural model assuming


that private agents do the same. We refer to this as“RE forecasts.” The left half of Table 7


reports the results for this case. The outcomes are nearly the same as for the OC policy.


This finding is not surprising. If the OC- and OC-FT policies yielded identical outcomes


under rational expectations, then if the central bank uses the RE equilibrium of the model


to generate forecasts, the outcomes will be identical regardless of how private agents form


expectations. This equivalence is due to the fact that the leads in the optimal policy equation


can be replaced with the forecasts implied by the reduced-form of the rational expectations


equilibrium. In practice, however, the ”OC” and ”OC-FT” policies yield equilibria under


RE that differ ever so slightly, so the outcomes under learning also differ somewhat.


In this model, forecast-targeting optimal control policies that use private-sector forecasts


perform very poorly even with constant and known natural rates. The results for this case
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are shown in the right-hand portion of Table 7. The outcomes under the FT-OC rule using


private sector forecasts are uniformly very poor under learning.13 Indeed, the results are


generally much worse than if the central bank used the forecasts implied by the structural


model assuming rational expectations. We tried alternative forecast-based specifications of


the optimal control policy and the results were qualitatively the same as those reported


for the OC-FT policy. We also experimented with using alternative VARs to generate the


central bank forecasts and again the results were qualitatively the same. In the following,


we focus on the OC policy in analyzing optimal control policies.


9 Simple Rules


So far, we have documented that macroeconomic outcomes deteriorate significantly when


the public is learning and the central bank follows a policy that would be optimal if expecta-


tions were rational. Of course, this finding alone does not demonstrate that optimal control


policies are inadvisable, unless it can be shown that other policies are more robust to alter-


native models of expectations formation. We therefore consider two alternative monetary


policies that have been recommended in the literature for being robust to various forms of


model uncertainty.


The first rule is a version of the forecast-based policy rule proposed by Levin, Wieland,


and Williams (2003). We refer to this as the “LWW” type of policy rule; according to this


rule, the short-term interest rate is determined as follows:


it = it−1 + θπ(π̄e
t+3 − π∗) + θu(ut−1 − û∗t−1), (14)


where π̄e
t+3 is the forecast of the four-quarter change in the price level and u∗ is the natural


rate of unemployment which we take to be constant and known. Because this policy rule


features characterizes policy in terms of the first-difference of the interest rate, it does not


rely on estimates of the natural rate of interest, as does the standard Taylor Rule (1993).
13Note that in the case of the VAR(3) with κ = 0.03, the projection facility is invoked very often. For


that case, we do not report the results. We modified the conditions for invoking the projection facility and
find simulations that do not invoke the projection facility often. Macroeconomic performance was very poor,
similar to the other results reported in the table.
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The second rule we consider is that proposed by Orphanides and Williams (2007) for


its robustness properties in the face of natural rate uncertainty.


it = it−1 + θπ(π̄e
t+3 − π∗) + θ∆u(ut−1 − ut−2). (15)


A key feature of this policy is the absence of any measures of natural rates in the determi-


nation of policy.


We choose the parameters of these simple rules to minimize the loss under rational expec-


tations and constant natural rates using a hill-climbing routine.14 The resulting optimized


LWW rule is given by:


it = it−1 + 1.05 (π̄e
t+3 − π∗)− 1.39 (ut−1 − û∗t ). (16)


The optimized OW rule is given by:


it = it−1 + 1.74 (π̄e
t+3 − π∗)− 1.19 (ut−1 − ut−2). (17)


In the following, we refer to these specific parameterizations of these two rules simply as the


“LWW” and “OW” rules. Table 8 reports the outcomes under the optimal control policy,


the LWW rule, and the OW rule under rational expectations and constant natural rates.


The outcomes under the OC and “OC-FT” policies are shown for comparison.


Under rational expectations and constant natural rates, the optimal control policies


yield a loss only modestly lower than that under the LWW rule, a result consistent with


the findings in Williams (2003) and Levin and Williams (2003) for other models. The small


differences in outcomes between an OC policy and the LWW rule is illustrated in Figure 3,


which plots the impulse responses to the two shocks for the OC policy, LWW rule, and


the OW rule, under the assumption of rational expectations. The impulse responses under


the LWW rule mimic very closely those of the optimal control policy. The only noticeable


difference is seen in the responses to the inflation shock. The LWW rule prescribes a sharper


initial rise in the nominal short-term interest rate and the unemployment rate than the
14If we allow for time-varying natural rates that are known by all agents, the optimized parameters of the


LWW and OW rules under rational expectations are nearly unchanged. The relative performance of the
different policies is also unaffected.
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optimal control policy. Despite this, the optimal control policy manages to bring inflation


down slightly more quickly owing the expectation of some overshooting of inflation past the


target under the optimal control policy.


The difference between the loss under the optimal control policy and the OW rule is


somewhat larger than for the LWW rule. In response to the inflation shock, the OW


policy acts aggressively to bring inflation back to target, at the cost of larger rise in the


unemployment rate. In response to the unemployment shock, this policy, which fails to


take into account the level of the unemployment rate, brings the unemployment rate back


to target too slowly, causing inflation to fall further below the target.


In contrast to the optimal control policy, the LWW and OW rules perform very well


with agents learn. Table 9 compares the performance of these rules to that of the OC policy


under learning with known constant natural rates. As in the case of the optimal control


policy, the central bank losses are generally larger with the simple rules under learning than


it would be absent learning, and the losses with learning are greatest when agents use the


three-lag VAR for forecasting. The good performance of the LWW rule is seen clearly in


the impulse responses to the shocks shown in Figure 4 for the case of the three-lag VAR


and κ = 0.02; the assumptions are the same as in Figure 2. For both shocks, the range


of responses of inflation is much narrower than for the optimal control policy. Thus, the


LWW rule consistently brings inflation back to target quickly following a shock to inflation


and contains the response of inflation to the unemployment shock. This tighter control of


inflation does not come at a cost of a wider range of unemployment responses. The range


of responses of the unemployment rate to the two shocks is comparable to those under the


optimal control policy. As in the case of the LWW rule, the OW rule effectively contains


the inflation responses to the two shocks, as seen in Figure 5 which shows the distribution


of IRFs under learning for the OW policy rule. Indeed, it does even better at controlling


inflation than the LWW rule, but at a cost of greater variability of the other target variables.


As a result, the LWW performs somewhat better in terms of the central bank loss than the


OW rule for all learning models that we consider.
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With constant natural rates, the LWW rule outperforms the optimal control policy


for learning rates of 0.01 and above, reflecting the much better stabilization of inflation


under the LWW rule. This result holds regardless of the version of the VAR used for


forecasting. The relative performance is seen in Figure 6, which shows the outcomes for


values of κ between 0 and 0.03 for the optimal control policy (the solid line), the LWW rule


(the dashed line), and the OW rule (the dashed-dotted line) when agents forecast using the


three-lag VAR. For very low values of κ, the LWW rule yields slightly higher variability of all


three objective variables than the optimal control policy. But, with higher values of κ, the


LWW rule responds more effectively to inflation and keeps inflation, and thereby inflation


expectations, well contained. It achieves this while allowing somewhat higher variability in


the unemployment rate and the change in the interest rate. The results for the OW rule


are similar and this rule outperforms the optimal control policy for learning rates of slightly


above 0.01 and higher.


The simple rules significantly outperform the OC policy when agents learn and natural


rates are mismeasured. Table 10 reports the results with time-varying natural rates. The


addition of time-varying natural rates does not change the qualitative results regarding the


lack of robustness of optimal control policies relative to the two simple rules that we study.


Rather, it amplifies the effects that we found from introducing learning. Figure 7 shows the


results for various values of κ for the case of s =1. Both the LWW and OW rules outperform


the OC policy for all values learning rates κ above 0.01. Similar results obtain in the case


of s = 2.


Finally, because these simple rules do not rely much or at all on natural rate estimates,


they are robust to misspecification in estimation of natural rates. Table 11 reports the


results for the LWW rule for different values of s allowing for the possibility that the


central bank’s estimate for s and thereby the Kalman gains is incorrect. The results for


the OW rule are shown for comparison. For the OW rule this misspecification is irrelevant


and the results are invariant to the central bank’s estimate of s. For the LWW rule, policy


does respond to the perceived natural rate of unemployment and performance generally
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deteriorates somewhat if the gain is misspecified. Indeed, in the case of s = 2 and the


central bank erroneously believes natural rates are constant, the OW rule outperforms the


LWW for values of κ of 0.02 and above. The performance of the OC policy (reported in


Table 6) is much worse than the two simple rules when the Kalman gains are incorrect,


reflecting the effects of the greater mismeasurement of the natural rates on policy and


thereby the economy.


10 Conclusion


Current techniques for determining optimal control and robust control monetary policies


rely on the assumption that the policymaker possess a very good reference model. This


assumption is not tenable given the large degree of model uncertainty. This paper has


focused on one facet of this uncertainty associated with expectations formation. The main


finding is that optimal control policies are not robust to this form of model uncertainty


in the estimated model that we study. Of course, our finding does not imply that there


does not exist a reference model for which the optimal control policy is robust to the


alternative models of expectations formation that we studied here, but it does provide a


general warning about the potential pitfalls of optimal control policies when the reference


model is misspecified. We also find that mismeaasurement of time-varying natural rates


of interest and unemployment exacerbate the problems associated with learning for the


optimal control policy. In contrast to optimal control policies, we find that simple rules


that have been found to be robust to other types of model uncertainty are also robust to


uncertainty about how expectations are formed and natural rate mismeasurement.


Until feasible methods are developed that allow for the derivation of optimal monetary


policy under a realistic range of model uncertainty including models with learning and nat-


ural rate mismeasurement, the alterative approach of “stress testing” parsimonious policy


rules across a wide set of models provides a practical and productive method of learning


which characteristics of monetary policies are robust and which are fragile.15 Of course,
15Gaspar, Smets and Vestin (2006) analyze optimal monetary policy in a very simple model with learning.


Because the model with learning is nonlinear, they apply dynamic programming techniques that are infeasible
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robustness of any policy cannot be “proved,” because the policy may perform poorly in an


alternative model that has yet be considered. As Carlson and Doyle (2002) warn “They are


robust, yet fragile, that is, robust to what is common or anticipated but potentially fragile


to what is rare or unanticipated.” Recognition of this, of course, implies the need for more


research into the robustness properties of all monetary policy strategies.


for the type of model studied in this paper.
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Table 1
Natural Rate Estimation


Optimal Unconditional
Kalman Gain Standard Deviations


s λr λu r∗ u∗ r∗ − r̂∗ u∗ − û∗


0 0 0 0 0 0 0
1 0.0027 0.0083 0.60 0.50 0.56 0.42
2 0.0086 0.0219 1.21 0.99 1.00 0.68


30







Table 2
Forecast Accuracy with Constant Natural Rates (RMSE)
(OC Policy with Optimal Kalman Gains; Constant Natural Rates)


Forecast Model
VAR(3) VAR(2) VAR(1)


κ π u i π u i π u i


True Forecasting Model VAR(3)
0.00 1.35 0.30 0.00 1.35 0.30 0.23 1.37 0.35 0.35
0.01 1.38 0.31 0.01 1.38 0.31 0.24 1.41 0.36 0.36
0.02 1.43 0.33 0.09 1.44 0.34 0.26 1.51 0.40 0.40
0.03 1.48 0.35 0.14 1.50 0.36 0.31 1.58 0.43 0.43


True Forecasting Model VAR(2)
0.00 1.35 0.30 0.00 1.35 0.30 0.23 1.36 0.35 0.43
0.01 1.38 0.31 0.01 1.37 0.31 0.24 1.38 0.36 0.44
0.02 1.41 0.32 0.05 1.39 0.32 0.25 1.44 0.38 0.46
0.03 1.45 0.33 0.09 1.42 0.33 0.26 1.49 0.41 0.48


True Forecasting Model VAR(1)
0.00 1.36 0.31 0.00 1.36 0.31 0.26 1.36 0.33 0.44
0.01 1.38 0.30 0.00 1.37 0.30 0.23 1.36 0.33 0.46
0.02 1.41 0.31 0.02 1.39 0.31 0.23 1.37 0.33 0.47
0.03 1.44 0.32 0.05 1.41 0.31 0.24 1.38 0.33 0.47


31







Table 3
Forecast Accuracy with Time-Varying Natural Rates (RMSE)


(OC Policy with Optimal Kalman Gains; s = 1)


Standard Deviation
κ π u i


VAR(3)
0.00 1.36 0.30 0.10
0.01 1.39 0.31 0.07
0.02 1.45 0.34 0.17
0.03 1.50 0.37 0.19


VAR(2)
0.00 1.36 0.30 0.31
0.01 1.38 0.31 0.28
0.02 1.40 0.32 0.28
0.03 1.42 0.33 0.30


VAR(1)
0.00 1.37 0.35 0.78
0.01 1.37 0.33 0.55
0.02 1.38 0.33 0.54
0.03 1.39 0.34 0.54
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Table 4
Performance of OC Policy with Constant and Known Natural Rates


Standard Deviation Loss
κ π u− u∗ ∆i L


VAR(3)
0.00 1.84 0.68 1.20 6.65
0.01 2.14 0.76 1.32 8.63
0.02 2.75 0.92 1.57 13.39
0.03 3.15 1.04 1.79 17.45


VAR(2)
0.00 1.83 0.68 1.22 6.71
0.01 2.06 0.74 1.29 8.14
0.02 2.42 0.86 1.47 10.93
0.03 2.76 0.97 1.66 14.12


VAR(1)
0.00 1.94 0.78 1.43 8.27
0.01 2.15 0.75 1.36 8.75
0.02 2.46 0.84 1.48 11.06
0.03 2.70 0.92 1.59 13.21
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Table 5
Performance of OC Policy with Time-Varying Natural Rates


(VAR(3) Forecasts; Optimal Kalman Gains)


Standard Deviation Loss
κ π u− u∗ ∆i L


s = 0
0.00 1.84 0.68 1.20 6.65
0.01 2.14 0.76 1.32 8.63
0.02 2.75 0.92 1.57 13.39
0.03 3.15 1.04 1.79 17.45
s = 1
0.00 1.85 0.81 1.24 7.56
0.01 2.27 0.88 1.34 10.07
0.02 2.98 1.07 1.66 16.27
0.03 3.38 1.20 1.86 20.61
s = 2
0.00 1.89 0.98 1.28 9.02
0.01 2.44 1.06 1.39 12.39
0.02 3.16 1.26 1.75 19.38
0.03 3.71 1.43 2.08 26.20
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Table 6
Central Bank Loss under OC Policy with Incorrect Kalman Gain


(VAR(3) Forecasts)


Central Bank Estimate of s
κ 0 1 2


True value: s = 0
0.00 6.65 6.93 7.53
0.01 8.63 8.27 9.33
0.02 13.39 13.58 12.33
0.03 17.45 17.35 16.62


True value: s = 1
0.00 7.56 7.56 8.14
0.01 12.95 10.07 9.74
0.02 19.28 16.27 13.33
0.03 22.61 20.61 17.94


True value: s = 2
0.00 10.10 8.98 9.02
0.01 28.51 19.09 12.39
0.02 34.35 27.24 19.38
0.03 37.30 31.74 26.20
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Table 7
Performance under Rational Expectations


Standard Deviation Loss
Policy π u− u∗ ∆i L
OC 1.83 0.67 1.20 6.59
OC-FT 1.83 0.67 1.20 6.59
LWW rule 1.87 0.69 1.23 6.93
OW rule 1.83 0.73 1.39 7.40
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Table 8
Performance of OC-FT Policy under Learning with Constant Natural Rates


CB: RE Forecasts CB: VAR(3) Forecasts
Standard Deviation Loss Standard Deviation Loss


κ π u− u∗ ∆i L π u− u∗ ∆i L
VAR(3)


0.00 1.84 0.68 1.21 6.66 1.84 0.68 1.21 6.66
0.01 2.23 0.76 1.33 9.04 4.33 1.17 2.71 31.54
0.02 2.86 0.92 1.59 14.10 5.43 1.65 4.40 59.67
0.03 3.26 1.04 1.79 18.09 * * * *


VAR(2)
0.00 1.83 0.68 1.23 6.74 1.86 0.70 2.63 12.34
0.01 2.10 0.75 1.30 8.32 3.98 1.01 2.32 25.25
0.02 2.43 0.84 1.45 10.84 5.04 1.32 3.31 43.37
0.03 2.81 0.95 1.63 14.13 5.32 1.53 4.08 54.33


VAR(1)
0.00 1.95 0.79 1.44 8.38 3.57 2.42 10.67 149.88
0.01 2.17 0.75 1.35 8.78 4.74 1.84 4.54 56.65
0.02 2.44 0.82 1.44 10.72 5.28 1.97 4.81 66.53
0.03 2.75 0.92 1.59 13.49 5.55 1.96 4.84 69.65


Notes: The symbol “*” indicates that the projection facility is invoked more than 10 percent
of the simulation periods.
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Table 9
Performance of Simple Rules under Learning with Constant Natural Rates


OC LWW Rule OW Rule
Loss Standard Deviation Loss Standard Deviation Loss


κ L π u− u∗ ∆i L π u− u∗ ∆i L
VAR(3)


0.00 6.65 1.88 0.69 1.24 6.97 1.84 0.73 1.39 7.43
0.01 8.63 1.93 0.80 1.37 8.17 1.90 0.86 1.56 8.97
0.02 13.39 1.99 0.91 1.58 9.78 1.96 0.97 1.75 10.66
0.03 17.76 2.08 1.04 1.79 11.82 2.05 1.09 1.98 12.87


VAR(2)
0.00 6.71 1.88 0.69 1.24 6.97 1.84 0.73 1.39 7.45
0.01 8.14 1.93 0.79 1.35 8.01 1.89 0.82 1.54 8.63
0.02 10.93 1.97 0.89 1.47 9.21 1.94 0.93 1.69 10.08
0.03 14.12 2.04 0.98 1.65 10.75 2.01 1.03 1.88 11.81


VAR(1)
0.00 8.27 1.89 0.73 1.36 7.56 1.84 0.76 1.41 7.66
0.01 8.75 1.87 0.76 1.28 7.46 1.83 0.80 1.49 8.11
0.02 11.06 1.91 0.85 1.42 8.53 1.89 0.91 1.68 9.72
0.03 13.21 1.96 0.95 1.58 9.95 1.97 1.04 1.87 11.68
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Table 10
Performance of Simple Rules under Learning with TV Natural Rates


(VAR(3) Forecasts; Optimal Kalman Gains)


OC LWW Rule OW Rule
Loss Standard Deviation Loss Standard Deviation Loss


κ L π u− u∗ ∆i L π u− u∗ ∆i L
s=0


0.00 6.65 1.88 0.69 1.24 6.97 1.84 0.73 1.39 7.43
0.01 8.63 1.93 0.80 1.37 8.17 1.90 0.86 1.56 8.97
0.02 13.39 1.99 0.91 1.58 9.78 1.96 0.97 1.75 10.66
0.03 17.45 2.09 1.04 1.78 11.83 2.05 1.09 1.98 12.87


s=1
0.00 7.56 1.90 0.82 1.30 8.02 1.86 0.84 1.40 8.23
0.01 10.07 1.94 0.92 1.41 9.15 1.93 0.95 1.60 10.16
0.02 16.27 1.99 1.02 1.57 10.62 1.99 1.08 1.78 11.84
0.03 20.61 2.08 1.15 1.79 12.80 2.09 1.18 2.03 14.03


s=2
0.00 9.02 1.92 1.01 1.43 9.85 1.95 1.26 1.41 12.15
0.01 12.39 1.95 1.10 1.47 10.85 1.99 1.17 1.65 12.16
0.02 19.38 2.00 1.18 1.62 12.18 2.06 1.28 1.86 14.27
0.03 26.20 2.07 1.27 1.81 13.97 2.13 1.36 2.07 16.21
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Table 11
Central Bank Loss with Incorrect Kalman Gain


(VAR(3) Forecasts)


LWW Rule OW Rule
Central Bank Estimate of s


κ 0 1 2
True value: s = 0


0.00 6.97 7.11 7.46 7.43
0.01 8.17 8.08 8.17 8.97
0.02 9.78 9.62 9.61 10.66
0.03 11.83 11.37 11.23 12.87


True value: s = 1
0.00 8.03 8.02 8.75 8.23
0.01 9.66 9.15 9.00 10.16
0.02 10.98 10.62 10.37 11.84
0.03 13.53 12.80 11.97 14.03


True value: s = 2
0.00 11.12 9.78 9.85 12.15
0.01 13.19 11.56 10.85 12.16
0.02 14.65 13.07 12.18 14.27
0.03 17.18 15.29 13.97 16.21
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Figure 1


Impulse Responses under Rational Expectations
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Notes: The first column of charts plots the impulse responses to a one standard deviation
innovation to the inflation shock, eπ. The second column plots the impulse responses to a
one standard deviation innovation to the unemployment shock, ev.
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Figure 2


OC Policy: Impulse Responses with Learning (κ = 0.02)
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Notes: The left columns shows the responses to an inflation shock; the right column shows
those to an unemployment shock. In each panel, the dotted line plots the impulse responses
under rational expectations. The solid lines show the median responses under learning. The
dashed lines show the 70 percent bands of the responses with learning; the dashed-dotted
lines show the 90 percent bands. For these simulations, we assume agents use the three-lag
VAR to form expectations with κ = 0.02 and that natural rates and known and constant.
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Figure 3


Impulse Responses under Rational Expectations
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Notes: The first column of charts plots the impulse responses to a one standard deviation
innovation to the inflation shock, eπ. The second column plots the impulse responses to a
one standard deviation innovation to the unemployment shock, ev.
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Figure 4


LWW Rule: Impulse Responses with Learning (κ = 0.02)
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Notes: The left columns shows the responses to an inflation shock; the right column shows
those to an unemployment shock. In each panel, the dotted line plots the impulse responses
under rational expectations. The solid lines show the median responses under learning. The
dashed lines show the 70 percent bands of the responses with learning; the dashed-dotted
lines show the 90 percent bands. For these simulations, we assume agents use the three-lag
VAR to form expectations with κ = 0.02 and that natural rates and known and constant.
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Figure 5


OW Rule: Impulse Responses with Learning (κ = 0.02)
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Notes: The left columns shows the responses to an inflation shock; the right column shows
those to an unemployment shock. In each panel, the dotted line plots the impulse responses
under rational expectations. The solid lines show the median responses under learning. The
dashed lines show the 70 percent bands of the responses with learning; the dashed-dotted
lines show the 90 percent bands. For these simulations, we assume agents use the three-lag
VAR to form expectations with κ = 0.02 and that natural rates and known and constant.
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Figure 6


Robustness to Learning: Constant Natural Rates
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Notes: In each panel, each line plots the asymptotic standard deviation or expected loss
that obtain under the specified monetary policy for alternative learning rates, κ, indicated
on the horizontal axis. Natural rates are assumed to be constant and known.
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Figure 7


Robustness to Learning: Time-varying Natural Rates (s=1)
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Notes: In each panel, each line plots the asymptotic standard deviation or expected loss
that obtain under the specified monetary policy for alternative learning rates, κ, indicated
on the horizontal axis.
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1 Introduction


In previous work, Svensson and Williams [16] and [17], we have developed methods to study optimal


policy in Markov jump-linear-quadratic (MJLQ) models with forward-looking variables: models


with conditionally linear dynamics and conditionally quadratic preferences, where the matrices


in both preferences and dynamics are random. In particular, each model has multiple “modes,”


a finite collection of different possible values for the matrices, whose evolution is governed by a


finite-state Markov chain. In our previous work, we have discussed how these modes could be


structured to capture many different types of uncertainty relevant for policymakers. Here we put


those suggestions into practice. First, we show that an MJLQ model can be derived as a mode-


dependent linear-quadratic approximation of an underlying nonlinear model. Then, we apply our


methods to a simple empirical mode-dependent New Keynesian model of the U.S. economy, a


variant of a model by Lindé [11].


In a first paper, Svensson and Williams [16], we studied optimal policy design in MJLQ models


when policymakers can or cannot observe the current mode, but we abstracted from any learning


and inference about the current mode. Although in many cases the optimal policy under no learn-


ing (NL) is not a normatively desirable policy, it serves as a useful benchmark for our later policy


analyses. In a second paper, Svensson and Williams [17], we focused on learning and inference in


the more relevant situation, particularly for the model-uncertainty applications which interest us,


in which the modes are not directly observable. Thus, decision makers must filter their observations


to make inferences about the current mode. As in most Bayesian learning problems, the optimal


policy thus typically includes an experimentation component reflecting the endogeneity of informa-


tion. This class of problems has a long history in economics, and it is well-known that solutions are


difficult to obtain. We developed algorithms to solve numerically for the optimal policy.1 Due to


the curse of dimensionality, the Bayesian optimal policy (BOP) is only feasible in relatively small


models. Confronted with these difficulties, we also considered adaptive optimal policy (AOP).2 In


this case, the policymaker in each period does update the probability distribution of the current
1 In addition to the classic literature (on such problems as a monopolist learning its demand curve), Wieland


[19]-[20] and Beck and Wieland [1] have recently examined Bayesian optimal policy and optimal experimentation in
a context similar to ours but without forward-looking variables. Tesfaselassie, Schaling, and Eijffinger [18] examine
passive and active learning in a simple model with a forward-looking element in the form of a long interest rate in
the aggregate-demand equation. Ellison and Valla [8] and Cogley, Colacito, and Sargent [4] study situations like
ours but where the expectational component is as in the Lucas-supply curve (Et−1πt, for example) rather than our
forward-looking case (Etπt+1, for example). More closely related to our present paper, Ellison [7] analyzes active and
passive learning in a New Keynesian model with uncertainty about the slope of the Phillips curve.


2 What we call optimal policy under no learning, adaptive optimal policy, and Bayesian optimal policy has in the
literature also been referred to as myopia, passive learning, and active learning, respectively.







mode in a Bayesian way, but the optimal policy is computed each period under the assumption that


the policymaker will not learn in the future from observations. In our setting, the AOP is signifi-


cantly easier to compute, and in many cases provides a good approximation to the BOP. Moreover,


the AOP analysis is of some interest in its own right, as it is closely related to specifications of


adaptive learning which have been widely studied in macroeconomics (see Evans and Honkapohja


[9] for an overview). Further, the AOP specification rules out the experimentation which some may


view as objectionable in a policy context.3


In this paper, we apply our methodology to study optimal monetary-policy design under uncer-


tainty in dynamic stochastic general equilibrium (DSGE) models. We begin by summarizing the


main findings from our previous work, leading to implementable algorithms for analyzing policy in


MJLQ models. We then discuss and illustrate how uncertainty in a nonlinear DSGE model can


be approximated by a MJLQ model. Essentially, simple variants of the workhorse log-linearization


methods lead to MJLQ approximations. We then turn to analyzing optimal policy in DSGE models.


To quantify the gains from experimentation we focus on a small empirical benchmark New Keyne-


sian model. In this model we compare and contrast optimal policies under no learning, AOP, and


BOP. We analyze whether learning is beneficial—it is not always so, a fact which at least partially


reflects our assumption of symmetric information between the policymakers and the public—and


then quantify the additional gains from experimentation.4


Since we typically find that the gains from experimentation are small, we focus in the rest of


the paper on our adaptive optimal policy which shuts down the experimentation channel. As the


AOP is much easier to compute, this allows us to work with much larger and more empirically


relevant policy models. In the latter part of the paper, we analyze one such model, an estimated


forward-looking model which is a mode-dependent variant of Lindé [11]. There, we focus on how
3 In addition, AOP is useful for technical reasons as it gives us a good starting point for our more intensive


numerical calculations in the BOP case.
4 In addition to our own previous work, MJLQ models have been widely studied in the control-theory literature


for the special case when the model modes are observable and there are no forward-looking variables (see Costa,
Fragoso, and Marques [5] (henceforth CFM) and the references therein).(do Val and Başar [6] provide an application
of an adaptive-control MJLQ problem in economics.) More recently, Zampolli [23] has used such an MJLQ model
to examine monetary policy under shifts between regimes with and without an asset-market bubble. Blake and
Zampolli [3] provide an extension of the MJLQ model with observable modes to include forward-looking variables
and present an algorithm for the solution of an equilibrium resulting from optimization under discretion. Svensson
and Williams [16] provide a more general extension of the MJLQ framework with forward-looking variables and
present algorithms for the solution of an equilibrium resulting from optimization under commitment in a timeless
perspective as well as arbitrary time-varying or time-invariant policy rules, using the recursive saddlepoint method
of Marcet and Marimon [12]. They also provide two concrete examples: an estimated backward-looking model (a
three-mode variant of Rudebusch and Svensson [14]) and an estimated forward-looking model (a three-mode variant
of Lindé [11]). Svensson and Williams [16] also extend the MJLQ framework to the more realistic case of unobservable
modes, although without introducing learning and inference about the probability distribution of modes. Svensson
and Williams [17] focus on learning and experimentation in the MJLQ framework.
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optimal policy should respond to uncertainty about the degree to which agents are forward-looking,


and we show that there are substantial gains from learning in this framework.


The paper is organized as follows: Section 2 presents the MJLQ framework and summarizes


our earlier work. Section 3 demonstrates how an MJLQ model can be derived as a linear-quadratic


approximation of an underlying nonlinear mode-dependent model. Section 4 presents our analysis


of learning and experimentation in a simple benchmark New Keynesian model, whereas section 5


presents our analysis in an estimated empirical New Keynesian model. Section 6 presents some


conclusions and suggestions for further work.


2 MJLQ Analysis of Optimal Policy


This section summarizes our earlier work, Svensson and Williams [16] and [17].


2.1 An MJLQ model


We consider an MJLQ model of an economy with forward-looking variables. The economy has


a private sector and a policymaker. We let Xt denote an nX -vector of predetermined variables


in period t, xt an nx-vector of forward-looking variables, and it an ni-vector of (policymaker)


instruments (control variables).5 We let model uncertainty be represented by nj possible modes


and let jt ∈ Nj ≡ {1, 2, ..., nj} denote the mode in period t. The model of the economy can then


be written


Xt+1 = A11jt+1Xt + A12jt+1xt + B1jt+1it + C1jt+1εt+1, (2.1)


EtHjt+1xt+1 = A21jtXt + A22jtxt + B2jtit + C2jtεt, (2.2)


where εt is a multivariate normally distributed random i.i.d. nε-vector of shocks with mean zero


and contemporaneous covariance matrix Inε . The matrices A11j , A12j , ..., C2j have the appropriate


dimensions and depend on the mode j. As a structural model here is simply a collection of matrices,


each mode can represent a different model of the economy. Thus, uncertainty about the prevailing


mode is model uncertainty.6


Note that the matrices on the right side of (2.1) depend on the mode jt+1 in period t + 1,


whereas the matrices on the right side of (2.2) depend on the mode jt in period t. Equation (2.1)
5 The first component of Xt may be unity, in order to allow for mode-dependent intercepts in the model equations.
6 See also Svensson and Williams [16], where we show how many different types of uncertainty can be mapped


into our MJLQ framework.
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then determines the predetermined variables in period t+1 as a function of the mode and shocks in


period t + 1 and the predetermined variables, forward-looking variables, and instruments in period


t. Equation (2.2) determines the forward-looking variables in period t as a function of the mode and


shocks in period t, the expectations in period t of next period’s mode and forward-looking variables,


and the predetermined variables and instruments in period t. The matrix A22j is non-singular for


each j ∈ Nj .


The mode jt follows a Markov process with the transition matrix P ≡ [Pjk].7 The shocks εt


are mean zero and i.i.d. with probability density ϕ, and without loss of generality we assume that


εt is independent jt.8 We also assume that C1jεt and C2kεt are independent for all j, k ∈ Nj .


These shocks, along with the modes, are the driving forces in the model. They are not directly


observed. For technical reasons, it is convenient but not necessary that they are independent. We


let pt = (p1t, ..., pnjt)′ denote the true probability distribution of jt in period t. We let pt+τ |t denote


the policymaker’s and private sector’s estimate in the beginning of period t of the probability


distribution in period t + τ . The prediction equation for the probability distribution is


pt+1|t = P ′pt|t. (2.3)


We let the operator Et[·] in the expression EtHjt+1xt+1 on the left side of (2.2) denote expec-


tations in period t conditional on policymaker and private-sector information in the beginning of


period t, including Xt, it, and pt|t, but excluding jt and εt. Thus, the maintained assumption is


symmetric information between the policymaker and the (aggregate) private sector. Since forward-


looking variables will be allowed to depend on jt, parts of the private sector, but not the aggregate


private sector, may be able to observe jt and parts of εt. Note that although we focus on the


determination of the optimal policy instrument it, our results also show how private sector choices


as embodied in xt are affected by uncertainty and learning. The precise informational assumptions


and the determination of pt|t will be specified below.


We let the policymaker’s intertemporal loss function in period t be


Et


∞∑


τ=0


δτL(Xt+τ , xt+τ , it+τ , jt+τ ) (2.4)


7 Obvious special cases are P = Inj , when the modes are completely persistent, and Pj. = p̄′ (j ∈ Nj), when the
modes are serially i.i.d. with probability distribution p̄.


8 Because mode-dependent intercepts (as well as mode-dependent standard deviations) are allowed in the model,
we can still incorporate additive mode-dependent shocks.
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where δ is a discount factor satisfying 0 < δ < 1, and the period loss, L(Xt, xt, it, jt), satisfies


L(Xt, xt, it, jt) ≡




Xt


xt


it




′


Wjt






Xt


xt


it



 , (2.5)


where the matrix Wj (j ∈ Nj) is positive semidefinite. We assume that the policymaker optimizes


under commitment in a timeless perspective. As explained below, we will then add the term


Ξt−1
1
δ
EtHjtxt (2.6)


to the intertemporal loss function in period t. As we shall see below, the nx-vector Ξt−1 is the


vector of Lagrange multipliers for equation (2.2) from the optimization problem in period t − 1.


For the special case when there are no forward-looking variables (nx = 0), the model consists of


(2.1) only, without the term A12jt+1xt; the period loss function depends on Xt, it, and jt only; and


there is no role for the Lagrange multipliers Ξt−1 or the term (2.6).


We will distinguish three cases: (1) Optimal policy when there is no learning (NL), (2) Adaptive


optimal policy (AOP), and (3) Bayesian optimal policy (BOP). By NL, we refer to a situation when


the policymaker and the aggregate private sector have a probability distribution pt|t over the modes


in period t and updates the probability distribution in future periods using the transition matrix


only, so the updating equation is


pt+1|t+1 = P ′pt|t. (2.7)


That is, the policymaker and the private sector do not use observations of the variables in the


economy to update the probability distribution. The policymaker then determines optimal policy


in period t conditional on pt|t and (2.7). This is a variant of a case examined in Svensson and


Williams [16].


By AOP, we refer to a situation when the policymaker in period t determines optimal policy


as in the NL case, but then uses observations of the realization of the variables in the economy to


update its probability distribution according to Bayes Theorem. In this case, the instruments will


generally have an effect on the updating of future probability distributions, and through this channel


separately affect the intertemporal loss. However, the policymaker does not exploit that channel in


determining optimal policy. That is, the policymaker does not do any conscious experimentation.


By BOP, we refer to a situation when the policymaker acknowledges that the current instruments


will affect future inference and updating of the probability distribution, and calculates optimal


policy taking this separate channel into account. Therefore, BOP includes optimal experimentation,
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where for instance the policymaker may pursue policy that increases losses in the short run but


improves the inference of the probability distribution and therefore lowers losses in the longer run.


2.2 Optimal policy with no learning


We first consider the NL case. Svensson and Williams [16] derive the equilibrium under commit-


ment in a timeless perspective for the case when Xt, xt, and it are observable in period t, jt is


unobservable, and the updating equation for pt|t is given by (2.7). Observations of Xt, xt, and it


are then not used to update pt|t.


It will be useful to replace equation (2.2) by the two equivalent equations,


EtHjt+1xt+1 = zt, (2.8)


0 = A21jtXt + A22jtxt − zt + B2jtit + C2jtεt, (2.9)


where we introduce the nx-vector of additional forward-looking variables, zt. Introducing this vector


is a practical way of keeping track of the expectations term on the left side of (2.2). Furthermore,


it will be practical to use (2.9) and solve xt as a function of Xt, zt, it, jt, and εt


xt = x̃(Xt, zt, it, jt, εt) ≡ A−1
22jt


(zt −A21jtXt −B2jtit − C2jtεt). (2.10)


We note that, for given jt, this function is linear in Xt, zt, it, and εt.


In order to solve for the optimal decisions, we use the recursive saddlepoint method (see Marcet


and Marimon [12], Svensson and Williams [16], and Svensson [15] for details of the recursive sad-


dlepoint method). Thus, we introduce Lagrange multipliers for each forward looking equation, the


lagged values of which become state variables and reflecting costs of commitment, while the current


values become control variables. The dual period loss function can be written


EtL̃(X̃t, zt, it, γt, jt, εt) ≡
∑


j


pjt|t


∫
L̃(X̃t, zt, it, γt, j, εt)ϕ(εt)dεt,


where X̃t ≡ (X ′
t,Ξ


′
t−1)


′ is the (nX + nx)-vector of extended predetermined variables (that is,


including the nx-vector Ξt−1), γt is an nx-vector of Lagrange multipliers, and ϕ(·) denotes a generic


probability density function (for εt, the standard normal density function), and where


L̃(X̃t, zt, it, γt, jt, εt) ≡ L[Xt, x̃(Xt, zt, it, jt, εt), it, jt]− γ′tzt + Ξ′t−1


1
δ
Hjt x̃(Xt, zt, it, jt, εt). (2.11)


As discussed in Svensson and Williams [16], the failure of the law of iterated expectations


leads us to introduce the collection of value functions V̂ (st, j) which condition on the mode, while
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the value function Ṽ (st) averages over these and represents the solution of the dual optimization


problem. The somewhat unusual Bellman equation for the dual problem can be written


Ṽ (st) = EtV̂ (st, jt) ≡
∑


j
pjt|tV̂ (st, j)


= max
γt


min
(zt,it)


Et{L̃(X̃t, zt, it, γt, jt, εt) + δV̂ [g(st, zt, it, γt, jt, εt, jt+1, εt+1), jt+1]}


≡ max
γt


min
(zt,it)


∑
j
pjt|t


∫ [
L̃(X̃t, zt, it, γt, j, εt)
+ δ


∑
k PjkV̂ [g(st, zt, it, γt, j, εt, k, εt+1), k]


]
ϕ(εt)ϕ(εt+1)dεtdεt+1.


(2.12)


where st ≡ (X̃ ′
t, p


′
t|t)


′ denotes the perceived state of the economy (it includes the perceived proba-


bility distribution, pt|t, but not the true mode) and (st, jt) denotes the true state of the economy


(it includes the true mode of the economy). As we discuss in more detail below, it is necessary


to include the mode jt in the state vector because the beliefs do not satisfy the law of iterated


expectations. In the BOP case beliefs do satisfy this property, so the state vector is simply st. Also


note that in the Bellman equation we require that all the choice variables respect the information


constraints, and thus depend on the perceived state st but not the mode j directly.


The optimization is subject to the transition equation for Xt,


Xt+1 = A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, jt, εt) + B1jt+1it + C1jt+1εt+1, (2.13)


where we have substituted x̃(Xt, zt, it, jt, εt) for xt; the new dual transition equation for Ξt,


Ξt = γt, (2.14)


and the transition equation (2.7) for pt|t. Combining equations, we have the transition for st,


st+1 ≡




Xt+1


Ξt


pt+1|t+1



 = g(st, zt, it, γt, jt, εt, jt+1, εt+1)


≡




A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, j, εt) + B1jt+1it + C1jt+1εt+1


γt


P ′pt|t



 . (2.15)


It is straightforward to see that the solution of the dual optimization problem (2.12) is linear


in X̃t for given pt|t, jt,




zt


it
γt



 =






z(st)
i(st)
γ(st)



 = F (pt|t)X̃t ≡






Fz(pt|t)
Fi(pt|t)
Fγ(pt|t)



 X̃t, (2.16)


xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ FxX̃(pt|t, jt)X̃t + Fxε(pt|t, jt)εt. (2.17)
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This solution is also the solution to the original primal optimization problem. We note that xt is


linear in εt for given pt|t and jt. The equilibrium transition equation is then given by


st+1 = ḡ(st, jt, εt, jt+1, εt+1) ≡ g[st, z(st), i(st), γ(st), jt, εt, jt+1, εt+1].


As can be easily verified, the (unconditional) dual value function Ṽ (st) is quadratic in X̃t for


given pt|t, taking the form


Ṽ (st) ≡ X̃ ′
tṼX̃X̃(pt|t)X̃t + w(pt|t).


The conditional dual value function V̂ (st, jt) gives the dual intertemporal loss conditional on the


true state of the economy, (st, jt). It follows that this function satisfies


V̂ (st, j) ≡
∫ [


L̃(X̃t, z(st), i(st), γ(st), j, εt)
+ δ


∑
k PjkV̂ [ḡ(st, j, εt, k, εt+1), k]


]
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj).


The function V̂ (st, jt) is also quadratic in X̃t for given pt|t and jt,


V̂ (st, jt) ≡ X̃ ′
tV̂X̃X̃(pt|t, jt)X̃t + ŵ(pt|t, jt).


It follows that we have


ṼX̃X̃(pt|t) ≡
∑


j
pjt|tV̂X̃X̃(pt|t, j), w(pt|t) ≡


∑
j
pjt|tŵ(pt|t, j).


The value function for the primal problem, with the period loss function EtL(Xt, xt, it, jt) rather


than EtL̃(X̃t, zt, it, γt, jt, εt), satisfies


V (st) ≡ Ṽ (st)− Ξ′t−1


1
δ


∑


j


pjt|tHj


∫
x(st, j, εt)ϕ(εt)dεt


= Ṽ (st)− Ξ′t−1


1
δ


∑


j


pjt|tHjx(st, j, 0) (2.18)


(where the second equality follows since x(st, jt, εt) is linear in εt for given st and jt). It is quadratic


in X̃t for given pt|t,


V (st) ≡ X̃ ′
tVX̃X̃(pt|t)X̃t + w(pt|t)


(the scalar w(pt|t) in the primal value function is obviously identical to that in the dual value


function). This is the value function conditional on X̃t and pt|t after Xt has been observed but


before xt has been observed, taking into account that jt and εt are not observed. Hence, the second


term on the right side of (2.18) contains the expectation of Hjtxt conditional on that information.9


9 To be precise, the observation of Xt, which depends on C1jtεt, allows some inference of εt, εt|t. xt will depend on
jt and on εt, but on εt only through C2jtεt. By assumption C1jεt and C2kεt are independent. Hence, any observation
of Xt and C1jεt does not convey any information about C2jεt, so EtC2jtεt = 0.
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Svensson and Williams [16] and [17] present algorithms to compute the solution and the primal


and dual value functions for the no-learning case. For future reference, we note that the value


function for the primal problem also satisfies


V (st) ≡
∑


j
pjt|tV̌ (st, j),


where the conditional value function, V̌ (st, jt), satisfies


V̌ (st, j) =
∫ {


L[Xt, x(st, j, εt), i(st), j]
+ δ


∑
k PjkV̌ [ḡ(st, j, εt, k, εt+1), k]


}
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (2.19)


2.3 Adaptive optimal policy


Consider now the case of adaptive optimal policy, where the policymaker uses the same policy


function as in the no-learning case, but each period updates the probabilities that this policy is


conditioned on. This case is thus simple to implement recursively, as we have already discussed how


to solve for the optimal decisions and below we show how to update probabilities. However, the


ex-ante evaluation of expected loss is more complex, as we show below. In particular, we assume


that C2jt 6≡ 0 and that both εt and jt are unobservable. The estimate pt|t is the result of Bayesian


updating, using all information available, but the optimal policy in period t is computed under


the perceived updating equation (2.7). That is, the fact that the policy choice will affect future


pt+τ |t+τ and that future expected loss will change when pt+τ |t+τ changes is disregarded. Under the


assumption that the expectations on the left side of (2.2) are conditional on (2.7), the variables zt,


it, γt, and xt in period t are still determined by (2.16) and (2.17).


In order to determine the updating equation for pt|t, we specify an explicit sequence of infor-


mation revelation as follows, in no less than nine steps. The timing assumptions are necessary in


order to spell out the appropriate conditioning for decisions and updating of beliefs.


First, the policymaker and the private sector enters period t with the prior pt|t−1. They know


Xt−1, xt−1 = x(st−1, jt−1, εt−1), zt−1 = z(st−1), it−1 = i(st−1), and Ξt−1 = γ(st−1) from the


previous period.


Second, in the beginning of period t, the mode jt and the vector of shocks εt are realized. Then


the vector of predetermined variables Xt is realized according to (2.1).


Third, the policymaker and the private sector observe Xt. They then know X̃t ≡ (X ′
t,Ξ


′
t−1)


′.


They do not observe jt or εt


Fourth, the policymaker and the private sector update the prior pt|t−1 to the posterior pt|t
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according to Bayes Theorem and the updating equation


pjt|t =
ϕ(Xt|jt = j,Xt−1, xt−1, it−1, pt|t−1)


ϕ(Xt|Xt−1, xt−1, it−1, pt|t−1)
pjt|t−1 (j ∈ Nj), (2.20)


where again ϕ(·) denotes a generic density function.10 Then the policymaker and the private sector


know st ≡ (X̃ ′
t, p


′
t|t)


′.


Fifth, the policymaker solves the dual optimization problem, determines it = i(st), and imple-


ments/announces the instrument setting it.


Sixth, the private-sector (and policymaker) expectations,


zt = EtHjt+1xt+1 ≡ E[Hjt+1xt+1 | st],


are formed. In equilibrium, these expectations will be determined by (2.16). In order to understand


their determination better, we look at this in some detail.


These expectations are by assumption formed before xt is observed. The private sector and the


policymaker know that xt will in equilibrium be determined in the next step according to (2.17).


Hence, they can form expectations of the soon-to-be determined xt conditional on jt = j,11


xjt|t = x(st, j, 0). (2.21)


The private sector and the policymaker can also infer Ξt from


Ξt = γ(st). (2.22)


This allows the private sector and the policymaker to form the expectations


zt = z(st) = Et[Hjt+1xt+1 | st] =
∑


j,k
Pjkpjt|tHkxk,t+1|jt, (2.23)


where


xk,t+1|jt =
∫


x










A11kXt + A12kx(st, j, εt) + B1ki(st)
Ξt


P ′pt|t



 , k, εt+1



ϕ(εt)ϕ(εt+1)dεtdεt+1


= x










A11kXt + A12kx(st, j, 0) + B1ki(st)
Ξt


P ′pt|t



 , k, 0



 ,


10 The policymaker and private sector can also estimate the shocks εt|t as εt|t =
P


j pjt|tεjt|t, where εjt|t ≡
Xt −A11jXt−1 −A12jxt−1 −B1jit−1 (j ∈ Nj). However, because of the assumed independence of C1jεt and C2kεt,
j, k ∈ Nj , we do not need to keep track of εjt|t.


11 Note that 0 instead of εjt|t enters above. This is because the inference εjt|t above is inference about C1jεt, whereas
xt depends on εt through C2jεt. Since we assume that C1jεt and C2jεt are independent, there is no inference of C2jεt


from observing Xt. Hence, EtC2jtεt ≡ 0. Because of the linearity of xt in εt, the integration of xt over εt results in
x(st, jt, 0t).
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where we have exploited the linearity of xt = x(st, jt, εt) and xt+1 = x(st+1, jt+1, εt+1) in εt and


εt+1. Note that zt is, under AOP, formed conditional on the belief that the probability distribution


in period t + 1 will be given by pt+1|t+1 = P ′pt|t, not by the true updating equation that we are


about to specify.


Seventh, after the expectations zt have been formed, xt is determined as a function of Xt, zt,


it, jt, and εt by (2.10).


Eight, the policymaker and the private sector then use the observed xt to update pt|t to the new


posterior p+
t|t according to Bayes Theorem, via the updating equation


p+
jt|t =


ϕ(xt|jt = j, Xt, zt, it, pt|t)
ϕ(xt|Xt, zt, it, pt|t)


pjt|t (j ∈ Nj). (2.24)


Ninth, the policymaker and the private sector then leave period t and enter period t + 1 with


the prior pt+1|t given by the prediction equation


pt+1|t = P ′p+
t|t. (2.25)


In the beginning of period t + 1, the mode jt+1 and the vector of shocks εt+1 are realized, and


Xt+1 is determined by (2.1) and observed by the policymaker and private sector. The sequence of


the nine steps above then repeats itself. For more detail on the explicit densities in the updating


equations (2.20) and (2.24) see Svensson and Williams [17].


The transition equation for pt+1|t+1 can be written


pt+1|t+1 = Q(st, zt, it, jt, εt, jt+1, εt+1), (2.26)


where Q(st, zt, it, jt, εt, jt+1, εt+1) is defined by the combination of (2.20) for period t+1 with (2.13)


and (2.25). The equilibrium transition equation for the full state vector is then given by


st+1 ≡




Xt+1


Ξt


pt+1|t+1



 = ḡ(st, jt, εt, jt+1, εt+1)


≡




A11jt+1Xt + A12jt+1x(st, jt, εt) + B1jt+1i(st) + C1jt+1εt+1


γ(st)
Q(st, z(st), i(st), jt, εt, jt+1, εt+1)



 , (2.27)


where the third row is given by the true updating equation (2.26) together with the policy function


(2.16). Thus, we note that in this AOP case there is a distinction between the “perceived” transition


equation, which includes the perceived updating equation, (2.7), and the “true” transition equation,


which includes the true updating equation (2.26).
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Note that V (st) in (2.18), which is subject to the perceived transition equation, (2.15), does


not give the true (unconditional) value function for the AOP case. This is instead given by


V̄ (st) ≡
∑


j
pjt|tV̌ (st, j),


where the true conditional value function, V̌ (st, jt), satisfies


V̌ (st, j) =
∫ {


L[Xt, x(st, j, εt), i(st), j]
+ δ


∑
k PjkV̌ [ḡ(st, j, εt, k, εt+1), k]


}
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (2.28)


That is, the true value function V̄ (st) takes into account the true updating equation for pt|t, (2.26),


whereas the optimal policy, (2.16), and the perceived value function, V (st) in (2.18), are conditional


on the perceived updating equation (2.7) and thereby the perceived transition equation (2.15). Note


also that V̄ (st) is the value function after X̃t has been observed but before xt is observed, so it


is conditional on pt|t rather than p+
t|t. Since the full transition equation (2.27) is no longer linear


due to the belief updating (2.26), the true value function V̄ (st) is no longer quadratic in X̃t for


given pt|t. Thus, more complex numerical methods are required to evaluate losses in the AOP case,


although policy is still determined simply as in the NL case.


As we discuss in Svensson and Williams [17], the difference between the true updating equation


for pt+1|t+1, (2.26), and the perceived updating equation (2.7) is that, in the true updating equation,


pt+1|t+1 becomes a random variable from the point of view of period t, with mean equal to pt+1|t.


This is because pt+1|t+1 depends on the realization of jt+1 and εt+1. Thus Bayesian updating


induces a mean-preserving spread over beliefs, which in turn sheds light on the gains from learning.


If the conditional value function V̌ (st, jt) under NL is concave in pt|t for given X̃t and jt, then by


Jensen’s inequality the true expected future loss under AOP will be lower than the true expected


future loss under NL. That is, the concavity of the value function in beliefs means that learning


leads to lower losses. While it likely that V̌ is indeed concave, as we show in applications, it need


not be globally so and thus learning need not always reduce losses. In some cases the losses incurred


by increased variability of beliefs may offset the expected precision gains. Furthermore, under BOP,


it may be possible to adjust policy so as to further increase the variance of pt|t, that is, achieve a


mean-preserving spread which might further reduce the expected future loss.12 This amounts to


optimal experimentation.
12 Kiefer [10] examines the properties of a value function, including concavity, under Bayesian learning for a simpler


model without forward looking variables.
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2.4 Bayesian optimal policy


Finally, we consider the BOP case, when optimal policy is determined while taking the updating


equation (2.26) into account. That is, we now allow the policymaker to choose it taking into account


that his actions will affect pt+1|t+1, which in turn will affect future expected losses. In particular,


experimentation is allowed and is optimally chosen. For the BOP case, there is hence no distinction


between the “perceived” and “true” transition equation.


The transition equation for the BOP case is:


st+1 ≡




Xt+1


Ξt


pt+1|t+1



 = g(st, zt, it, γt, jt, εt, jt+1, εt+1)


≡




A11jt+1Xt + A12jt+1 x̃(st, zt, it, jt, εt) + B1jt+1it + C1jt+1εt+1


γt


Q(st, zt, it, jt, εt, jt+1, εt+1)



 . (2.29)


Then the dual optimization problem can be written as (2.12) subject to the above transition


equation (2.29). However, in the Bayesian case, matters simplify somewhat, as we do not need to


compute the conditional value functions V̂ (st, jt), which we recall were required due to the failure


of the law of iterated expectations in the AOP case. We note now that the second term on the


right side of (2.12) can be written as


EtV̂ (st+1, jt+1) ≡ E
[
V̂ (st+1, jt+1)


∣∣∣ st


]
.


Since, in the Bayesian case, the beliefs do satisfy the law of iterated expectations, this is then the


same as


E
[
V̂ (st+1, jt+1)


∣∣∣ st


]
= E


[
Ṽ (st+1)


∣∣∣ st


]
.


See Svensson and Williams [17] for a proof.


Thus, the dual Bellman equation for the Bayesian optimal policy is


Ṽ (st) = max
γt


min
(zt,it)


Et{L̃(X̃t, zt, it, γt, jt, εt) + δṼ [g(st, zt, it, γt, jt, εt, jt+1, εt+1)]}


≡ max
γt


min
(zt,it)


∑
j
pjt|t


∫ [
L̃(X̃t, zt, it, γt, j, εt)
+ δ


∑
k PjkṼ [g(st, zt, it, γt, j, εt, k, εt+1)]


]
ϕ(εt)ϕ(εt+1)dεtdεt+1,


(2.30)


where the transition equation is given by (2.29).


The solution to the optimization problem can be written


ı̃t ≡




zt


it
γt



 = ı̃(st) ≡






z(st)
i(st)
γ(st)



 = F (X̃t, pt|t) ≡






Fz(X̃t, pt|t)
Fi(X̃t, pt|t)
Fγ(X̃t, pt|t)



 , (2.31)
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xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ Fx(X̃t, pt|t, jt, εt). (2.32)


Because of the nonlinearity of (2.26) and (2.29), the solution is no longer linear in X̃t for given pt|t.


The dual value function, Ṽ (st), is no longer quadratic in X̃t for given pt|t. The value function of


the primal problem, V (st), is given by, equivalently, (2.18), (2.28) (with the equilibrium transition


equation (2.27) with the solution (2.31)), or


V (st) =
∑


j


pjt|t


∫ {
L[Xt, x(st, j, εt), i(st), j]
+ δ


∑
k PjkV [ḡ(st, j, εt, k, εt+1)]


}
ϕ(εt)ϕ(εt+1)dεtdεt+1. (2.33)


It it is also no longer quadratic in X̃t for given pt|t. Thus, more complex and detailed numerical


methods are necessary in this case to find the optimal policy and the value function. Therefore


little can be said in general about the solution of the problem. Nonetheless, in numerical analysis


it is very useful to have a good starting guess at a solution, which in our case comes from the AOP


case. In our examples below we explain in more detail how the BOP and AOP cases differ, and


what drives the differences.


3 Approximate MJLQ models


In our analysis above, we started with an MJLQ model. We now briefly discuss and illustrate how


variants of linearization methods naturally lead to MJLQ models as approximations of nonlinear


models. What is required is simply a different asymptotic analysis. We address here a simple


matter of function approximation, not the more delicate issue of approximating optimal policy as


discussed in Woodford [22] and Benigno and Woodford [2]. The same issues that they address


about the validity of linear-quadratic approximations confront us, but the approximations differ.


Rather than analyzing local deviations from a single steady state, we analyze the local deviations


from (potentially) separate, mode-dependent steady states. Standard linearizations are justified as


asymptotically valid for small shocks, as an increasing time is spent in the vicinity of the steady


state.13 Our approximations are asymptotically valid for small shocks and persistent modes, as an


increasing time is spent in the vicinity of each mode-dependent steady state.
13 Woodford [22] and his co-authors discuss approximations for bounded shocks, where the bounds get small. In


this case standard function-approximation results apply locally to a steady state. Williams [21] considers Gaussian
shocks where the standard deviations of the shocks get small. In this case, function approximation results are merged
with stochastic limit theorems to approximate aspects of the distribution of the variables of interest.
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3.1 Approximations


For concreteness, consider the approximation of a nonlinear function f , which is a function of a


continuous variable X on a compact set X , and a discrete variable θ ∈ {θ1, . . . , θnj}. Then the


usual Taylor approximation of f around (X̄, θ̄) ∈ X × θ is:


f(X, θj) ≈ f(X̄, θ̄) + fX(X̄, θ̄)(X − X̄) + fθ(X̄, θ̄)(θj − θ̄). (3.1)


This approximation is then valid as X → X̄ and θ → θ̄. For the latter limit, one could consider


for example θ ∈ {θ̄ − ε, θ̄ + ε} and let ε → 0. This type of approximation results in a standard


linear model with fixed coefficients, and the discrete variable θ enters only additively. However,


when X = Xt and θ = θt vary over time, we also need to insure that this approximation accurately


reflects the distribution of {f(Xt, θt)}. One way to do so is to assume that in addition to the


differences in the θ values being bounded by ε, the underlying exogenous shocks hitting Xt are


also bounded by ε. Then for small ε the distribution is accurately characterized by the linear


approximation.


However, instead one could simply linearize with respect to X, keeping θj fixed and vary the


approximation point with θj :


f(X, θj) ≈ f(X̄j , θj) + fX(X̄j , θj)(X − X̄j). (3.2)


This approximation is thus done θj-by-θj and for fixed θj is valid as X → X̄j . This type of


approximation results in a MJLQ model, where the coefficients of the approximation vary with the


discrete variable θ (and hence the mode j). Again, when X = Xt and θ = θt vary over time, we also


need to insure that this approximation accurately reflects the distribution of {f(Xt, θt)}. To do so


we assume that θ is governed by a Markov chain with transition matrix P , and then consider the


limit as P → I. We again bound the shocks hitting Xt by ε and let ε → 0 but at a rate slower than


the convergence of P to I. This means that θt converges (in distribution) to a constant value faster


than Xt does, and so in analyzing the Xt dynamics we can treat θt as fixed. Such slowly-varying


Markov chains have been widely used in control theory for purposes like ours.


3.2 An illustration


We have argued that MJLQ models may arise naturally in approximating nonlinear DSGE models.


One class of examples, which we consider in more detail in our analysis below, consists of cases


where the modes correspond to different values of the deep structural parameters governing tastes
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and technologies. However, switches in the driving stochastic processes for shocks may also result


in MJLQ models, as we show here.


To illustrate our approximation, we consider the following example adapted from Williams [21].


Suppose that output is produced according to a standard constant-returns-to-scale Cobb-Douglas


production function with parameter α > 0:


F (K,L) = Kα(AL)1−α,


where K is the capital stock, L is the labor supply, and A is the labor-augmenting technology


parameter. For simplicity, we fix the total labor supply at L = 1. We assume that A evolves


exogenously as a mode-dependent unit root process in logarithms:


log At+1 = κj + log At + σWt+1 (3.3)


where Wt+1 is a standard i.i.d. normal random variable and κj ≥ 0 is the mean rate of technology


growth. Let δ be the depreciation rate of capital and Ct be consumption. Then the transition


equation for capital is given by:


Kt+1 = A1−α
t Kα


t − Ct + (1− δ)Kt. (3.4)


Although the technological process is nonstationary, the ratios of capital and consumption to


technology, kt ≡ Kt/At and ct ≡ Ct/At, are stationary. We therefore represent the problem in


terms of the stationary variables. Normalizing by the technology level, (3.4) becomes


kt+1 = Zj,t+1[kα
t − ct + (1− δ)kt], (3.5)


where we define the mode-dependent lognormal random variable Zj,t+1 as


Zj,t+1 ≡ exp(−κj − σWt+1).


Suppose also that a representative agent has time-additively separable preferences over con-


sumption with discount factor β and CRRA period utility:


U(Ct) =
C1−γ


t


1− γ
= A1−γ


t


c1−γ
t


1− γ
.


Note that expressing utility in terms of ct makes the effective subjective discount factor equal to


βZγ−1
j,t+1, and thus introduces a form of preference shocks. Straightforward calculations detailed in
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Figure 3.1: Nonlinear equilibrium transition equation (solid lines) and its MJLQ approximation


(dashed lines). Steady states in each fixed mode are shown with asterisks (∗).


Williams [21] show that, for fixed j, the steady-state equilibrium levels of (normalized) capital k̄j


and consumption c̄j are given by:


k̄j =


(
1− βθγ


j + δβθγ
j


αβθγ
j


) 1
α−1


, c̄j = k̄α
j +


(
1− δ − 1


θj


)
k̄j .


where θj ≡ exp(−κj).


For the sake of this illustration, suppose that consumption is a mode-dependent fraction of


output (chosen to agree with the steady state):


c(k, j) = c∗jk
α, c∗j ≡ c̄j/k̄α


j .


Of course, this consumption function is not typically optimal for the above utility function, but it


will let us compare our MJLQ approximation with the nonlinear transition equation in a simple way.


Using this consumption function in (3.5) we can then write the nonlinear equilibrium transition


equation as:


kt+1 = Zj,t+1[(1− c∗j )k
α
t + (1− δ)kt].


Taking logs, and letting k̂t = log kt we can further write the nonlinear equilibrium transition
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Figure 3.2: Mean square approximation error of MJLQ approximation for different settings of the


transition matrix P .


equation as:


k̂t+1 = log [(1− c∗j )e
αk̂t + (1− δ)ek̂t ]− κj − σWt+1 (3.6)


≡ f(k̂t, θj)− σWt+1.


The first two terms in (3.6) correspond to our nonlinear function f in (3.2) above, so our MJLQ


approximation to the equilibrium transition equation is


k̂t+1 = log k̄j + fk(k̄j , θj)(k̂t − log k̄j)− σWt+1, (3.7)


where


fk(k̄j , θj) =
α(1− c∗j )k̄


α
j + (1− δ)k̄j


(1− c∗j )k̄
α
j + (1− δ)k̄j


.


Figure 3.1 illustrates the MJLQ approximation along with the true nonlinear equilibrium tran-


sition equations for a particular parameterizations of the model. Mostly following Williams [21],


we set σ = 0.0492, α = 0.35, δ = 0.1, β = 0.99 and γ = 2. For the mean growth rate, we


set κ1 = − 0.0176 and κ2 = 0.0528. It is well known that for a single mode, this model is well-


approximated by linearization. We now show that with switching modes this remains true. In


18







particular, the figure illustrates that the conditionally linear approximations appear quite close to


the true nonlinear functions, with only some slight differences at the edges of the region shown. To


better gauge the magnitude of this approximation, we run 1000 simulations of 1000 periods each


for different settings of the transition matrix P . We assume P is diagonal and symmetric, and


analyze what happens as P → I. The results are shown in figure 3.2, which plots the mean square


approximation error. Here we clearly see that as P → I the approximation error falls dramatically,


and the MJLQ approximation becomes ever more accurate. Thus for slow mode transition, MJLQ


models can be used to accurately approximate more general nonlinear models.


4 Learning and experimentation in a simple New Keynesian model


4.1 The model


We consider the benchmark standard New Keynesian model, consisting of a New Keynesian Phillips


curve and a consumption Euler equation (see Woodford [22] for an exposition):


πt = δEtπt+1 + γjt
yt + cπεπt, (4.1)


yt = Etyt+1 − σjt (it − Etπt+1) + cyεyt + cggt, (4.2)


gt+1 = ρgt + εg,t+1. (4.3)


Here πt is the inflation rate, yt is the output gap, δ is the subjective discount factor (as above),


γjt
is a composite parameter reflecting the elasticity of demand and frequency of price adjustment,


and σjt is the intertemporal elasticity of substitution. There are three shocks in the model, two


unobservable shocks επt and εyt, which are independent standard normal random variables, and


the observable serially correlated shock gt. This last shock is interpretable as a “demand” shock


either coming from variation in preferences, government spending, or the underlying efficient level of


output. Woodford [22] combines and renormalizes these shocks into a composite shock representing


variation in the natural rate of interest.


In the standard formulations of this model, the shocks are observable and policy responds


directly to the shocks. However, in order for there to be a nontrivial inference problem for agents,


we need some components of the shocks to be unobservable. Note that we’ve assumed that both


the slope of the Phillips curve γjt
and the interest sensitivity σjt vary with the mode jt. For the


former, this could reflect changes in the degree of monopolistic competition (which also lead to


varying markups) and/or changes in the degree of price stickiness. The interest sensitivity shift is
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purely a change in the preferences of the agents in the economy, although it could also result from


non-homothetic preferences coupled with shifts in output (in which case there would be no shift in


the preferences themselves, but the intertemporal elasticity would vary with the level of output).


Unlike our illustration above, there are no switches in the steady state levels of the variables of


interest here, as we consider the usual approximations around a zero inflation rate and an efficient


level of output.


4.2 Optimal policy: NL, AOP, and BOP


Here we examine value functions and optimal policies for this simple New Keynesian model under


no learning (NL), adaptive optimal policy (AOP), and Bayesian optimal policy (BOP). We use the


following loss function,


Lt = π2
t + λjy


2
t + µi2t , (4.4)


We set the following parameters, mostly following Woodford’s [22] calibration as follows: γ1 =


0.024, γ2 = 0.075, σ1 = 1/.157 = 6.37, σ2 = 1, cπ = cy = cg = 0.5, and ρ = 0.5. We set the loss


function parameters as: δ = 0.99, λj = 2γj , and µ = 0.236. Most of the structural parameters


are taken from Woodford [22], while the two modes represent reasonable alternatives. Mode 1 is


Woodford’s benchmark case, while mode 2 has a substantially smaller interest rate sensitivity (one


consistent with logarithmic preferences) and a larger response γ of inflation to output. We set the


transition matrix to


P =
[


0.98 0.02
0.02 0.98


]
.


We have two forward looking variables (xt ≡ (πt, yt)′) and consequently two Lagrange multipliers


(Ξt−1 ≡ (Ξπ,t−1,Ξy,t−1)′). We have one predetermined variable (Xt ≡ gt) and the estimated mode


probabilities (pt|t ≡ (p1t|t, p2t|t)′) (of which we only need keep track of one, p1t|t). Thus, the value


and policy functions, V (st) and i(st), are all four dimensional (st = (gt, Ξ′t−1, p1|t)′). Thus we are


forced for computational reasons to restrict attention to relatively sparse grids with few points.


The following plots show two dimensional slices of the value and policy functions, focusing on the


dependence on gt and p1t|t (which we for simplicity denote by p1t in the figures). In particular, all


of the plots are for Ξt−1 = (0, 0)′.


Figure 4.2 shows losses under NL and BOP as functions of p1t and gt. Figure 4.2 shows the


difference between losses under NL, AOP, and BOP. Figures 4.2 and 4.2 show the corresponding


policy functions and their differences.
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Figure 4.1: Losses from no learning (NL) and Bayesian optimal policy (BOP)


In Svensson and Williams [17] we show that learning implies a mean-preserving spread of the


random variable pt+1|t+1 (which is under learning a random variable from the vantage point of


period t). Hence, concavity of the value function under NL in p1t implies that learning is beneficial,


since then a mean-preserving spread reduces the expected future loss. However, we see in figure


4.2 that the value function is actually slightly convex in p1t, so learning is not beneficial here.


In contrast, for a backward-looking example in Svensson and Williams [17], the value function is


concave and learning is beneficial.


Consequently, we see in figure 4.2 that AOP gives higher losses than NL. Furthermore, somewhat


surprisingly, we see that BOP gives higher losses than AOP (although the difference is very small).


This is all counter to an example with a backward-looking model in Svensson and Williams [17].


Why is this different in a model with forward-looking variables? It may at least partially


be a remnant of our assumption of symmetric beliefs and information between the private sector


and the policymaker. With backward looking models, we have generally found that learning is


beneficial. Moreover, with backward-looking models, the BOP is always weakly better than the


AOP, as acknowledging the endogeneity of information in the BOP case need not mean that policy
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Figure 4.2: Differences in losses from no learning (NL), adaptive optimal policy (AOP) and Bayesian


optimal policy (BOP)


must change. (That is, the AOP policy is always feasible in the BOP problem.) However, with


forward-looking models, neither of these conclusions holds. Under our assumption of symmetric


information and beliefs between the private sector and the policymaker, both the private sector


and the policymaker learns. The difference then comes from the way that private sector beliefs


also respond to learning and to the experimentation motive. Having more reactive private sector


beliefs may add volatility and make it more difficult for the policymaker to stabilize the economy.


Acknowledging the endogeneity of information in the BOP case then need not be beneficial either,


as it may induce further volatility in agents’ beliefs. (Note that, in the forward-looking case, we


solve saddlepoint problems, and in going from AOP to BOP we are expanding the feasible set for


both the minimizing and maximizing choices.)


5 Learning in an estimated empirical New Keynesian model


In the previous section we focused on a simple small model in order to consider the impacts of


learning and experimentation. As computing BOP is computationally intensive, there are limits
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Figure 4.3: Optimal policies under no learning (NL) and Bayesian optimal policy (BOP)


to the degree of empirical realism of the models we can address in that framework. In this section


we focus on a more empirically plausible model, a version of the model of Lindé [11] that we


estimated in Svensson and Williams [16]. This model includes richer dynamics for inflation and the


output gap, which both have backward and forward-looking components. However, these additional


dynamics increase the dimension of the state space, which implies that it is not very feasible to


consider the BOP. Thus we focus here on the impact of learning on policy and compare NL and


AOP. In Svensson and Williams [16] we computed the optimal policy under no-learning, and here


we see how inference on the mode affects the dynamics of output, inflation, and interest rates.


5.1 The model


The structural model is a mode-dependent simplification of the model of the US economy of Lindé


[11] and is given by


πt = ωfjEtπt+1 + (1− ωfj)πt−1 + γjyt + cπjεπt, (5.1)


yt = βfjEtyt+1 + (1− βfj)
[
βyjyt−1 + (1− βyj)yt−2


]− βrj (it − Etπt+1) + cyjεyt.
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Figure 4.4: Differences in policies under no learning (NL) and Bayesian optimal policy (BOP)


Parameter Mean Mode 1 Mode 2
ωf 0.0938 0.3272 0
γ 0.0474 0.0580 0.0432
βf 0.1375 0.4801 0
βr 0.0304 0.0114 0.0380
βy 1.3331 1.5308 1.2538
cπ 0.8966 1.0621 0.8301
cy 0.5572 0.5080 0.5769


Table 5.1: Estimates of the constant-coefficient and a restricted two-mode Lindé model.


Here j ∈ {1, 2} indexes the mode, and the shocks επt, εyt, and εit are independent standard normal


random variables. In particular, we consider a two-mode MJLQ model where one mode has forward-


and backward-looking elements, while the other is backward-looking only. Thus we specify that


mode 1 is unrestricted, while in mode 2 we restrict ωf = βf = 0, so that the mode is backward-


looking. For estimation, we also impose a particular instrument rule for it, but as we focus on


optimal policy we do not include that here.


In Svensson and Williams [16] we estimate the model on US data using Bayesian methods,


with the maximum posterior estimates given in table 5.1, with the unconditional expectation of


the coefficients for comparison. Here we see that apart from the forward-looking terms (which of


course are restricted) the variation in the other parameters across the modes is relatively minor.


There are some differences in the estimated policy functions (not reported here), but relatively


little change across modes in the other structural coefficients. The estimated transition matrix P
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Figure 5.1: Estimated probabilities of being the different modes. Solid lines: smoothed (full-sample)


inference. Dashed lines: filtered (one-sided) inference.


and its implied stationary distribution p̄ are given by


P =
[


0.9579 0.0421
0.0169 0.9831


]
, p̄ =


[
0.2869
0.7131


]
.


Thus mode 2 is the most persistent and has the largest mass in the invariant distribution. This


is consistent with our estimation of the modes as shown in figure 5.1. Again, the plots show both


the smoothed and filtered estimates. Mode 2, the backward-looking model mode, was experienced


the most throughout much of the sample, holding for 1961–1968 and then with near certainty


continually since 1985. The forward-looking model held in periods of rapid changes in inflation,


holding for both the run-ups in inflation in the early and late 1970s and the disinflationary period


of the early 1980s. During periods of relative tranquility, such as the Greenspan era, the backward-


looking model fits the data the best.
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Policy Eπt Stdπt E yt Std yt E it Std it ELt


NL −0.1165 5.2057 0.1303 5.6003 0.0073 10.0239 88.4867
AOP −0.0300 3.1696 0.0299 2.7698 0.0011 9.9989 38.8710


Table 5.2: Average of different statistics from 1000 simulations of 1000 periods each of our estimated


model under the no-learning (NL) and adaptive (AOP) optimal policies.


5.2 Optimal policy: NL and AOP


Using the methods described above, we solve for the optimal policy functions


it = Fi(pt|t)X̃t,


where now X̃t ≡ (πt−1, yt−1, yt−2, it−1,Ξπ,t−1,Ξy,t−1)′. In Svensson and Williams [16] we focused


on the observable and no-learning cases, and assumed that the shocks επt and εyt were observable.


Thus we set C2 ≡ 0 and treated the shocks as additional predetermined variables. However, to focus


on the role of learning, we now assume that those shocks are unobservable. If they were observable,


then agents would be able to infer the mode from their observations of the forward-looking variables.


We use the following loss function:


Lt = π2
t + λy2


t + ν(it − it−1)2, (5.2)


which is a common central-bank loss function. We set the weights to λ = 1 and ν = 0.2, and fix


the discount factor in the intertemporal loss function to δ = 1.


For ease of interpretation, we plot the distribution of the impulse responses of inflation, the


output gap, and the instrument rate to the two structural shocks in figure 5.2. We consider 10,000


simulations of 50 periods, and plot the median responses for the optimal policy under NL and AOP,


and the corresponding optimal responses for the constant-coefficient model.14


Compared to the constant-coefficient case, the mean impulse responses are consistent with larger


effects of the shocks that are also longer lasting. In terms of the optimal policy responses, the AOP


and NL cases are quite similar, and in both cases the peak response to shocks is nearly the same


as in the constant-coefficient case, but it comes with a delay. Again compared to the constant-


coefficient case, the responses of inflation and the output gap are larger and more sustained when


there is model uncertainty.
14 The shocks are επ0 = 1 and εy0 = 1, respectively, so the shocks to the inflation and output-gap equations in


period 0 are mode-dependent and equal to cπj and cyj (j = 1, 2, 3), respectively. The distribution of modes in period 0
(and thereby all periods) is again the stationary distribution.
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Figure 5.2: Unconditional impulse responses to shocks under the optimal policy for the two-mode


version of the Lindé model. Solid lines: median responses under AOP. Dashed lines: median


responses under NL. Dot-dashed lines: constant-coefficient responses.


However, here we see that learning can be beneficial, as the optimal policy under AOP dampens


the responses to shocks, particularly for shocks to inflation. As the optimal policy responses are


nearly identical, this seems to be largely due to more accurate forecasts by the public, which lead


to more rapid stabilization.


While these impulse responses are revealing, they do not capture the full benefits from learning,


as by definition they simply provide the responses to a single shock. To gain a better understanding


of the role of learning, we now simulate our model under the NL and AOP policies to compare


the realized economic performance. Table 5.2 summarizes various statistics resulting from 1000


simulations of 1000 periods each. Thus for example, the entry there under “Eπt” is the average


across the 1000 simulations of the sample average (over the 1000 periods) of inflation, while “Std


πt” is the average across simulations of the standard deviation (in each time series) of inflation.


In particular, we see from the entry under “ELt” that the average period loss is less than half


under AOP compared to NL. In addition to these averages, figure 5.2 plots the distribution across


samples of the key components of the loss function. There we plot a kernel smoothed estimate of
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Figure 5.3: Distribution (across samples) of various statistics under the optimal policy for the


two-mode version of the Lindé model. Solid lines: AOP. Dashed lines: NL.


the distribution from the 1000 simulations. We see that the distribution of sample losses is much


more favorable under AOP than under NL.


In figure 5.4 we show one representative simulation to illustrate the differences. The more


effective stabilization of inflation and the output gap under AOP for very similar instrument-rate


settings as under NL is apparent.


6 Conclusions


In this paper, we have presented a relatively general framework for analyzing model uncertainty and


the interactions between learning and optimization. While this is a classic issue, very little to date


has been done for systems with forward-looking variables, which are essential elements of modern


models for policy analysis. Our specification is general enough to cover many practical cases of


interest, but yet remains relatively tractable in implementation. This is definitely true for cases


when decision makers do not learn from the data they observe (our case of no learning, NL) or when


they do learn but do not account for learning in optimization (our case of adaptive optimal policy,
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Figure 5.4: Simulated time series under the optimal policy for the two-mode version of the Lindé


model. Top three panels: Solid lines: AOP. Dashed lines: NL. Bottom panel : Solid line: probability


of mode 1. Dotted line: true mode. Dashed line: unconditional probability of mode 1.


AOP). In both of these cases, we have developed efficient algorithms for solving for the optimal


policy, which can handle relatively large models with multiple modes and many state variables.


However, in the case of the Bayesian optimal policy (BOP), where the experimentation motive is


taken into account, we must solve more complex numerical dynamic programming problems. Thus


to fully examine optimal experimentation we are haunted by the curse of dimensionality, forcing us


to study relatively small and simple models.


Thus, an issue of much practical importance is the size of the experimentation component of


policy, and the losses entailed by abstracting from it. While our results in this paper are far from


comprehensive, they suggest that in practical settings the experimentation motive may not be a


concern. The above and similar examples that we have considered indicate that the benefits of


learning (moving from NL to AOP) may be substantial, whereas the benefits from experimentation


(moving from AOP to BOP) are modest or even insignificant. If this preliminary finding stands


up to scrutiny, experimentation in economic policy in general and monetary policy in particular


may not be very beneficial, in which case there is little need to face the difficult ethical and other
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issues involved in conscious experimentation in economic policy. Furthermore, the AOP is much


easier to compute and implement than the BOP. To have this truly be a robust implication, more


simulations and cases need to be examined.
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Abstract


This paper analyzes boom-bust cycles in emerging market economies triggered by miss-
perception about future productivity. Using a small open economy DSGE model we show that
non-materialized news about future productivity improvements (i.e. overoptimism) generate
boom-bust cycles that replicate the stylized facts of several emerging economies during the
1990s. In this context, we show that the monetary policy faces relevant trade-offs. If the
central bank tries to stabilize output, there would be a large real appreciation of the currency
and a deep contraction in the tradable goods sector. When the central bank follows a more
strict inflation targeting regime, the boom-bust pattern in major aggregate variables would
be exacerbated. Finally, if the central bank attempts to sustain the real exchange rate, the
perverse effects on the domestic tradable goods sector is only prevented in the short-run, but
the boom-bust cycle in other variables is amplified.
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1 Introduction


Several emerging market economies during the 1990s, such as Mexico, south-east Asian coun-


tries, and Chile, displayed episodes of peaking growth rates along with increasing current ac-


count deficits and appreciating currencies, that ended with abrupt reversions in capital flows and
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recessions.1


Previous to the recessions, in all cases there was enhanced optimism about future prospects.


Mexico was negotiating its entrance to NAFTA, along with its membership to the OECD. Chile


had exhibited a smooth transition to democracy. The mood of investors was increasingly enthu-


siastic about the prospects of harvesting the benefits of the market reforms of both the previous


period and those introduced under democracy. The south-east Asian economies, in turn, had


their own reasons for optimism based on their impressive growth record of previous years. In all


cases, optimism was grounded on reasonable arguments, but the prospects of future economic


growth could not be estimated accurately.


In this paper we show that overoptimistic perceptions regarding the future by domestic pri-


vate agents –domestic “exuberance”– could have been a cause of the boom-bust cycles observed


in some emerging economies during the 1990s. To that end, we develop a multi-sector dynamic


stochastic general equilibrium (DSGE) model for a small economy with short-run stickiness in


prices and wages, that features expectation driven boom-bust cycles. We show that under stan-


dard parametrization, the model is able to closely match most of the stylized facts observed in


the boom-bust episodes in emerging markets. In the model, private agents are rational and for-


ward looking. Therefore, their current decisions rely on their assessment on future productivity


prospects. An overoptimistic assessment about future productivity makes them to accumulate


excess capital and to over increase their consumption, leading to a boom that is accompanied by


a current account deficit. When agents realize that productivity will grow by less than expected,


they must readjust their investment and consumption profiles, generating a current account re-


versal and a recession.


Our analytical approach follows closely Christiano, Ilut, Motto, and Rostagno (2007) (here-


after CIMR). Unlike them, we show that overoptimism about productivity trends, rather than


transitory productivity gains, are the source of boom-bust cycles in open economies such as the


one observed during the 1990s. We show that if productivity changes follow a stationary process,


where expected productivity improvements are perceived to be transitory, news about future


productivity improvements are not able to replicate the real appreciation of the currency and the


current account deterioration along the boom as observed in the data. This result is related to


the work of Aguiar and Gopinath (2007), who show that the observed strong counter-cyclicly of


the current account in emerging economies can be explained by productivity trend shocks in a


standard real business cycle model. In our case, cycles are generated by miss-perceptions about


future productivity growth rather than actual changes in this variable.


According to our model, a boom-bust cycle generated by domestic agents overoptimism is
1A similar pattern can also be observed in industrial economies, such as the US at the end of the 1990s, and in


emerging markets at the end of the 1970s.
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observational equivalent to a cycle driven by exogenous fluctuations in foreign financial conditions.


Several authors have claimed that swings in external financial conditions were significant factors


behind the observed patterns of macroeconomic variables during the 1990s in many emerging


markets (Neumeyer and Perri, 2005; Uribe and Yue, 2006; Valdés, 2007). In this sense, our


results can be interpreted as a plausible alternative –although complementary– explanation for


the episodes of abrupt current account deterioration in emerging markets during the 1990s.


Among the policy implications, our model show that the trade-offs faced by the monetary


policy in a boom-bust cycle driven by expectations are not trivial. If the central bank tries to


stabilize output, the result will be a large fall in inflation and a contraction in output in the


tradable goods sector. On the other hand, if the central bank targets inflation more strictly, then


the boom in activity, the current account deterioration and the exchange rate appreciation will


be larger, and the subsequent recession more severe. If we modify the policy rule to include an


endogenous response of the interest rate to exchange rate fluctuation, then the perverse effects


on the domestic tradable goods sector are only prevented in the short run, but the boom-bust


cycle in other variables is amplified.


Expectations driven macroeconomic fluctuations may be drawn back to at least Pigou (1926).


Recently, this hypothesis has received renewed attention in modern macroeconomics. Marfán


(2005) analyzes boom-bust cycles provoked by excess optimism and concentrates mainly on the


role of fiscal policy in an extended Mundell-Fleming context. The optimist-pessimist mood of


the private sector in his model is completely exogenous. Beaudry and Portier (2004), Jaimovich


and Rebelo (2006, 2007), Mertes (2007) and CIMR present different unique equilibrium rational


expectation models where business cycles are generated by changes in expectations regarding


productivity prospects. Jaimovich and Rebelo (2006, 2007) discuss which elements are needed


in a standard Real Business Cycle (RBC) models to generate the co-movement observed in the


data in response to non-materialized productivity shocks. They show that in a closed economy


environment, adjust cost in investment and/or labor, variable capital utilization, and weak wealth


effects on labor supply are key to replicate the co-movement in the data. In an open economy set


up, variable capital utilization is not that crucial. CIMR, using a sticky-price sticky-wages model,


emphasize the role played by the monetary policy in generating expectation driven boom-bust


cycles. They show that to generate a sizeable output expansion and a boom in stock prices in


response to news about increased future productivity, monetary policy has to respond aggressively


to the induced fall in inflation. Thus, the boom is amplified by a loose monetary policy. Mertes


(2007) shows that an expectation-driven RBC model is able to replicate relevant stylized facts of


the Sudden Stop faced by Korea at the end of the 1990s.


The expectations driven business cycle approach in this literature is related to the literature on


multiple equilibria and sunspots cycles (Farmer, 1993). It can also be view as complementary to
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the literature on rational herding and information cascades lead cycles (Banerjee, 1992; Chamley


and Gale, 1994; Caplin and Leahy, 1993 and Zeira, 1994). In particular, this strand of literature


has emphasized how information may occasionally be aggregated improperly thereby leading to


non-fundamental cycles. In this paper, we examining whether the quantitative implications of


(rational/non-systematic) aggregate forecast errors can explain the observed pattern of recessions


of small open economies within a fully specified dynamic model that features an unique general


equilibrium.


The paper has five sections including this introduction. The second section provides a mo-


tivation about boom-bust cycles as well as a broad view of such cycles in the 1990s in Chile,


Korea and Mexico. It also discusses stylized effects of structural reforms and innovations on


future growth. The third section describes in a detailed way the theoretical model, and the cali-


bration of the parameters. The fourth section analyzes the dynamics of the empirical model and


discusses the tradeoffs faced by the monetary policy. The fifth and final section summarizes the


main findings.


2 Structural Reforms and Boom-bust Cycles in Emerging Mar-


kets


During the 1980s and the 1990s several emerging market economies engaged in reforms. Also, at


the beginning of the 1990s the concomitant global context was promissory: The fall of the Berlin


wall was perceived as a generalized stimulus for accelerating and expanding market globalization,


emerging economies had resumed access to voluntary financial flows under favorable conditions,


and trade markets were mutating towards increasing levels of regional integration (NAFTA, EU,


APEC, MERCOSUR and FTAA among many others). The international forums increasingly


concentrated on TICS, a New International Financial Architecture, the expansion of market


institutions in transition economies, the “New Economy”, etc. While this macro context was


prone to boost productivity, the actual effect of the reforms, due to no previous precedent, was


hard to evaluate.


2.1 Structural reforms and innovations


We define a systemic innovation as one which affects productivity of all firms, and may be


generated by an intended public policy initiative (reform) or by an across the board technological


change. So if Fi,t denotes the production function of a generic firm i at moment t, after the


reform the concomitant production function would be F ′i,t = Fi,tAt, where At measures the


impact of the reform at instant t. Figure 1 exhibits different types of reforms initiated at t = 0.
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First, we depict a Schumpeterian innovation such as the steam machine, electricity and, more


recently, ICT. Initially there is a destruction of capital, jobs, skills and public goods related


to the old technology, which dominates the creation process of the blossoming innovation. At


longer horizons the benefits of the new technology outpace the costs of destroying the old one.


It is possible that at a very long time span the At curve may turn concave showing decreasing


returns. Second, we present the case of a pro-market reform (e.g., a trade-opening reform).


Initially, as in the Schumpeterian case, there is a destruction of rents associated to the market


imperfection removed, with a negative cost benefit balance. As time goes by, the balance improves


converging to a long term productivity gain A∗, once the reform is completely internalized. A


similar pattern would follow from an education-improving reform. There is an initial period


where significant resources are deviated from other activities to implement the reform, with no


immediate productive effects. The benefits of the reform start to be harvested when the new


well educated generations are graduated, and the reform is completed once the labor force is


entirely educated. Whichever the innovation introduced, there is no previous history permitting


economic agents to accurately predict its impact through time. Agents may know the functional


form followed by At through time but the values of certain parameters such as A∗ are initially


uncertain. In this context, agents react initially setting notional values for A∗, which may differ


from their actual values.


In all cases, it takes time for the reforms to materialize into actual productivity gains, making


it hard to evaluate ex-ante their real impact.


Figure 2 provides an example on how an assessment of the “long-term” productivity may


have evolved over time in the case of Chile. When “long-term” productivity growth is calculated


using a 1960-1990 sample, we observe a gloomy behavior of overall efficiency. Using the samples


1960-1993 and 1960-1997 show not only a much more buoyant scenario for the years added, but


they also rewrite the history of the late 1980s. The 1960-2012 sample shows that, although there


was a basis for optimism, contemporaneous data on TFP may lead to a less optimistic assessment


about the future.2


2.2 Some Stylized Facts


We describe some stylized facts for three selected emerging markets that engaged in reforms and


experienced a boom-bust cycle during the 90s: Chile, Korea and Mexico.


Although Chile had introduced reforms since the 1980s, as of 1990 the democratic administra-


tions gave high priority to overall macroeconomic equilibrium, and reinforced and deepened the
2Data from 2007 to 2012 correspond forecast made by the committee of experts that defines key fiscal policy


parameters.
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structural reforms. The signaling to economic agents was that a strong impulse to productivity


growth was coming. Jadresic and Zahler (2000) claim, based on a time series modelling, that key


factors underlying the rapid productivity growth in the 1990s were deepening of the democracy


and the introduction of new structural reforms. Mexico engaged in a trade liberalization policy


with the US and Canada during the 1990s that involved future opening of its economy to trade


and capital flows. Before that, a stabilization plan was implemented at the end of the 1980s. At


the same time, a privatization program was carried over. Korea, prior to the financial crisis of


1997, had experienced a long period of rapid growth, low inflation, and a sustained improvement


in standards of living. High domestic savings and investment contributed to the rapid trans-


formation of Korea. The government had begun an economic reform program—which gained


momentum in 1993-96— to gradually liberalize financial markets and the capital account.


Figure 3 presents some stylized facts for the three economies for the period 1990-2002.3 In


all three cases we identify a phase where output rises above trend together with an increase in


investment and consumption. During the boom phase, we also observe a real appreciation of the


currency and current account deterioration in the three countries. For Mexico, the expansion in


output was less dramatic than in Korea and Chile, but the consumption boom was comparable


to the one in those countries. In all three cases, there was an abrupt reversion of the boom,


with a fall in output, consumption and investment, and a steep reversion of the current account


deficit. In Mexico and Korea, the bust coincided with a depreciation of the currency of almost


40%. In Chile, the depreciation of the currency during the bust was slower than in the other two


countries.


The boom-bust cycle in these three countries involved swings in output and consumption of


about 10% in a brief period of time. In the case of investment, swings were much larger, with


differences of more than 20% from peak to trough. In Mexico and Chile the contraction of the


current account deficit did not lead to a surplus in this variable. For Korea, the current account


deficit of almost 6% of GDP was followed by a similar surplus a couple of years after the peak of


the boom. Unlike Chile and Mexico, Korea had a stunning recovery from the Asian Crisis and


output regained its pre-crisis level. In the case of Chile, growth has not recovered the 1990’s rate.
3To build the stylized facts we use Chilean quarterly data for the period 1990:Q1 to 2002:Q4 from the Central


Bank of Chile and the National Institute of Statistics (INE). For Mexico and Korea the source is the IFS. For all


series, we applied an HP filter with a large smoothing parameter (λ = 3× 106) in order to obtain an almost lineal


trend. Once we have the filtered series we compute the respective cycles. Then we proceeded to filter again these


series in order to obtain a smoother pattern.
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3 Model Economy


In this section, we present a multi-sector small open economy model with short-run nominal


and real rigidities. The model is aimed at replicating prominent features of business cycles of


emerging market economies. There are two domestic productive sectors: one that produces


tradable goods (H) and another that produces non-tradable goods (N). Domestic agents also


import foreign goods (F ). Prices and wages are sticky in the short-run, and the exchange rate


pass-through to imported goods price is incomplete in the short run. Households exhibit habits


in their preferences, investment is subject to incremental adjustment costs and the utilization


rate of capital is variable. The introduction of nominal and real rigidities is meant to generate


richer and more realistic propagation mechanisms.


3.1 Households


The domestic economy is inhabited by a continuum of households indexed by j ∈ [0, 1]. At time


t, household j maximizes the expected present value of its utility which is given by:


Ut (j) = Et


{ ∞∑
i=0


βi


[
log (Ct+i (j)− hCt+i−1) +


ζM
µ


(
Mt+i(j)
PC,t+i


)µ
− ζL


lt+i (j)
1+σL


1 + σL


]}
, (1)


where lt (j) is labor effort, Ct (j) is its total consumption, and Mt (j) corresponds to nominal


balances held at the beginning of period t. Parameter σL is the inverse real-wage elasticity of labor


supply. Habit formation in preferences is determined by parameter h. Household j consumes a


basket composed of tradable goods, CT , and non-tradable goods, CN :


Ct (j) =
[
α


1/ηC
C (CT,t (j))


ηC−1


ηC + (1− αC)1/ηC (CN,t (j))
ηC−1


ηC


] ηC
ηC−1


,


Traded goods are a composite of domestically produce tradable goods (H ) and imported


goods (F ), CT,t (j) =
[
γ


1/ωC


C (CH,t (j))
ωC−1


ωC + (1− γC)1/ωC (CF,t (j))
ωC−1


ωC


] ωC
ωC−1


. Parameters


αC and γC determine the share of each type of goods in the consumption basket while ηC and


ωC are the price elasticities associated. By minimizing the cost of the consumption basket, and


aggregating all households, we obtain the aggregate demands for the three types of goods. The


consumption price index (CPI) is given by PC,t =
(
αCP


1−ηC
T,t + (1− αC)P 1−ηC


N,t


) 1
1−ωC , where


PT,t is the price index of the tradable consumption basket (which includes imported and domestic


tradable goods), and PN,t is the price index of non-tradable goods.


3.1.1 Consumption-savings decisions


Households have access to three types of assets: money Mt (j), one-period non-contingent for-


eign bonds (denominated in foreign currency) B∗t (j), and one-period domestic contingent bonds
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Dt+1(j) which pays out one unit of domestic currency in a particular state (state contingent


securities). The budget constraint of households j is given by:


PC,tCt(j) + Et {dt,t+1Dt+1(j)}+
EtB∗t (j)


(1 + i∗t ) Θ (Bt)
+Mt(j) =


Wt(j)lt (j) + Πt (j)− Tt +Dt(j) + EtB∗t−1(j) +Mt−1(j),


where Πt (j) are profits received from domestic firms, Wt (j) is the nominal wage set by the


household, Tt is per-capita lump-sum net taxes from the government, and Et is the nominal


exchange rate (expressed as units of domestic currency per one unit of foreign currency). Variable


dt,t+1 is the period t price of one-period domestic contingent bonds normalized by the probability


of the occurrence of the state. Assuming the existence of a full set of contingent bonds ensures


that consumption of all households is the same, independently of the labor income they receive


each period.


Variable i∗t is the interest rate on foreign bonds denominated in foreign currency, and Θ (.)


is a premium domestic households have to pay when borrowing from abroad. This premium is


function of the net foreign asset positions relative to GDP, Bt = EtB∗t
PY,tYt


where PY,tYt is nominal


GDP and B∗t is the aggregate net asset position of the economy.4


Each household chooses a consumption path and the composition of its portfolio by maximiz-


ing (1) subject to its budget constraint. The first order conditions on different contingent claims


over all possible states define the following Euler equation for consumption:


βEt


{
(1 + it)


PC,t
PC,t+1


(
Ct+1 (j)− hCt
Ct (j)− hCt−1


)}
= 1, (2)


where it is the domestic risk-free interest rate. From this expression and the first order condition


with respect to foreign bonds denominated in foreign currency we obtain the following expression


for the uncovered interest parity (UIP) condition:


1 + it
(1 + i∗t ) Θ (Bt)


= Et
Et+1


Et
+ covt. (3)


where covt is a covariance term that disappears in the log-linear version of the model.


3.1.2 Labor supply and wage setting


Each household j is a monopolistic supplier of a differentiated labor service. There is a set of


perfectly competitive labor service assemblers that hire labor from each household and combine


4In the steady state we assume that Θ (.) = Θ and Θ′


Θ
B = %. When the country is a net debtor, % corresponds


to the elasticity of the upward-slopping supply of international funds. This premium is introduced mainly as a


technical device to ensure stationarity (see Schmitt-Grohé and Uribe, 2001).
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it into an aggregate labor service unit. This labor unit is then used as an input in production of


domestic tradable (H) and non-tradable (N) sectors. Cost minimization by labor unit assemblers


give rise to demands for each type of labor services, which are function of the corresponding


relative wages.


Following Erceg et al. (2000) we assume that wage setting is subject to a nominal rigidity


à la Calvo (1983). In each period, each type of household faces a probability 1 − φL of being


able to re-optimize its nominal wage. In this setup, the parameter φL determines the degree of


nominal rigidity in wages. We assume that all those households that cannot re-optimize their


wages follow an updating rule considering a geometric weighted average of past CPI inflation,


and the inflation target set by the authority, π. Once a household has set its wage, it must supply


any quantity of labor service demanded at that wage. A particular household j that is able to


re-optimize its wage at t must solve the following problem:


max
Wt(j)


= Et


{ ∞∑
i=0


φiLΛt,t+i


[
ΓiW,tWt(j)
PC,t+i


lt+i (j)− ζL,t
lt+i(j)1+σL


1 + σL
(Ct+i − hCt+i−1)


]}
subject to labor demand and the updating rule for the nominal wage of agents who do not opti-


mize defined by function ΓiW,t = Γi−1
W,t (1 + πt+i−1)


χL (1 + π̄)1−χL . Variable Λt,t+i is the relevant


discount factor between periods t and t+ i.5 These elements give rise a Phillips curve for nominal


wages that has backward and forward looking components.


3.2 Investment and capital goods


A representative firm owns and rents capital to firms producing in the domestic tradable (H) and


non-tradable (N) sectors. We assume that capital is specific to the sector that rents it. Hence,


the representative firm decides how much of each type of capital to accumulate over time. The


flow of investment devoted to produce new capital goods for sector J , It (J), is assembled using


the following technology:


It (J) =
[
α


1/ηI
I IT,t (J)


ηI−1


ηI + (1− αI)1/ηI IN,t (J)
ηI−1


ηI


] ηI
ηI−1


J = H,N


where IT,t (J) =
[
γ


1/ωI


I IH,t (J)
ωI−1


ωI + (1− γI)1/ωI IF,t (J)
ωI−1


ωI


] ωI
ωI−1


is a composite of tradable


goods devoted to investment in sector J . Variable ID,t (J) corresponds to the amount of good


D = H,F,N used in the assemblage of new capital goods for sector J .


The representative firm may adjust investment each period, but changing the flow of invest-


ment is costly. This assumption is introduced as a way to obtain more inertia in the demand
5Since utility exhibits habit formation in consumption the relevant discount factor is given by Λt,t+i =


βi
(


Ct(j)−hCt−1
Ct+i(j)−hCt+i−1


)
.
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for investment (see Christiano et al. (2005)).6 Let Zt (J) and ut (J) be the rental price and the


utilization rate of capital in sector J . The representative firm must solve the following problem


for each type of capital :


Vt (J) = max
Kt+i(J),It+i(J),ut+i(J)


Et


{ ∞∑
i=0


Λt,t+i
ut+i (J)Zt+i (J)Kt+i (J)− PI,t+iIt+i (J)


PC,t+i


}
,


subject to the law of motion of the capital stock for sector J ,


Kt+1 (J) = [1− δ (ut (J))]Kt (J) + S


(
It (J)
It−1 (J)


)
It (J) , (4)


where δ (ut) is the depreciation rate, which is a function of the utilization rate of capital. We


assume that δ (ut) is an increasing function, which implies that higher utilization rate depreciates


physical capital faster. Function S (.) characterizes the adjustment cost for investment. This


adjustment cost function satisfies: S(1 + gy) = 1, S′(1 + gy) = 0, S′′(1 + gy) = −µS < 0, where


gy is the per capita growth rate of the economy in the steady state.


The optimally conditions for the problem above are the following:


PI,t
PC,t


=
Qt (J)
PC,t


[
S


(
It (J)
It−1 (J)


)
+ S′


(
It (J)
It−1 (J)


)
It (J)
It−1 (J)


]
−


Et


{
Λt,t+1


Qt+1 (J)
PC,t+1


[
S′
(
It+1 (J)
It (J)


)(
It+1 (J)
It (J)


)2
]}


, (5)


Qt (J)
PC,t


= Et


{
Λt,t+1


[
Zt+1 (J)
PC,t+1


+
Qt+1 (J)
PC,t+1


(1− δ (ut (J)))
]}


, (6)


Zt (J)
PC,t


= δ′ (ut (J))
Qt (J)
PC,t


. (7)


Variable PI,t


PC,t
is the real cost of producing new capital goods (the price of the investment bundle


deflated by the CPI), where PI,t =
[
αIP


1−ηI
IT ,t


+ (1− αI)P
1−ηI
N,t


] 1
1−ηI and PIT ,t =


[
γIP


1−ωI
H,t +


(1− γI)P
1−ωI
F,t


] 1
1−ωI . Equations (5), (6) and (7) simultaneously determine the evolution of the


shadow price of capital, Qt (J), real investment expenditure, and the utilization rate of capital


for each sector.


3.3 Domestic production


There is a large set of firms that use a CES technology to assemble intermediate varieties into


Home goods sold to households, to firms producing new capital goods and to foreign agents.
6This assumption is a short-cut to more cumbersome approaches to model investment inertia, such as time-to-


build.
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There is also a large set of firms that use a similar CES technology to assemble intermediate


varieties into non-tradable goods sold to households, and firms producing new capital goods.


Let YN,t be the total quantity of non-tradable goods sold to domestic agents (households and


the representative firm assembling new capital goods). The demand for a generic variety zN to


assemble non-tradable goods is given by:


YN,t(zN ) =
(
PN,t(zN )
PN,t


)−εN
YN,t, (8)


where PN,t(zN ) is the price of variety zN . Analogously, let YH,t be quantity of Home goods sold


domestically, and Y ∗H,t the quantity sold abroad. The demands for a particular variety zH to


assemble these goods are given by


Y ∗H,t(zH) =


(
P ∗H,t(zH)
P ∗H,t


)−εH
Y ∗H,t YH,t(zH) =


(
PH,t(zH)
PH,t


)−εH
YH,t (9)


where PH(zH) is the price of the variety zH when used to assemble Home goods sold in the


domestic market, and P ∗H,t(zH) is the foreign-currency price of this variety when used to assemble


Home goods sold abroad. Variables PH,t and P ∗H,t are the corresponding aggregate price indices.


The foreign demand for Home goods, Y ∗H,t, is given by, Y ∗H,t = ζ∗
(
P ∗H,t


P ∗t


)−η∗
Y ∗t , where Y ∗t is


foreign output, ζ∗ corresponds to the share of domestic intermediate goods in the consumption


basket of foreign agents, and η∗ is the price elasticity of the demand.


Intermediate varieties in tradable and non-tradable sectors are produced by monopolistically


competitive firms. These firms maximize profits by choosing the prices of their differentiated


variety subject to the corresponding demands, and the available technology. Let YJ,t (zJ) be the


total quantity produced of a particular variety zJ in sector J = H,N . The available technology


is given by:


YJ,t(zJ) = AJ,t [Ttlt(zJ)]
ηJ [ut (J)Kt(zJ)]


1−ηJ , for J = N,H (10)


where lt(zJ) is the amount of labor and Kt(zJ) is the amount of physical capital utilized in pro-


duction. Parameter ηJ defines factor in production. The variable AJ,t represents a stationary


productivity shock common to all firms in sector J while Tt is a stochastic trend in labor pro-


ductivity that is common in both domestic sectors (H and N). Below we discuss the process


followed by these shocks.


We assume that the adjustment in prices of the domestic varieties face nominal rigidities à la


Calvo. In every period, the probability that a firm Home goods receives a signal for adjusting its


price for the domestic market is 1−φHD
, and the probability of adjusting its price for the foreign


market is 1 − φHF
. Analogously, the probability that a firm producing non-tradable varieties


receives a signal for adjusting its price is 1− φN . These probabilities are the same for all firms,
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independently of their history. If a firm does not receive a signal, it updates its price following


a simple rule that weights past inflation and the inflation target set by the central bank. Thus,


when a firm receives a signal to adjust its price it maximizes the discounted expected value of its


profits, conditional on having to passively update its price for a number of periods, and subject


to (9) or (8). Given this pricing structure, the paths for inflation of domestic tradable (H) and


non-tradable (N) goods are given by New Keynesian Philips curves with indexation. In their


log-linear forms, inflation in sector J depends on both last period’s inflation, expected inflation


next period and marginal cost in sector J .


3.4 Import goods retailers


We introduce local-currency price stickiness in order to allow for incomplete exchange rate pass-


through into import prices in the short-run. This feature of the model is important in order


to mitigate the expenditure switching effect of exchange rate movements for a given degree of


substitution between foreign and home goods.


There is a set of competitive assemblers that use a CES technology to combine a continuum


of differentiated imported varieties to produce a final foreign good YF . This good is consumed


by households and used for assembling new capital goods. The optimal mix of imported varieties


in the final foreign good defines the demands for each of them. In particular, the demand for


variety zF is given by:


YF,t(zF ) =
(
PF,t(zF )
PF,t


)−εF
YF,t, (11)


where εF is the elasticity of substitution among imported varieties, PF,t(zF ) is the domestic-


currency price of imported variety zF in the domestic market, and PF,t is the aggregate price of


import goods in this market.


Importing firms buy varieties abroad and re-sales them domestically to assemblers. Each


importing firm has monopoly power in the domestic retailing of a particular variety. They adjust


the domestic price of their varieties infrequently, only when receiving a signal. The signal arrives


with probability 1− φF each period. As in the case of domestically produced varieties, if a firm


does not receive a signal it updates its price following a “passive” rule that weights past inflation


and the inflation target set by the central bank. Therefore, when a generic importing firm zF


receives a signal, it chooses a new price by maximizing the discounted sum of expected profits


subject to the domestic demand for variety zF (11) and the updating rule.


Under this specification, changes in the nominal exchange rate will not immediately be passed


through into prices of imported good sold domestically. Therefore, exchange rate pass-through


will be incomplete in the short-run. In the long-run, firms freely adjust their prices, so the
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law-of-one-price for Foreign goods holds up to a constant.7


3.5 Monetary policy rule


Monetary policy is characterized as a simple feedback rule for the interest rate. Under the


baseline specification of the model, we assume that the central bank responds to contemporaneous


deviations of CPI inflation from target and to deviations of total output from its balanced growth


trend.


1 + it
1 + i


=
(


1 + it−1


1 + i


)ψi
(
Yt


Y t


)(1−ψi)ψy
(


1 + πt
1 + π


)(1−ψi)ψπ


where πt = PC,t/PC,t−1 − 1 is consumption price inflation, i is the steady state value for the


nominal interest rate, π is the inflation target, and Y t is the output trend.


3.6 Aggregate equilibrium


Once firms producing domestic varieties set their prices, they must supply any quantity demanded


at those given prices. Therefore, the market clearing condition for each variety implies that:


YN,t (zN ) =
(
PN,t(zN )
PN,t


)−εN
YN,t


YH,t (zH) =
(
PH,t(zH)
PH,t


)−εH
YH,t +


(
P ∗H,t(zH)
P ∗H,t


)−εH
Y ∗H,t


where YN,t = CN,t + IN,t (H) + IN,t (N) and YH,t = CH,t + IH,t (H) + IH,t (N) , and where Y ∗HF ,t


was defined above. The equilibrium requires that total labor demanded by intermediate varieties


producers must be equal to labor supply:
∫ 1
0 lt(zH)dzH +


∫ 1
0 lt(zN )dzN = lt, where lt is aggregate


labor service. Also, the demand for physical capital in sector J has to be equal to the available


amount of it:
∫ 1
0 Kt(zJ)dzJ = Kt (J) for J = H,N .


Using the equilibrium conditions in the goods and labor markets, and the budget constraint


of households and the government we obtain the following expression for the evolution of the net


foreign asset position:


Bt
(1 + i∗t )Θ (Bt)


= Bt−1
PY,t−1Yt−1


PY,tYt
+
PX,tXt


PY,tYt
−
PM,tMt


PY,tYt
,


where Bt is the aggregate net (liquid) asset position of the economy vis-a-vis the rest of the world


relative to nominal GDP, and PY,tYt = PC,tCt + PI,tIt + PX,tXt − PM,tMt is the nominal GDP


–measured from demand side. Nominal imports and exports are given by PM,tMt = EtP ∗F,tYF,t
7Formally, in the long-run PF = εF


εF−1
EP ∗


F .
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and PX,tXt = EtP ∗H,tY ∗H,t, respectively. The total quantity of imported goods is YF,t = CF,t +


IF,t (H) + IF,t (N).


3.7 Model calibration and solution


To solve the model we first tackle the non-stochastic steady-state by using numerical methods.


Then we solve the log-linearized decision rules from the behavioral equations of the model. We


use the QZ factorization described in Uhlig (1997). Table 1 presents the value chosen for the


structural parameters of the model. The calibration is meant to characterize quarterly data.


Many of the parameters were taken directly from the literature. Some other parameters were


chosen so as to match long-run features of the Chilean economy. In our simulations, productivity


shocks are calibrated so as to match the observed expansion in output during the Chilean boom


of the period 1995-2001, as discussed above.


4 Boom-bust Cycles in Small Open Economies


Using the model described in the previous section we analyze boom-bust episodes in open


economies. We use Chile as a reference country to evaluate the qualitative and quantitative


implications of the model. First, we consider a case of favorable external financial conditions


that are abruptly reversed. We then analyze the case of overoptimistic perception about future


productivity. As recently shown by CIMR (2007) in the context of a closed economy model, this


type miss-perception may lead to a boom-bust cycle similar to the one described in section 2. In


contrast to CIMR (2007), we show that in order to replicate the features of the boom-bust cycle


in a small open economy, we need to consider shocks to productivity trends, very much in line


with Aguiar and Gopinath (2007). Finally, we analyze the policy trade-offs faced by a monetary


authority confronted with a boom-bust cycle induced by overoptimistic perceptions.8


In what follows, we define the real exchange rate in the model as the relative price of domes-


tic tradable (H) and non-tradable (N) goods. The implied evolution of measured total factor


productivity (TFP) is estimated in the model as an aggregate Solow residual (without adjusting


for the capital utilization rate). We construct a similar measure using actual data for Chile.9


The Tobin’s Q is identified in the data with the stock market price, which in the case of Chile


corresponds to an aggregate price index (IPSA). In the data, labor is measured as the ratio of
8We do not analyze fiscal policy nor terms of trade shocks, which have also been relevant in the episodes


described. We rather concentrate on expectation based boom-bust cycles and the role of conventional central bank


policies.
9Formally, ln(TFPt) = ln(Yt)− η ln(lt)− (1− η) ln(Kt), where η is the labor share in aggregate output.
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formal employment to working age population and real wage corresponds an index of labor cost.10


4.1 Foreign financial condition reversal


According to several authors, the boom-bust cycle in many emerging market economies during


the 1990s was a consequence of changes in external financial conditions. This conclusion is based


on the observation that periods of favorable external financial conditions are associated with


economic expansions, while depressed economic activity coincides with periods of less beneficial


foreign financial conditions (see e.g. Neumeyer and Perri, 2005; Uribe and Yue, 2006). Favorable


external financial conditions at the beginning of the 1990s implied large capital flows to emerging


market economies that produced an economic boom coupled with real exchange rate appreciations


and current account deficits. The boom phase was then followed by an abrupt worsening in foreign


financial conditions. Valdés (2007) describes a similar pattern around the period 1995-2001 for


Chile, arguing that this behavior hinged partly on foreign financial factors.


To produce an initial boom in our model we assume an exogenous, highly persistent, decrease


in the foreign interest rate (i∗). The reversal in the favorable financial conditions is then modelled


as an exogenous increase on the foreign interest rate back to its original level. We calibrate


the size of the shock so that the boom in output roughly coincides with the data for Chile.


Figure 4 presents the results of this exercise. The model produces expansions in output, labor,


consumption and investment that are sharply reversed when the foreign interest rate returns


back to its original level. During the expansion, the real exchange appreciates by 10% and the


current account deficit (as GDP percentage) reaches a peak close to 6%. Contrary to what the


data shows, the model predicts an initial fall in inflation and a subsequent rise in this variable as


the exchange rate depreciates. The episode is accompanied by a rise in Tobin’s Q for both types


of capital. The boom in total output is driven by the evolution of output in the non-tradable


goods sector. In fact, the real appreciation of the currency leads to an initial fall in output in


the tradable goods sector. Overall, the story of a boom-bust cycle driven by changes in foreign


financial conditions is able to satisfactorily account for the stylized facts for Chile.


4.2 Overoptimistic perceptions


We explore now an alternative –though complementary– explanation for the boom-bust based on


the idea that, rather than being caused by external factors, the cycle was triggered by the miss-


perception of domestic private agents regarding future productivity prospects. As mentioned


above, this idea has been recently formalized by CIMR in a fully specified closed economy model.


We build on their approach to model overoptimistic news on future productivity improvements.
10To construct the cyclical components for these series, we follow the same procedure described in footnote 3.
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4.2.1 Transitory productivity shocks


We first assume that productivity in sector J = N,H is governed by the following stationary


process,


aJ,t = ρaJ
aJ,t−1 + ζaJ ,t−p + εaJ ,t J = H,N (12)


where aJ,t = lnAJ,t and εaJ ,t ∼ N
(
0, σ2


aJ


)
are i.i.d. innovations. The varaible ζaJ ,t−p is a shock


to the expected future productivity level p-periods ahead and is uncorrelated with εaJ ,t. This


shock captures the idea discussed in section 2, that structural reforms lead to expected changes in


productivity. However, those changes take time to materialize and the agents do not exactly know


the effective impact they have on productivity. Here, we assume that at time t private agents


learn that a set of reforms were carried out and, given (12), they expected that productivity p


period ahead will be given by


Et [aJ,t+p] = ρpaJ
aJ,t + ζaJ ,t


where ζaJ ,t > 0. At time t + p agents learn that the productivity level did change by less than


expected. For that, we introduce a shock εaJ ,t+p < 0 on productivity at t+ p. Figure 5 presents


the results of this exercise assuming p = 12 and ρaJ
= 0.999 together with actual data for Chile.11


We consider a case where news affect equally the expected productivity levels in both sectors (H


and N).12


As in CIMR the expected gain in productivity produces a boom in output. In our case, this is


mainly due to the boom in the tradable goods sector. In fact, output in the non-tradable goods


sector falls in the short run, and it increases afterwards. Consumption initially falls, but then it


slowly expands in response to the expected increase in productivity. Labor rises during the boom


phase due to the presence of sticky wages. When wages are flexible in our model, this expansion


in labor does not longer hold.13 This is coherent with Jaimovich and Rebelo (2007), who show


that, under flexible wages, households preferences should exhibit a weak wealth effect on labor


supply in order to generate a boom in labor in response to expected gains in productivity. In our


case, preferences are standard, but the wealth effect on labor supply is muted due to sticky wages.


Notice that total inflation falls along with the output boom. The reason is that expected future


productivity gains mean lower future marginal costs. Since inflation is forward looking, firms


respond by currently lowering their prices, despite of the rise in actual marginal cost associated


to the expansion in labor and the rise in real wages.


Notice also that despite of the expected increase in future productivity, investment and the


Tobin’s Q in both sectors fall initially when the signal about future productivity arrives. Then,
11These productivity news shocks are highly persistent, but they are still transitory.
12Real quantities in figures below correspond to the normalized effects of the productivity shock, i.e., our simu-


lations remove the effects of the actual improvement in productivity associated to the economic reforms.
13The simulation under flexible wages is available upon request.
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these variables monotonically increase over time until the moment when agents learn that pro-


ductivity is lower than expected. These predictions regarding the behavior of investment and


the Tobin’s Q during the news-induced boom-bust cycle are different than the one obtained by


CIMR. In their monetary closed economy model the boom-bust cycle in output also coincides with


a boom-bust cycle for investment and the Tobin’s Q. The reason for such behavior of investment


in response to news about future productivity in CIMR is the presence of low wage indexation


to past inflation and an aggressive inflation-targeting policy rule for the central bank. In their


case, given the fall of inflation below target, monetary policy follows a loose stance in response to


the news shock. That helps rising the Tobin’s Q and induces firms to increase investment. Low


indexation to past inflation, in turn, helps to keep real wages rigid in the short run, amplifying


the effects of overoptimistic shocks. In our calibration, we allow for a larger fraction of wages


to be indexed to past inflation, and a less hawkish inflation targeting regime –more in line with


standard parametrization for the monetary policy rule. In figure 5, we also present an alternative


calibration of the model where we reduce the fraction of wages being indexed to past inflation


(we set χL = 0.1) and increase the reaction of the interest rate to deviations of inflation from


target in the policy rule (we set ψπ = 2.0). Under this alternative parametrization, the results


of our simulation are in line with CIMR: Output, labor, consumption, investment and Tobin’s Q


simultaneously feature a boom-bust cycle.


While the qualitative results of this last exercise resemble some features of the stylized fact


discussed in section 2, they fall short in comparison to the observed size of the boom-bust in


investment and consumption in Chile. More importantly, the simulation misses two prominent


features of the boom-bust cycles in emerging economies during the 1990s, namely, the real appre-


ciation of the exchange rate and the current account deficit. Despite of the boom in consumption


and investment –which tends to produce a deficit in the current account– the exchange rate de-


preciation leads to an improvement in net exports that offsets the negative impact on this variable


associated with the expansion in consumption and investment. In other words, the expenditure


switching effect induced by the depreciation of the currency dominates the intertemporal effect


of the shock. The counterfactual behavior of the real exchange rate and the current account are


even worse under the baseline calibration.


There are at least two reasons for why in a small open economy a loose monetary policy is


not able to amplify boom-bust cycles as in CIMR (2007). First, in a closed economy, the policy


interest rate determines the equilibrium between domestic investment and savings. In a open


economy, investment can differ from domestic saving. Moreover, in an open economy both the


domestic and the foreign interest rates are relevant to determine the cost of financing. If the


foreign interest rate is constant –and the country does not face external borrowing constraints–


the domestic monetary policy is less powerful to affect the relevant cost of financing. As a result,
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the response of investment to a signal shock is less intense. Second, the increase in private


consumption in response to a future expected increase in productivity depends on the expected


present value of private income. In a closed economy, the sequence of interest rates relevant


to discount future incomes is determined by the monetary policy. Thus, if monetary policy is


expansive in response to a signal shock, the perceived increase in the present value of income is


amplified. In a small open economy facing a constant foreign interest rate, the monetary policy


does not determine alone the relevant interest rate to discount expected future incomes. Hence,


a loose monetary policy has limited impact in amplifying the boom in consumption.


As mentioned, the model fails at producing a real appreciation of the currency along the boom


phase of the cycle. In a two sector small open economy, with tradable and non-tradable goods, a


real appreciation of the currency requires an increase in real wages. In the case of CIMR, part of


the mechanism that produces the boom is the combination of rigid nominal wages with a strict


inflation targeting that prevents an upward adjustment in real wages. Therefore, if we rely on


more rigid real wages to produce a sizable boom-bust cycle we will not be able to produce a


significant real appreciation of the currency along the cycle.


4.2.2 Permanent productivity shocks


Aguiar and Gopinath (2007) have argued that in the case of emerging market economies, rather


than productivity level shocks, stochastic productivity trends are a major source of business cycle


fluctuations. Moreover, these types of shocks are able to explain the observed co-movement in ma-


jor aggregate variables in these economies. In particular, shocks to the trend are better equipped


to produce strongly counter-cyclical current accounts as observed in emerging economies. Inter-


estingly, trend shocks can generate these co-movement without relying on household preferences


that remove wealth effects in the labor supply.14


In what follows, we analyze the case of news shocks about future productivity trends. To


that end, we assume that the natural logarithm of the stochastic trend of labor productivity, Tt,


evolves according to the following expression:


τT,t = τT,t−1 + (1− ρT ) ln(1 + gy) + ρT∆τT,t−1 + ζT,t−p + εT,t (13)


where τT,t = ln(Tt) and εT,t ∼ N(0, σ2
T ) are i.i.d. innovations. A shock ζT,t−p leads to an increase


in the labor productivity trend p-periods ahead. We assume that this shock is uncorrelated with


εT,t. If agents receive a signal ζT,t > 0 at time t they expect that p-periods ahead productivity


will grow faster:


Et [∆τT,t+p] = ρpT [∆τT,t + (1− ρT ) ln(1 + gy)] + ζT,t


14See Correia et al. (1995) for an analysis of the aggregate dynamics in a small open economy without wealth


effects in the labor supply.
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As in the case of news about productivity levels, we consider a shock εT,t+p < 0 in period


t + p to capture the idea that the news about expected productivity growth turns out to be


overoptimistic ex-post.


Figure 6 presents the trajectories of the endogenous variables to an expected shock to the


trend in the future that does not materialize when p = 12 and ρT = 0.999. These trajectories


were obtained using the baseline calibration of the model.15 The qualitative results of this shock


are similar to the one obtain with a positive signal to the productivity level in the future. We


observe a boom-bust episode in output, labor, investment and consumption. Interestingly, the


quantitative pattern followed by the last three variables resembles more closely the data than in


the previous case. Notice also that a positive news regarding future productivity trend generates


a real appreciation of the exchange rate as in the stylized facts reported above. The deficit of


the current account reaches almost 7% which is also very similar to what happened in Chile in


the late 1990s, previous to the Asian crisis. In our model, the real appreciation also explains


why the boom in output is mainly focussed in the non-tradable goods sector. This is completely


different to the case of productivity level signal, where the boom is explained by the expansion


of the tradable goods sector. In the bust phase, as the expected increase in productivity growth


does not materialize, the real exchange rate depreciates and the current account deficit reverses.


Also, there is a recession in output, and aggregate demand falls.


Despite the fact that productivity does not change, the measured TFP in the model rises


above trend during the boom phase and falls during the bust phase. This pattern resembles the


observed evolution of TFP constructed with actual Chilean data, highlighting the strong pro-


cyclicly of this variable. The model also predicts an increase in the Tobin’s Q during the boom


and a subsequent fall in this variable during the recession. However, the size of the cycle of this


variable is smaller than the observed in stock prices for Chile during the 1990s. The model is


also not able to closely replicate the behavior of the inflation in Chile.


Notice that in our model, the boom-bust cycle episode does not arise as a consequence of a


loosening in the monetary policy in response to a fall in inflation, as in CIMR. Notice also that the


dynamics of several variables in response to an overoptimistic signal regarding future productivity


trends are observational equivalent to the ones obtained from a reversal in foreign financial


conditions. Thus, overconfidence in productivity prospects is able to satisfactorily generate the


boom-bust episode observed in emerging economies without any actual change in the economic


fundamentals.
15As with the productivity level news, we normalize the effects removing actual effect in the productivity trend.
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4.3 Monetary Policy Trade-offs


To discuss the different trade-offs faced by the monetary policy in a boom-bust episode such


as the one described, we analyze the implication of alternative policy rules. First, we consider


two alternative rules, one that react strongly to inflation and another that responds strongly to


output. Second, we consider a rule where the monetary policy responds not only to output and


inflation but also to real exchange rate fluctuations. In all simulations below, we consider the


responses after a signal to productivity trend.


Figure 7 presents the baseline scenario altogether with a rule that is more aggressive to


inflation and a rule that is more aggressive to output fluctuations. If the monetary policy focuses


on following a more strict inflation targeting (ψπ = 3), the boom in output, consumption and


investment would be larger because monetary policy takes a more expansive stance. As a result,


the deficit in the current account would also be larger and the real appreciation would be slightly


smaller. On the other hand, if the monetary policy tries to stabilize more aggressive output


(ψy = 0.8), then it would induce a larger negative deviation of inflation from target, and also a


larger appreciation of the currency. Given this currency appreciation, output stabilization rests


proportionally more on tradable output than on non-tradable output. The higher interest rate


implied by this policy reduces the boom in the Tobin’s Q in both sectors and the current account


deficit.


In the case of a central bank that responds to exchange rate fluctuations, we modify the policy


rule as follows:


1 + it
1 + i


=
(


1 + it−1


1 + i


)ψi
(
Yt


Y t


)(1−ψi)ψy
(


1 + πt
1 + π


)(1−ψi)ψπ
(
RERt


RER


)(1−ψi)ψrer


where RERt is the real exchange rate and RER is its steady state value. We calibrate ψrer
to 0.2. The rest of the parameters of the rule are same as in the baseline calibration. This


policy rule is motivated by the Chilean experience during the 1990s when the Central Bank had


simultaneously a target for inflation and a target zone for the exchange rate as a way of avoiding


excessive fluctuation in this last variable. Figure 8 presents the results. Under this policy, the


monetary policy tends to be more expansive in response to the expected gain in productivity.


As a result, the increases in output, consumption, investment and labor are larger than in the


baseline case. The alternative rule reduces the volatility of the exchange rate, but the current


account deficit, due to the investment and consumption booms, is more acute in response to the


shock than in the baseline case. Notice also that initially inflation rises and falls after the bust.


Inflation falls because the reduction in marginal cost dominates the inflationary effects of the


subsequent currency depreciation. Finally, by stabilizing the real exchange rate, the monetary


policy exacerbates the boom-bust in the Tobin’s Q and makes the predictions of the model
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quantitatively closer to the stock prices evolution in Chile during the 1990s.


5 Conclusions


Using a small open economy DSGE model we show that expected future gains in productivity that


are not materialized ex-post –new shocks– can generate a boom-bust cycle in output as the one


observed in several emerging market economies during the 1990s. However, when people expect


that future productivity gains are transitory level changes, then the model predictions regarding


the current account and the real exchange rate are not coherent with the observed pattern in


those episodes. Moreover, the quantitative predictions for investment and consumption fall short


respect to what we observe in the data. That is the case even if we assume a strong monetary


policy response to inflation and a low degree of wage indexation to past inflation. The reason is


that in an open economy setup the amplifying mechanism of the monetary policy is unable to


induce large consumption and investment booms.


When the expected future improvement in productivity corresponds to a trend shock, for


which the rate of growth of productivity is expected to increase above its steady-state level


during some periods, the predictions of the model match satisfactorily the stylized facts observed


in the data. Also, the boom generated by a productivity trend new shock affects more intensively


the non-tradable goods sector. In fact, the the real appreciation of the currency induced by


the shock leads to a fall in output in the tradable goods sector to fall. These results resemble


almost exactly the results that can be obtained under a exogenous reversal in the foreign financial


conditions faced by the country.


We show that monetary policy faces relevant trade-offs in a boom-bust cycle episode driven


by overoptimistic perceptions about productivity improvements. In one hand, if the central bank


tries to stabilize output, the fall in inflation and contraction in output in the tradable goods


sector would be larger. On the other hand, if the central bank targets inflation more strictly,


then the boom in activity, the current account deterioration and the exchange rate appreciation


will be larger, and the subsequent recession more severe.


If we modify the policy rule to include an endogenous response of the interest rate to exchange


rate fluctuation (this is intended to capture the behavior of the CBC during the period, during


which a target zone for the exchange rate coexisted with a target for inflation) then we observe


that the model does a better job at fitting some of the variables. This type of policy only prevents


the perverse effects on the domestic tradable goods sector in the short run, but it amplifies the


boom-bust cycle in the other aggregate variables.
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Table 1: Base Calibration


Name Description Value


β Subjective discount factor (quarterly) 0.999


σL Inverse of the elasticity of the labor supply 1


h Habit formation coefficient 0.9


αC Share of tradable goods in the consumption basket 0.4


γC Share of H goods in the tradable consumption basket 0.5


ηC Elasticity of substitution b/w tradable and non-tradable


goods in the consumption basket


0.5


ωC Elasticity of substitution b/w Home and Foreign goods in


the tradable consumption basket


1


εL Elasticity of substitution among labor varieties 11


φL Calvo probb in nominal wages 0.9


χL Wage indexation to past inflation 0.9


αI Share of tradable goods in the investment basket [in I(H)


and I(N)]


0.6


γI Share of H goods in the tradable investment basket [in I(H)


and I(N)]


0.5


ηI Elasticity of substitution b/w tradable and non-tradable


goods in the investment basket [in I(H) and I(N)]


0.5


ωI Elasticity of substitution b/w Home and Foreign goods in


the tradable investment basket [in I(H) and I(N)]


1


δ(1) Depreciation rate (annual) of capital [in I(H) and I(N)] 5.0%


µS Elasticity of the adjustment cost in the flow of investment


[in I(H) and I(N)]


15


σI Elasticity of the cost of capital utilization rate [δ′′(1)/δ′(1)] 0.05


ηH Labor share in the domestic tradable goods sector 0.65


ηN Labor share in the non-tradable goods sector 0.65
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Table 1 cont.: Base Calibration


Name Description Value


εN Elasticity of substitution among non-tradable varieties 11


εH Elasticity of substitution among domestic tradable varieties 11


εF Elasticity of substitution among imported varieties 11


φHD
Calvo probb in prices of domestic tradable goods sold do-


mestically


0.75


χHD
Indexation to past inflation of domestic tradable goods sold


domestically


0.5


φHF
Calvo probb in foreign currency prices of domestic tradable


goods sold abroad


0.75


χHF
Indexation to past inflation of domestic tradable goods sold


abroad


0.5


φN Calvo probb in prices of non-tradable goods 0.75


χN Indexation to past inflation of non-tradable goods 0.5


φF Calvo probb in prices of imported goods 0.75


χF Indexation to past inflation of imported goods 0.5


ψi Smoothing coefficient in the Taylor-type rule 0.8


ψπ Inflation coefficient in the Taylor-type rule 1.75


ψy Output coefficient in the Taylor-type rule 0.2


ηF Elasticity of the foreign demand for domestic tradable goods 0.5


% Elasticity of the external premium to the Debt-to-GDP ratio 0.00001


NX/Y Steady state Net export-to-GDP ratio 2%


CA/Y Steady state Current Account-to-GDP ratio -2%


gy Steady state GDP growth 5%


ρaH
Persistence of productivity level shock in sector H 0.999


ρaN
Persistence of productivity level shock in sector N 0.999


ρT Persistence of productivity trend shock 0.999


ρi∗ Persistence of productivity foreign financial condition shock 0.999
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Figure 1: Reforms and its impact on productivity
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Figure 2: Measuring total factor productivity
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Source: Authors estimates based on annual TFP growth rates series (using HP filter). The data


source is the Ministry of Finance of Chile (1960-2006) and the TFP forecasted by the Group of


Experts on Trend GDP (2007-2012).
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Figure 3: Stylized facts
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Figure 4: Foreign financial condition reversal
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Figure 5: Productivity level signal
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Figure 6: Productivity trend signal
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Figure 7: Stabilization of inflation vs. output
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Figure 8: Stabilization of the real exchange rate
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Introducción  


 


Estimados señores presidentes de bancos centrales,  


Estimados banqueros centrales, académicos y economistas visitantes del extranjero,  


Estimadas amigas y amigos:  


 


Me es muy grato darles la bienvenida a esta Undécima Conferencia Anual del 


Banco Central de Chile, que se ha constituido en un evento tradicional de discusión de 


ideas relevantes y nuevas, no sólo para las políticas de la banca central y el desarrollo 


económico de nuestros países, sino también para la investigación y demás tareas del 


mundo académico. Este año nuestra Conferencia trata el tema “Política Monetaria bajo 


Incertidumbre y Aprendizaje”. Como sabemos por nuestra experiencia diaria, la política 


monetaria siempre se conduce bajo condiciones de incertidumbre; vale decir, con un 


conocimiento limitado e imperfecto sobre cómo funcionan y cómo se desenvuelven 


nuestras economías, y cómo se ven afectadas por factores externos. De dicha 


incertidumbre —que es compartida por los bancos centrales, el público y los 


mercados— se deriva la continua necesidad de aprender y poner al día nuestro 


conocimiento sobre la estructura y la información económica. Esto es especialmente 


importante para bancos centrales que tienen como objetivo central la estabilidad de 


precios. Por ello es que la incertidumbre y el aprendizaje condicionan el 


comportamiento de los mercados y las decisiones de los bancos centrales. Ello hace que 


las decisiones de política monetaria disten mucho de constituir tareas mecánicas o 


triviales. Por lo anterior, no nos toma por sorpresa la notable participación de banqueros 


centrales del mundo en esta conferencia, quienes enfrentan este problema en el día a día 


de la conducción de sus políticas. Doy la más cordial bienvenida a nuestros colegas de 


otros países y agradezco su muy valiosa participación en esta conferencia. 


A continuación revisaré los retos que imponen la incertidumbre y el aprendizaje 


en la conducción de política monetaria, dando énfasis especial a los temas sobre los 


cuales debatiremos hoy y mañana. Además presentaré brevemente los aportes que harán 


los destacados investigadores y académicos que contribuyen a esta conferencia. 


 


Incertidumbre 


La política monetaria opera siempre en un ambiente de información incompleta 


e imperfecta, y de ahí el cuidado que se debe tener cuando se toman las decisiones de 
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política. Para este fin hemos desarrollado modelos que representan nuestras economías 


y las interacciones entre los mercados y nuestras decisiones de política monetaria. Estos 


modelos son representaciones muy imperfectas del verdadero funcionamiento de 


nuestras economías, y están basados en datos y estadísticas que también se conocen con 


variados grados de incertidumbre. 


De lo anterior se deriva que son dos las fuentes principales de la carencia de 


información completa que enfrentamos. La primera fuente de incertidumbre es la 


verdadera estructura de la economía. Nuestros modelos son solo aproximaciones a la 


realidad. No conocemos con precisión el funcionamiento de los mercados de bienes, de 


factores y de activos financieros y monetarios. Existen vínculos entre mercados y 


variables de los cuales somos concientes recién después de haber errado en su 


seguimiento o en su proyección. Existe incertidumbre sobre cómo los mercados forman 


sus expectativas respecto de la evolución de la economía, en general, y cómo reaccionan 


a las decisiones de la autoridad monetaria, en particular. Sólo sabemos con certeza que 


nuestros modelos son un reflejo muy imperfecto de nuestras economías. Sabemos que la 


especificación de sus ecuaciones —sus variables incluidas y sus parámetros, la dinámica 


y la interrelación con otras ecuaciones— está sujeta a altos grados de incertidumbre y 


error. Ello nos obliga a una continua revisión de los modelos, a la luz de los avances en 


teoría macroeconómica y monetaria, y a la luz de nuestro aprendizaje sobre cómo 


funcionan nuestras economías en la realidad. 


La segunda fuente de incertidumbre que enfrentamos es la información 


estadística y los datos de los cuales disponemos al momento de tomar decisiones. En 


primer lugar, sabemos que los datos estadísticos están sujetos a errores de medición, por 


lo cual debemos condicionar nuestras decisiones a que todas nuestras estadísticas 


contienen dichos componentes de error. Segundo, desconocemos las realizaciones 


actuales de muchas variables claves, como el empleo y la actividad económica, lo que 


refleja carencia de información en tiempo real. Tercero, hay variables que son 


estadísticamente inobservables, pero claves para las decisiones de política monetaria, 


como el producto potencial o de tendencia, la tasa natural de desempleo, la tasa de 


interés neutral de política monetaria y el tipo de cambio real de equilibrio. Estas son 


variables que no conoceremos nunca con precisión, ni siquiera en su comportamiento 


histórico, lo que nos obliga a estimarlas con modelos imperfectos. Su importancia 


radica en que nuestras estimaciones de estas variables —y de las correspondientes 


brechas de tasas de política, de actividad y de empleo— tienen una influencia 
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importante en la trayectoria proyectada de la inflación y en nuestras decisiones de 


política. Finalmente, y no por obvio menos relevante, desconocemos el comportamiento 


futuro de todas las variables. Esta fuente de incertidumbre puede ser particularmente 


importante cuando enfrentamos situaciones como la actual, de significativa 


incertidumbre sobre la persistencia futura de los shocks de precios de energía y de 


alimentos que hemos sufrido este año, o cuando enfrentamos una importante 


incertidumbre sobre el desarrollo futuro de las turbulencias financieras derivadas de la 


crisis de los créditos sub-prime en EE.UU. y sus repercusiones financieras y reales 


globales. 


 


Aprendizaje 


El segundo gran tema que discutiremos intensamente estos dos días está 


íntimamente ligado a la incertidumbre y trata del aprendizaje, tanto de la teoría 


macroeconómica como de la conducción práctica de la política monetaria y del 


comportamiento de los mercados. Una de las teorías más influyentes en macroeconomía 


ha sido la hipótesis de expectativas racionales, que trata directamente la información 


que enfrentan agentes y autoridades sobre la evolución de la economía en períodos 


futuros. Dicha hipótesis postula que los agentes y autoridades actúan hoy de acuerdo a 


la información disponible y a sus expectativas sobre la evolución futura de la economía. 


En sus versiones simples de los años setenta y ochenta, la teoría de expectativas 


racionales suponía un conocimiento sofisticado e instantáneo sobre la estructura de la 


economía y sus datos estadísticos, compartido plenamente por el sector privado y los 


ejecutores de las políticas económicas. 


La teoría simple de expectativas racionales se fue corrigiendo a partir de los años 


noventa, con el surgimiento de teorías de expectativas que reconocen que la 


información es costosa de procesar y es compartida heterogéneamente entre agentes 


diversos. Los agentes tienen un conocimiento muy imperfecto de la estructura de la 


economía y los datos económicos, lo que condiciona sus decisiones óptimas. Es este 


proceso de extracción de información y su procesamiento eficiente lo que motiva la 


teoría del aprendizaje, en la que mercados y autoridades consideran sus errores, para ir 


aprendiendo a procesar y utilizar más eficientemente la información disponible. Así se 


da cabida a juegos dinámicos de mutua interacción entre la autoridad y los mercados, 


que condicionan la determinación y la estabilidad de los equilibrios macroeconómicos, 


así como las decisiones de política monetaria y sus efectos sobre las economías. 
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De estos vínculos nuevos establecidos por la teoría y la evidencia empírica entre 


incertidumbre, aprendizaje y equilibrios macroeconómicos, analizados en esta 


Conferencia, esperamos poder extraer conclusiones que nos ayuden en la 


implementación futura de la política monetaria. 


 


Incertidumbre y aprendizaje en Chile  


Las limitaciones de información sobre la estructura económica y los datos en 


general, y sobre el proceso inflacionario en particular, se reflejan en varias 


características del marco de la política monetaria adoptado en Chile. De modo similar a 


como se hace en otros países con metas de inflación, el Banco Central de Chile ha 


definido una meta de inflación rango para la tasa de inflación, y no una meta punto.  


El objetivo es que la inflación anual del IPC se ubique la mayor parte del tiempo 


en torno al 3%, con un rango de tolerancia de más / menos un punto porcentual. La 


amplitud del rango meta reconoce la ocurrencia de episodios de shocks inesperados a la 


economía, en los que la inflación se puede salir del rango meta por un período acotado, 


para retornar hacia la meta en el horizonte de política relevante. Finalmente, en la 


definición operacional de la política monetaria, el Banco Central de Chile ha definido 


un horizonte de política en torno a dos años, que es el período aproximado para el cual 


la proyección de inflación está cerca del centro del rango meta. Este horizonte es 


coherente con los rezagos —también variables e inciertos— con los que actúa la política 


monetaria sobre la actividad y los precios, y con el nivel de tasa de interés de política 


monetaria, al momento de formularse la proyección de inflación a dos años.  


En Chile hemos vivido episodios de shocks inesperados de inflación en el 


pasado, por ejemplo en el año 2004, cuando la tasa de inflación anual cayó por debajo 


del límite inferior del rango de tolerancia (2%), y en el año presente, cuando la 


combinación de shocks de precios de energía y de alimentos, de una magnitud 


inesperadamente grande, han llevado a la tasa de inflación anual por encima del límite 


superior del rango de tolerancia (4%). Estos shocks inesperados de precios de petróleo y 


de alimentos se observan globalmente, elevando la inflación mundial a un máximo 


cíclico. Sin embargo, los shocks mundiales de precios han sido exacerbados en Chile 


por problemas en los suministros de gas y el efecto de las intensas heladas sobre los 


precios de los alimentos. 
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En ambos episodios, el de 2003 y el de 2007, el Banco Central de Chile ha 


enfrentado situaciones de significativa incertidumbre sobre la persistencia de estos 


shocks de inflación y sus efectos en la trayectoria proyectada de la inflación futura. Y en 


ambos episodios, el Banco Central de Chile ha tomado las decisiones de política 


adecuadas, a la luz del estado actual del conocimiento, para influir en una trayectoria 


proyectada de la inflación futura, llevándola hacia el 3% anual en el horizonte de 


política monetaria. 


 No obstante la ocurrencia inevitable de este tipo de episodios, el marco de metas 


de inflación en que se conduce la política monearía ha sido exitoso en el caso de Chile. 


Desde el año 2001, cuando se inició la implementación de una meta inflacionaria 


centrada en 3% anual, y hasta octubre de este año, la tasa de inflación IPC promedio 


anual ha sido de 2.85%, representando una desviación promedio de la inflación respecto 


de la meta de sólo -0.15% en este mismo período (gráfico 1). 


 


Gráfico 1 


Inflación de IPC y meta de inflación en Chile: enero 2001 – octubre 2007 


(tasa de variación anual, %) 


 


 


 


 


 


 


 


 


 


Fuente: INE, Banco Central de Chile. 


 


Otra forma de medición del acierto de la política monetaria es el valor absoluto 


promedio de la desviación de la tasa de inflación respecto del centro del rango meta 


(vale decir, la desviación promedio por arriba o por abajo de 3%), que en el caso de 


Chile ha sido de 0.9% anual en el período que cubre desde enero de 2001 hasta octubre 


de 2007 (gráfico 2).  
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Gráfico 2 


Desviación absoluta de la inflación IPC respecto de la meta de inflación en Chile: 


enero 2001 – octubre 2007 


(desviación respecto de tasa anual, %) 


 


 


 


 


 


 


 


 


Fuente: INE, Banco Central de Chile. 


 


Esta desviación absoluta promedio es inferior al 1.1%, que es la desviación absoluta 


promedio de la inflación respecto de la meta observada en el universo de los ocho países 


industriales que actualmente tienen metas de inflación (Australia, Canadá, Islandia, 


Nueva Zelanda, Noruega, Suiza, Suecia y el Reino Unido) (gráfico 3). 


 


Gráfico 3 


Desviación absoluta de la inflación IPC respecto de las metas de inflación en países 


desarrollados y en Chile: 1990 - 2007 


(desviación respecto de tasa anual, %) 


 


 


 


 


 


 


 


 


Fuente: INE, Bloomberg, Banco Central de Chile. 
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De este modo, para la implementación operacional de estos objetivos de política, 


nuestros modelos y nuestras proyecciones reflejan la información imperfecta sobre la 


estructura y los datos de la economía chilena, con la que contamos al momento de tomar 


las decisiones de política monetaria. La continua revisión de nuestros conocimientos, 


nuestros modelos y nuestros datos reflejan un proceso de aprendizaje y corrección de 


errores. La única certeza que tenemos es que dicho aprendizaje no tiene fin. 


 


Segunda Reunión Cumbre de Bancos Centrales con Metas de Inflación 


 Quiero hacer referencia también a que algunos de estos temas fueron discutidos 


en el día de ayer, en el marco de la Segunda Reunión Cumbre de Bancos Centrales 


sobre Metas de Inflación, organizada por el Banco Central de Chile con gobernadores, 


consejeros y economistas jefe de 28 bancos centrales del mundo. Las discusiones fueron 


muy beneficiosas para los participantes y se centraron en cuatro temas específicos: (i) 


nuevas lecciones y retos de bancos centrales operando bajo el esquema de metas de 


inflación, (ii) la conducción de la política monetaria bajo condiciones de aprendizaje, 


(iii) las formas como los bancos centrales enfrentan variables inobservables, y (iv) la 


comunicación y transparencia de la política monetaria.  


 


Undécima Conferencia Anual del Banco Central de Chile  


Volviendo al día de hoy, en esta Undécima Conferencia Anual del Banco 


Central de Chile buscamos analizar temas macroeconómicos de frontera en la 


comprensión de la política monetaria y en el perfeccionamiento de su conducción, 


considerando la incidencia de la incertidumbre y el aprendizaje. Contaremos con las 


contribuciones de destacados académicos, investigadores y responsables de política 


monetaria, compartiendo los resultados de trabajos de investigación encargados para 


esta ocasión. 


 


Después de estas palabras introductorias, la primera conferencia invitada es 


presentada por el profesor Thomas Sargent, Presidente de la American Economic 


Association. El Profesor Sargent ha sido un precursor de la teoría de expectativas 


racionales, ampliando hasta la fecha los fundamentos teóricos del concepto de 


racionalidad y sus implicancias para la teoría del aprendizaje y el tratamiento 
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econométrico que debe dársele. En unos minutos, Tom Sargent discute sobre evolución 


versus diseño inteligente en macroeconomía.  


La tercera sesión de esta conferencia analiza la implementación de la política 


monetaria bajo incertidumbre de modelos. Lars Svensson y Noah Williams analizan la 


optimalidad de la política monetaria en un modelo dinámico estocástico de equilibrio 


general bajo incertidumbre. Su modelo analiza cómo distintas formas de incertidumbre 


afectan las decisiones óptimas de política monetaria, y asigna un rol al aprendizaje y a la 


experimentación activa. Luego, Athanasios Orphanides y John Williams analizan la 


robustez de distintas reglas de política monetaria bajo diferentes tipos de formación de 


expectativas. Ellos consideran el caso muy realista de incertidumbre sobre la estructura 


precisa de la economía y sobre dos variables inobservables: la tasa de interés neutral de 


política monetaria y la tasa natural de desempleo. 


La cuarta sesión se concentra en la relación entre el aprendizaje y la estabilidad 


y el equilibrio en modelos de política monetaria. George Evans y Seppo Honkapohja 


analizan la robustez de la estabilidad de equilibrios de expectativas racionales bajo 


aprendizaje. Los autores consideran una amplia variedad de reglas de tasas de interés, 


tanto bajo discreción como bajo reglas. Luego Roger Guesnerie examina la calidad de la 


coordinación de expectativas para lograr la estabilidad del equilibrio en modelos de 


política monetaria. En este trabajo se analiza la diferencia entre reglas de aprendizaje 


“evolutivas” (por ej., basadas en aprendizaje dinámico adaptativo) y reglas “eductivas” 


(basadas en una masa crítica de agentes que comparten el conocimiento en torno al 


equilibrio), con una aplicación a modelos simples de política monetaria. 


En la quinta sesión se debatirá sobre las consecuencias que tiene la información 


incompleta para la transparencia, la credibilidad y el aprendizaje de la política 


monetaria. Martin Melecky, Diego Rodríguez Palenzuela y Ulf Söderström analizan los 


beneficios, en términos de menor volatilidad macroeconómica, de transparencia y 


credibilidad bajo distintos escenarios de formación de expectativas privadas, en los que 


los agentes no pueden distinguir entre shocks temporales a la regla de política de la 


autoridad monetaria o a cambios permanentes en la meta de inflación. Los autores 


aplican su modelo a la Zona Euro. A continuación, Volker Wieland analiza el vínculo 


entre indización inflacionaria endógena y aprendizaje adaptativo, en un modelo neo-


keynesiano para la Curva de Phillips. El autor utiliza su modelo para explicar la 


experiencia chilena de estabilización bajo metas fijadas anualmente durante la década 


de los noventa. 
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Iniciaremos el día de mañana con la sexta sesión, centrada en la relación entre el 


aprendizaje y la determinación del equilibrio en un modelo de política monetaria, con la 


contribución de Bennett McCallum sobre este tema. Su trabajo se concentra en la 


relación entre los equilibrios de expectativas racionales con dos requerimientos de 


dichos equilibrios: un proceso de aprendizaje basado en la minimización de errores 


cuadráticos y una “formulación razonable” de la estructura del modelo.  


En la séptima sesión de la conferencia discutiremos sobre rigideces de 


información y especificación incorrecta de modelos, con sus consiguientes implicancias 


para la política monetaria. Ricardo Reis examinará las implicancias de un modelo de 


equilibrio general en que las personas encuentran costoso procesar nueva información y 


deciden óptimamente permanecer desatentos a información nueva por algún tiempo. El 


autor aplica este modelo a la Zona Euro y a EE.UU. para analizar la optimalidad de 


distintas reglas de política monetaria y evaluar las políticas de estabilización aplicadas 


en el pasado. A continuación, Marco del Negro y Frank Schorfheide estudian la 


conducción de la política monetaria en modelos de equilibrio general para economías 


abiertas, potencialmente mal especificados. Ellos estiman su modelo utilizando datos 


para Chile, cuantificando los efectos de la mala especificación e ilustrando sus 


implicancias para distintas reglas de política monetaria. 


Para concluir la mañana del día viernes, contaremos con la presencia de Stanley 


Fischer, quien presentará la segunda conferencia invitada. Él compartirá su vasta 


experiencia académica y su visión de los desafíos en la conducción de la política 


monetaria de Israel, cuyo Banco Central preside.  


Durante la tarde daremos paso a las últimas dos sesiones de esta Conferencia 


Anual. En la novena sesión, Klaus Schmidt-Hebbel y Carl Walsh aplican un modelo 


neo-keynesiano de política monetaria para estimar variables inobservables (entre ellas, 


el producto potencial y la tasa de interés neutral) en las economías del G3 y en 7 países 


con metas de inflación. Los autores explotan las series que estiman para analizar el 


comovimiento y la convergencia en ciclos económicos y en política monetaria entre las 


economías consideradas. 


La décima y última sesión de la conferencia está dedicada a derivar las 


implicancias de la incertidumbre de modelos y datos para la política monetaria y el 


ajuste macroeconómico en Chile. Felipe Morandé y Mauricio Tejada examinan la 


relevancia cuantitativa de la incertidumbre derivada de datos sujetos a revisión en las 


decisiones de política, además de la ignorancia sobre los shocks futuros y la veracidad 
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de los modelos utilizados. Los autores aplican su trabajo a la evaluación cuantitativa de 


la conducción de la política monetaria en Chile. Finalmente, Manuel Marfán, Juan 


Pablo Medina, Jorge Selaive y Claudio Soto analizan los ciclos de expansión y 


contracción en economías representadas por un modelo dinámico estocástico de 


equilibrio general, en que el sector privado está sujeto a episodios de sobre-optimismo. 


Los autores aplican este modelo a Chile, mostrando que la autoridad monetaria enfrenta 


conflictos de política que resolverá en forma muy distinta, dependiendo de la 


ponderación de sus variables objetivo, con consecuencias también muy distintas para la 


respuesta dinámica de la economía. 


 


Quiero terminar mis palabras agradeciendo a Klaus Schmidt-Hebbel y Carl 


Walsh por su trabajo en la organización de esta magnífica conferencia, y a Mauricio 


Calani, Mónica Correa, Fabián Gredig y Patricio Jaramillo, así como a la Gerencia de 


Asuntos institucionales, por su valioso aporte a la organización de esta conferencia. 


También quiero agradecer a los numerosos comentaristas de los trabajos por su 


dedicación al preparar sus valiosas intervenciones, que espero que contribuyan a las 


revisiones de los trabajos presentados aquí y a nuestro mejor entendimiento de los temas 


tratados. A todos ustedes, estimados participantes, les deseo dos días de fructífera 


discusión y mucho aprendizaje. 


 







