Capital Flows, Macro-Prudential Policies and Capital Controls *

Alvaro Aguirre a , Sofía Bauducco a and Diego Saravia $^a{\rm Central~Bank~of~Chile}$

November 9, 2017

Abstract

We study how macro prudential policies and capital control measures affect capital inflows in developed and developing economies, over the 2004-2013 period. We find that macro prudential policies have a positive impact on bond inflows in developing economies, while the effect is negative in developed ones. This result survives the introduction of different control variables, changes in the sample period considered and in the frequency of the macro prudential policy measures. We interpret our findings as evidence that carry-trade opportunities in developing economies impact capital inflows towards them.

Keywords: Capital flows, macro prudential policy, capital controls, carry-trade

JEL codes: F32, F38, G28.

^{*}We would like to thank Catalina Larrain for excellent research assistance. All errors are our own.

1 Introduction

Understanding the determinants and patterns of international capital flows is of crucial importance for the design of policies that enhance macroeconomic stability. Traditionally, capital flows have been very volatile in developing economies, with large inflows in times of economic booms and large, sudden capital flow reversals in times of economic turmoil. This volatile behavior has prompted policy makers in these economies to impose controls, either on inflows or outflows, in an attempt to reduce the volatility of capital flows and, in this manner, decrease the probability of a crisis generated by large flow reversals. More recently, capital flows and capital controls in developed economies have become a subject of great interest in the profession. It is only natural, then, that this is a subject that has been thoroughly researched by the economic profession in the last decades. Yet, many questions remain without a definite answer.

Of paramount importance to macroeconomic and financial stability are macro prudential policies, especially since the 2008-2009 global financial crisis. While these measures are typically designed to impact domestic credit and risk taking by financial institutions, arguably they should also impact capital flows, though in a more indirect manner.

In this paper we seek to understand how macro prudential policies and capital controls affect capital inflows, and what the main economic mechanisms driving the results are. To this end, we consider a panel of 39 countries over the 2004-2013 period, and derive results on the impact of these two types of economic policies on capital inflows for developed and developing economies.

Our main result is that macro prudential policies, especially those targeted at financial institutions, affect positively capital flows in developing economies, while their impact is negative in developed economies. This result appears to be quite robust to different econometric specifications and the inclusion of controls to account for posible reverse causality. Following Bruno and Shin (2017), we argue that this result is a reflection of carry-trade opportunities present in developing economies, that are intensified when macro prudential policies limit the ability of domestic financial institutions to provide credit to firms. Non-financial firms with access to international markets see an opportunity to obtain profits from interest rate differentials by bringing in external funds and acting as financial intermediaries in the domestic market. We base our interpretation of the results on two findings. First, domestic credit is negatively influenced by macro prudential policies in developing economies, but not in developed ones. Second, in developing countries with more developed financial systems, the effect of macro prudential policies on capital inflows is larger. This brings support to the idea that relatively small domestic firms see their funding needs curtailed by such policies.

In terms of capital controls, we find that they exert a negative effect on capital inflows in developing economies, as it is expected from this type of measures. We also find that capital controls impact negatively the volatility of equity inflows in these economies. This is an important result from the point of view of policy design, as the main goal of capital controls in developing economies is precisely the reduction of capital flow volatility.

The paper is organized as follows: Section 2 reviews the related literature. Section 3 describes the data we use to perform our empirical analysis, and Section 4 discusses our main empirical strategy. Our results are presented in Section 5. Finally, Section 6 concludes.

2 Related literature

After the global financial crisis of 2008-2009, there has been a renewed interest on the design and efficacy of macro prudential policies. Special attention has been given to their ability in promoting financial stability¹ and their interaction with monetary policy as a stabilization tool.² In the recent past, there has been increasing interest in analyzing how macro prudential policies affect capital flows. A notable example is Bruno et al. (2017).³ In this paper, the authors identify the effects of domestic macro prudential policies and capital control measures on banking and bond inflows for a group of 12 Asia-Pacific economies over 2004-2013. Our analysis is related to theirs, but we focus on a larger group of 39 countries, and we specifically investigate the effect of macro prudential policies on inflows associated to carry-trade operations.

Capital controls have received wide attention from the profession since the 90's, having been praised and demonized at different points in time. While most papers in the early empirical literature on capital controls and financial liberalization focused on their effects on macroeconomic performance⁴, the recent literature has focused on using rich datasets (cross-country or micro data within a country) to study the effectiveness of capital controls on net and gross measures of capital flows, often times distinguishing by types of flows (banking, bonds and equity, mainly). Some examples in this literature are Magud et al. (2011), Warnock (2012), Ahmed and Zlate (2014), Forbes et al. (2015)

¹See, among others, Galati and Moessner (2013), Claessens (2014) and Cerutti et al. (2015) and the references therein.

² See Smets (2014), Rubio and Carrasco-Gallego (2014), Angelini et al. (2014), Bailliu et al. (2015) and Mishkin (2011), among many others.

³See also Ostry et al. (2012), Unsal (2013) and Beirne and Friedrich (2017).

⁴See Forbes (2007) for an excellent survey on the older literature on capital controls, financial liberalization and economic growth.

and Forbes et al. (2016). Results in this literature are usually conflicting: while some find that capital controls are associated with more stable capital flows (mainly through lower capital inflows), others find that these measures fail to accomplish their desired goals. We contribute to this literature in showing that some types of capital controls, specifically those targeted at equity flows, are associated with a lower volatility of equity inflows. Moreover, our results suggest that capital controls that affect bond inflows may have the desired effect, at least for non-developed countries.

Our work is also related to a newer strand of literature studying the patterns and determinants of international corporate debt issuance in emerging economies. In a nutshell, flows to emerging economies have shifted from being mainly used to finance public debt to finance corporate debt and, among the latter, from bank loans to bond issuance. The stylized facts associated to these changes are thoroughly documented in Turner (2014), Avdjiev et al. (2014), Bruno and Shin (2017) and Caballero et al. (2016a). The natural question that arises, then, is why we observe this new pattern of capital flows. There are two competing explanations for this phenomenon⁵: the first is that financially constrained firms in emerging markets have taken advantage of the relative abundance of global liquidity in the recent years to accumulate large stocks of funds, in anticipation for times in which market incompleteness will prevent them from covering their financial needs. This is dubbed as the precautionary motive. The second explanation posits that non-financial firms with access to international markets in these economies have undertaken a role of financial intermediation that heavily regulated banks cannot fulfill, taking advantage of macroeconomic conditions such as low international interest rates and local currency appreciation. This is the carry-trade explanation and is the one that seems to be supported in the data: Bruno and Shin (2017) use firm-level data on international bond issuance and other financial information, and find that firms issuing US dollar denominated bonds use the proceeds to add to their cash holdings. This behavior is more prevalent in emerging markets and when carry-trade conditions are more favorable. They interpret these findings as evidence supporting the carry-trade explanation. Caballero et al. (2016b) link this result to the degree of financial openness of emerging markets. In particular, they find that carrytrade activities are prevalent in economies in which capital controls are tighter. We contribute to this ongoing debate by showing that, in the case of emerging economies, domestic financial regulation also plays a prominent role in determining bond inflows. We argue that this is additional proof that such flows respond to carry-trade motives due to the fact that macro prudential policies targeted at financial institutions provide a widened market in which non-financial firms can act as intermediaries, taking

⁵Other alternative explanations are the retreat of international banks from economies with weaker fundamentals and the presence of foreign firms in the US market.

3 Data

Following much of the recent empirical literature on capital flows, we use quarterly data on gross capital inflows on bonds and equity obtained from the Balance of Payments Statistics Database of the IMF.⁶ We compute gross flows as the difference of two consecutive periods in the stock of liabilities reported in the international investment position of the country. Our preferred measure for the empirical analysis that follows is the gross flow scaled by the stock in t-1, i.e., the growth rate.

Our measure of macro prudential policies is obtained from Cerutti et al. (2015). They document the use of macro prudential policies for 119 countries on a yearly basis over the 2000-2013 period. They construct 12 measures of macro prudential policies and assign to each one of them a value of 1 if the country had that policy in place in that year, and 0 otherwise. They synthesize the information by means of three main indexes of macro prudential policies, depending on which economic agents these policies are targeted at: borrowers, financial institutions and all (which is the sum of the previous two). Macro prudential policies targeted at borrowers include loan-to-value ratio caps and debt-to-income ratio limits, while those targeted at financial institutions include loan-loss provisions, countercyclical capital buffers, limits on leverage ratios, capital surcharges on SIFIs, limits on interbank exposure, concentration limits, limits on foreign currency loans, countercyclical reserve requirements, limits on domestic currency loans and taxes on financial institutions.

We use measures of capital controls from Fernandez et al. (2016), who document annual indicators of controls on inflows and outflows for 10 categories of assets, for 100 countries, for the period 1995-2013, based on the IMF's Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER). As in the case of macro prudential indexes, variables in this case are assigned a value of 1 if there was a policy in place in that country and year and 0 otherwise. For portfolio inflows, they group measures between those that affect assets purchased locally by non-residents, and those that affect instruments sold or issued abroad by residents. Similarly, for outflows, they group measures according to whether they affect instruments sold or issued locally by non-residents, and those that impact instruments purchased abroad by residents.

The rest of the variables we use are mainly macroeconomic controls obtained from the World Development Indicators of the World Bank, the St. Louis Fed and Datastream. Appendix A contains a more detailed description of all variables and data

⁶See Gourinchas and Rey (2013) for a discussion.

sources used.

3.1 Summary Statistics

Table 1 shows summary statistics for the variables of interest used in the empirical estimations. Our sample consists of 39 countries, 21 corresponding to developed countries and 18 to developing countries. In the last group there are 6 emerging countries according to the IMF classification.⁷ We use an unbalanced panel of quarterly data from 2004 to 2013, requiring at least 12 observations for each country. On average there are around 32 observations per country, which gives us a panel with 1239 observations, almost a 60% of which correspond to developed countries.

	All	Developed	Developing
Countries	39	21	18
Observations	1239	728	511
Capital inflows			
Mean (%)	1.88	1.49	2.34
Standard Deviation (%)	6.70	6.39	7.06
MPI			
Countries with MPI borrower	17	7	10
Countries with change in MPI borrower	9	5	4
Countries with MPI fin inst	34	16	18
Countries with change in MPI fin inst	17	8	9
Capital Controls			
Countries with CC non-residents	9	2	7
Countries with change in CC non-residents	6	2	4
Countries with CC residents	12	3	9
Countries with change in CC residents	4	1	3

Notes:

Table 1: Summary Statistics

The second panel of Table 1 shows statistics related to the main dependent variable, capital inflows. On average these are close to 1.9% of the stock of international assets, while their standard deviation is 6.7%. Capital inflows are larger and more volatile in developing than in developed countries, with an average size and a standard deviation

⁷See Table 11 in the Appendix for the list of countries.

of 2.3% and 7.1%, respectively, contrasting with the 1.5% and 6.4% shown by developed countries.

Almost all of the countries in our sample have had some type of macro prudential policy in place during the period considered (i.e. the MPI index has a positive value). The only countries without these types of policies in the sample period are the UK and Slovenia. The third panel of Table 1 shows statistics for the two types of macro prudential policies we use in our estimations. Most of these policies are imposed on financial institutions, with 34 countries having a positive value in the corresponding index at some point. Countries with positive values in the index for borrowers correspond to half of this value. More important for the results are the number of countries that introduce or eliminate some measures during the years of our sample. These are 9 and 17 countries in the case of borrowers and financial institutions, respectively. In terms of countries' classification these indicators are evenly spread between developed and developing countries.

The last panel of Table 1 shows the same information but for capital controls. These policies are more scarce in the sample, with only 13 countries showing positive values for the indicators, 8 of them using both types of controls, to residents and non-residents. Unlike the case of MPI, capital controls are significantly more common in developing countries. Indeed, these are so infrequently applied in developed countries that we are not able to identify their effects in this group of countries when using our preferred specification, which needs not only variation in capital controls but also that they remain for more than one year in place, something we do not observe in the group of developed countries in our sample.

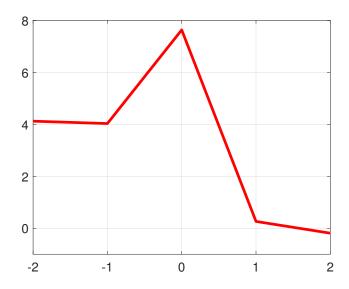
4 Econometric Specification

Our baseline specification takes the following form

$$f_{i,t} = \alpha_i + \eta_t + \beta X_{i,t} + \gamma_b \text{MPI}_{i,t}^b + \gamma_{fi} \text{MPI}_{i,t}^{fi} + \theta_{nr} \text{CC}_{i,t}^{nr} + \theta_r \text{CC}_{i,t}^r + \epsilon_{i,t}$$
 (1)

where f is the capital inflow variable, i and t denote country and period, respectively, and parameters α_i and η_t capture country-fixed and time-fixed effects, respectively. The vector X includes controls that are commonly used in the literature: total external debt to GDP, the fraction of external debt that is short-term, and the stock of reserves as a fraction of total external debt. The coefficients of interest are γ_b and γ_{fi} in the case of MPI for borrowers and financial institutions, and θ_{nr} and θ_r in the case of capital controls imposed on non-residents and residents, respectively. The residual is $\epsilon_{i,t} \sim N(0, \sigma^2)$.

The specification above does not control for endogeneity problems related to reverse causality from capital controls to policy measures. Although solving this problem and identifying a pure causal effect from policies to capital flows is out of the scope of this paper, we do try to minimize this problem. We do this by controlling for dummy variables that indicate country-year pairs when the value of each policy indicator changes. Following this approach, we control for the contemporaneous correlation between flows and the policy indicators, which we claim should be more contaminated by reverse causality.


This can be illustrated when considering the case of capital controls to non-residents in developing countries. In Figure 1 we plot the average path of capital inflows, without controlling for any other factor, in developing countries around the imposition of the capital control, defined as time 0 in the x-axis. Capital inflows raise significantly in the year the control is imposed, probably because policy reacts to the larger inflow. But in the year after the policy change capital flows drop significantly, to a level below the one observed before imposing the control. This is explained more likely because of causality from policy to inflows, which is the relationship we are interested to capture. Therefore, as we clean our estimations from the effects happening at time 0, our coefficients will be capturing better this causality than when not controlling for them. Indeed, as it is shown below, when not controlling for the change in capital controls the coefficient θ_{nr} , which corresponds to the one capturing the relationship in Figure 1, is positive and significant, while it becomes negative and significant when doing so.

Hence we add dummies to equation (1) to obtain our preferred specification:

$$f_{i,t} = \alpha_i + \eta_t + \beta X_{i,t} + \gamma_b \text{MPI}_{i,t}^b + \gamma_{fi} \text{MPI}_{i,t}^{fi} + \theta_{nr} \text{CC}_{i,t}^{nr} + \theta_r \text{CC}_{i,t}^{r} + \hat{\gamma}_b d \text{MPI}_{i,t}^b + \hat{\gamma}_{fi} d \text{MPI}_{i,t}^{fi} + \hat{\theta}_{nr} d \text{CC}_{i,t}^{nr} + \hat{\theta}_r d \text{CC}_{i,t}^{r} + \epsilon_{i,t}$$

where a d before the policy variable denotes a dummy that takes a value of 1 every year there is a change in the corresponding policy variable, and where γ_b , γ_{fi} , θ_{nr} and θ_r remain as the coefficients of interest.

We estimate this regression for the whole sample and use dummy variables to measure heterogeneous coefficients in developed and developing countries, and for different time-periods. We also vary the dependent variable keeping the explanatory variables unmodified.

Note:

Figure 1: Capital flows in developing countries around the time of implementation of capital controls.

5 Results

Table 2 shows the results of our benchmark specifications. For all four columns, the dependent variable is quarterly bond inflows. All columns include an index of macro prudential policies targeted at borrowers and at financial institutions (MPI borrower and MPI fin inst, respectively), and an index of capital controls specifically targeted to restrict inflows, both for instruments purchased locally by non-residents (Capital Controls non-residents (plbn)) and for instruments sold internationally by residents (Capital Controls residents (siar)). Finally, all columns include controls for macroeconomic conditions, country fixed effects to control for unobservables at the country level and quarterly time effects to control for global macroeconomic confounding factors.

Columns 1-3 of Table 2 contain our baseline results. Macro prudential policies targeted at borrowers seem to exert a positive effect on bond inflows for the whole sample (see column 1). When separating the sample between developed and developing economies, this effect is only present in developed economies. Moreover, macro prudential policies targeted at financial institutions have the opposite effect in these economies: they deter capital inflows (see column 2). For developing economies, only macro prudential policies targeted at financial institutions have positive statistically significant effects. This last result brings support to the hypothesis that there are carry-trade opportunities in emerging economies that drive, at least partially, capital flows towards these economies: if macro prudential policies affect the lending activities

_		Baseline		Controlling for	year of imple	mentation	
_	Eq.1	Eq.1 Eq.2		Eq.3	Eq	Eq.4	
	All	All Devd Dving	All	Devd	Dving		
	(1)	(2)	(3)	(4)	(5)	(6)	
MPI borrowers	0.0093*	0.013*	-0.011	0.0085	0.013	-0.020*	
	(1.72)	(1.92)	(1.19)	(1.37)	(1.63)	(1.88)	
MPI fin. inst.	-0.0060	-0.013***	0.020**	-0.0031	-0.011**	0.031***	
	(1.54)	(3.13)	(2.57)	(0.71)	(2.33)	(3.42)	
Capital Controls	0.013	0.068***	-0.0044	-0.012		-0.028*	
$non ext{-}residents\ (plbn)$	(1.24)	(2.99)	(0.35)	(0.86)		(1.86)	
Capital Controls	-0.023	0.021	-0.032	-0.034		-0.038	
residents (siar)	(1.29)	(0.68)	(1.44)	(1.50)		(1.42)	
R^2	0.33	0.34		0.34	0.35		
Observations	1190	1190		1190	1190		

Notes: The dependent variable is quarterly bond inflows. Additional controls not shown are external debt to GDP, short-term external debt as a fraction of total external debt, total reserves as a fraction of external debt, fixed and quarterly time effects. Equations 3 and 4 additionally include the change in the MPI and capital controls variables to control for any effects during the year of implementation. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.

Table 2: Capital Inflows, Macroprudential Policies and Capital Controls

of domestic financial institutions, alternative non-financial agents will find it profitable to bring in external capital to lend domestically. Developed economies are less prone to carry-trade operations (see Bruno and Shin (2017)). Indeed, our results suggest that macro prudential policies targeted at financial institutions deter capital inflows in these economies, probably because less funds from international markets are channeled through financial institutions to domestic ones, while those targeted at borrowers promote them, a result in line with the idea that firms that cannot finance themselves domestically will resort to international markets. Finally, capital controls to bonds purchased by non-residents appear with positive sign in column 2, which is contrary to the expected direct effect of this type of policies on capital inflows. We believe this positive coefficient might be the result of the problem of reverse causality that our analysis faces: greater capital inflows induce policymakers to implement capital controls, and not the other way round. Notice that this problem is much more likely to be present in the case of direct measures to control capital flows, rather than macro prudential measures aimed at enhancing domestic financial stability.

Columns 4-6 of Table 2 include, in addition to all controls present in columns 1-3,

_		Bonds		Total (Bonds + Equi	ty)
_	Eq.1	Eq. 2		<i>Eq.3</i>	Eq.4	
	All	All Devd D	Dving	All	Devd	Dving (6)
	(1)	(2)	(3)	(4)	(5)	
MPI borrowers	0.0085	0.013	-0.020*	0.011	0.028	-0.044*
	(1.37)	(1.63)	(1.88)	(0.86)	(1.63)	(1.94)
MPI fin. inst.	-0.0031	-0.011**	0.031***	0.0032	-0.0032	0.049***
	(0.71)	(2.33)	(3.42)	(0.35)	(0.31)	(2.64)
Capital Controls	-0.012		-0.028*	-0.063**		-0.090***
non-residents (plbn)	(0.86)		(1.86)	(2.04)		(2.67)
Capital Controls	-0.034		-0.038	0.15**		0.16^{*}
residents (siar)	(1.50)		(1.42)	(2.10)		(1.87)
R^2	0.34	0.35		0.62	0.62	
Observations	1190	1190		1051	1051	

Notes: The dependent variables are quarterly bond inflows (equations 1 and 2) and total (bond plus equity) inflows (equations 3 and 4). Additional controls not shown are external debt to GDP, short-term external debt as a fraction of total external debt, total reserves as a fraction of external debt, the change in the MPI and capital controls variables, fixed and quarterly time effects. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.

Table 3: Bonds and Total Inflows

the change in the MPI and Capital Control indexes to control for the contemporaneous correlation between flows and the policy indicators. As explained in the previous section, it is an attempt, though imperfect, to control for the reverse causality problem inherently present in the analysis. We can observe that the main results discussed previously survive: MPI measures targeted at financial institutions stimulate capital inflows in developing countries, while they deter them in developed ones. Moreover, now MPI measures targeted at borrowers appear to exert a negative effect on capital inflows in the former economies. This probably is due to a signaling effect of macro prudential policies: if the regulating authority imposes limits on borrowers because it perceives that credit is higher than desired, then foreign investors will be more reluctant to bring in capital in fear of financial distress that could negatively impact profitability. This also brings support to the hypothesis that firms in need of financing may resort to alternative sources, thus creating opportunities for carry-trade by non-financial firms.

Capital controls to bonds purchased locally by non-residents is now statistically significant and has the expected negative sign for developing economies. The variable drops from the regression for developed countries, though. This is due to the fact

_	Capital	Inflows (Bone	ds)	Domestic Credit			
_	Eq.1	Eq.2		Eq.3	E	Eq.4	
	All Devd Dvir	Dving	All	Devd	Dving (6)		
	(1)	$(2) \qquad (3)$		(4)		(5)	
MPI borrowers	0.0085	0.013	-0.020*	-0.059**	-0.097	0.0088	
	(1.37)	(1.63)	(1.88)	(1.98)	(1.60)	(0.22)	
MPI fin. inst.	-0.0031	-0.011**	0.031***	-0.045**	-0.030	-0.11***	
	(0.71)	(2.33)	(3.42)	(2.57)	(1.51)	(3.38)	
Capital Controls	-0.012		-0.028*	-0.016		-0.0068	
$non\text{-}residents\ (plbn)$	(0.86)		(1.86)	(0.32)		(0.14)	
Capital Controls	-0.034		-0.038	-0.13^{*}		-0.16*	
residents (siar)	(1.50)		(1.42)	(1.70)		(1.86)	
R^2	0.34	0.35		0.54	0.55		
Observations	1190	1190		321	321		

Notes: The dependent variables are quarterly bond inflows (equations 1 and 2) and annual domestic credit as a percentage of GDP (equations 3 and 4). Additional controls not shown are external debt to GDP, short-term external debt as a fraction of total external debt, total reserves as a fraction of external debt, the change in the MPI and capital controls variables, fixed and quarterly time effects. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.

Table 4: Bond Inflows and Domestic Credit

that only two countries in our sample of developed economies implemented this type of controls, and they did it for only one year. This reinforces the idea that the positive sign in column 2 was probably driven by reverse causality.

Table 3 shows the same analysis, but now considering inflows in bonds and equity. For comparison purposes, columns 1-3 replicate columns 4-6 in Table 2, while columns 4-6 in Table 3 show results when the dependent variable is total quarterly inflows instead of only bonds. All results described for bond inflows survive when considering inflows in bonds and equity. Now, capital controls to bonds and equity sold internationally by residents are also positive and statistically significant for all countries. Once again, this unexpected result might reflect reverse causality.

In order to provide further evidence in favor of the idea that macro prudential policies targeted at financial institutions boost capital inflows by providing carry-trade opportunities to non-financial firms, we analyze how domestic credit reacts to these type of measures. Table 4 shows the results. Once again, columns 1-3 replicate columns 4-6 of Table 2, while columns 4-6 show results for the case in which the dependent variable is domestic credit as a percentage of GDP.

_	Vola	tility, Bonds		Vol	atility, Equity		
_	Eq.1	Eq.1 Eq.2		Eq.3	E	Eq.4	
	All	Devd	Devd Dving	All	Devd	Dving	
	$(1) \qquad (2)$		(3)	(4)	(5)	(6)	
MPI borrowers	-0.0072	-0.0066	-0.0046	-0.017	-0.0071	0.021	
	(1.21)	(0.86)	(0.40)	(1.46)	(0.52)	(0.93)	
MPI fin. inst.	-0.0003	0.0006	-0.0038	-0.0095	0.0084	-0.070***	
	(0.066)	(0.13)	(0.43)	(1.17)	(1.01)	(4.22)	
Capital Controls	-0.019		-0.019	0.0024		0.030	
$non ext{-}residents\ (plbn)$	(1.39)		(1.29)	(0.084)		(1.02)	
Capital Controls	-0.025		-0.020	-0.12^{*}		-0.27***	
$residents \ (siar)$	(0.87)		(0.50)	(1.74)		(2.95)	
R^2	0.35	0.36		0.35	0.46		
Observations	251	251		226	226		

Notes: The dependent variables are the annual volatility of bond inflows (equations 1 and 2) and equity inflows (equations 3 and 4). Additional controls not shown are the change in the MPI and capital controls variables, fixed and quarterly time effects. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.

Table 5: Effects on Volatility

From columns 5-6 in Table 4, we see that domestic credit reacts exactly as would be expected if the carry-trade motive is the one governing capital inflows. In particular, macro prudential policies on financial institutions negatively affect domestic credit in developing economies, while there is no effect on developed ones. Indeed, this is the desired effect of these type of measures. Financing needs of domestic agents create opportunities for carry-trade operations, which results in capital inflows increasing with the MPI fin inst index. Finally, notice that Capital Controls residents have a negative effect on domestic credit, irrespective of the type of economy analyzed. This could be due to an indirect effect of capital controls on the availability of domestic lending funds through a diminished supply of capital inflows. The coefficient of Capital Controls residents on capital inflows is insignificant or positive, though. It could also be due to a signaling effect as capital controls may signal less future liquidity in the system, which translates into less domestic credit, or to an endogeneity problem.

Finally, we explore the idea that macro prudential policies and capital controls may have served as a stabilization tool by exerting a negative effect on the volatility of capital flows. Table 5 shows the results of regressing the annual volatility of bond

	VIX	Ted	US mpr	Local mpr	r-r*	GDP	GDP
		Rate	r*	r		gap	growth
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		De	veloped Cou	untries			
MPI borrowers	0.0006	0.022	0.0091	-0.013	-0.026**	-1.43**	-0.61*
	(0.55)	(0.74)	(0.97)	(1.06)	(2.24)	(2.04)	(1.65)
MPI fin. inst.	0.0001	0.0002	-0.0015	-0.0043	-0.0071*	-0.14	-0.0045
	(0.28)	(0.025)	(0.68)	(1.52)	(1.93)	(0.56)	(0.029)
		Der	veloping Co	untries			
MPI borrowers	0.0010	0.012	-0.0089*	0.0003	0.0081**	0.76**	0.29
	(1.42)	(0.89)	(1.90)	(0.10)	(2.20)	(2.37)	(1.26)
MPI fin. inst.	0.0005*	0.0052	-0.0010	-0.0013	0.0004	0.041	-0.014
	(1.89)	(0.92)	(0.47)	(0.76)	(0.20)	(0.31)	(0.16)
Capital Controls	0.0023*	0.0034	-0.014**	-0.0080	0.0038	0.69	-0.023
$non\mbox{-}residents\ (plbn)$	(1.74)	(0.14)	(2.06)	(1.23)	(0.75)	(0.94)	(0.041)
Capital Controls	0.0022*	0.018	-0.0099	-0.0033	0.0062	0.26	0.24
residents (siar)	(1.72)	(0.73)	(1.52)	(0.48)	(1.02)	(0.51)	(0.43)

Notes: The dependent variable is quarterly bond inflows. Results shown are the coefficients on interactions between the variables defined in the upper panel and the corresponding indicator defined in the first column. Each interaction is introduced one at a time in the baseline specification, with the same additional controls plus the interaction multiplied by the dummy variable indicating the time at which the policy changes. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.

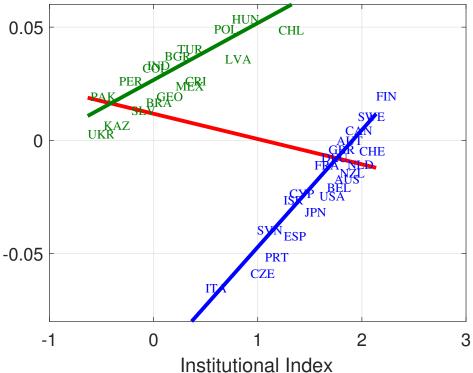
Table 6: Macroeconomic conditions

(columns 1-3) and equity inflows (columns 4-6) on our measures of macro prudential policies and capital controls.

While the volatility of bond inflows does not seem to react to macro prudencial policies or capital control measures, the volatility of equity inflows is negatively affected by some of these measures, depending on the type of country analyzed. Capital Controls residents seem to negatively affect the volatility in developing countries. This is a direct effect that is expected. In addition, MPI fin inst negatively affects the volatility of equity inflows in these countries. By stabilizing domestic financial markets, macro prudential policies might also stabilize stock markets, especially so in economies where these are not strongly developed.

	All		Deve	Developed		Developing	
	Instit	Fin Dev	Instit	Fin Dev	Instit	Fin Dev	
	$(1) \qquad (2)$		(3)	(4)	(5)	(6)	
MPI borrowers	0.0034	0.015	0.088**	0.052**	-0.091**	-0.18	
	(0.35)	(1.38)	(2.33)	(2.23)	(2.24)	(1.09)	
MPI fin. inst.	-0.011**	-0.022***	0.052***	0.0019	0.025	0.10**	
	(2.30)	(2.79)	(3.38)	(0.11)	(1.23)	(2.04)	
Capital Controls	0.10***	0.27***			0.071*	0.37***	
non-residents (plbn)	(2.95)	(4.34)			(1.95)	(5.21)	
Capital Controls	0.13**	0.37***			-0.078	0.45***	
residents (siar)	(2.36)	(3.95)			(0.90)	(3.44)	

Notes: The dependent variable is quarterly bond inflows. Results shown are the coefficients on interactions between the variables defined in the upper panel and the corresponding indicator defined in the first column. Instit is the index of government effectiveness from the World Governance Indicators database, and Fin Dev is domestic credit provided by financial sector as a % of GDP. In each case we use the average from 2000 so these don't vary over time. Each interaction is introduced one at a time in the baseline specification, with the same additional controls plus the interaction multiplied by the dummy variable indicating the time at which the policy changes. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.


Table 7: Institutions and Financial Development

5.1 Macroeconomic conditions

In this section we explore the idea that certain macroeconomic conditions in the global or domestic economy may impact the effect that macro prudential or capital control measures have on capital inflows. To this end, we interact the indexes of macro prudential policies and capital controls with different indicators of macroeconomic conditions, namely, the VIX index (a proxy for global uncertainty and market volatility), the TED spread (a proxy for global credit risk), the US monetary policy rate to account for global liquidity availability, the local monetary policy rate, the spread between the latter two, a measure of output gap in the domestic economy computed as the lof-difference between real GDP and a trend GDP measure (where the trend is computed from applying the HP filter to the series), and finally the growth rate of the domestic economy.

Table 6 shows the results, both for the group of developed and developing economies. For developed economies, only a handful of interactions with macro prudential policies are significant.⁸ In particular, a contractive monetary policy stance with respect to

⁸Notice that results for capital control measures are not reported because, as before, developed countries

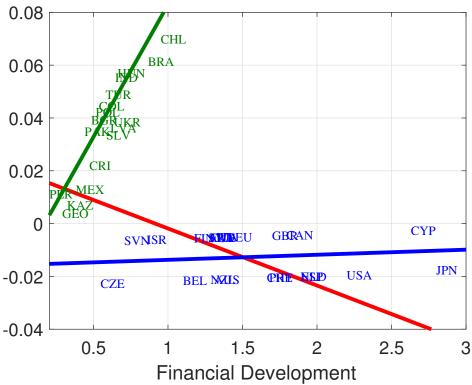

Note: red, blue and green lines are the conditional effects for all, developed and developing countries, respectively, of MPI financial institutions on capital inflows. These are based on the results presented in Table 7 in rows 3-4 and columns 1, 3 and 5.

Figure 2: Institutions and the Effects of MPI to Fin Inst on Capital Inflows

the US reinforces the contractionary effect of macro prudential regulations, both for borrowers and for financial institutions, on capital inflows. This result is in line with Bruno et al. (2017), who find that macro prudential policies are more successful when they are implemented in periods of monetary policy tightening. In line with this result, macro prudential policies targeted to borrowers are also more successful in deterring capital inflows when the economy is experiencing an expansion, either measured by a positive output gap, or by GDP growth, which are times in which the monetary policy is expected to be tightened. Finally, global factors do not seem to play a role.

In the case of developing economies, now global economic conditions do play a role in shaping the efficacy of macro prudential policies and capital controls. An uncertain economic environment, represented by a larger value of the VIX index, lowers the influence of macro prudential policies and capital controls in deterring capital inflows. On the other hand, a higher monetary policy rate in the US, which signals more stringent global liquidity conditions, aids macro prudential measures targeted to borrowers and

that implemented capital control measures did so for only one year.

Note: red, blue and green lines are the conditional effects for all, developed and developing countries, respectively, of MPI financial institutions on capital inflows. These are based on the results presented in Table 7 in rows 3-4 and columns 2, 4 and 6.

Figure 3: Financial Development and the Effects of MPI to Fin Inst on Capital Inflows

capital controls on non-residents in discouraging capital inflows. Contrary to the case of developed economies, now a higher spread between the domestic and the US monetary policy rate impacts positively on the effect of macro prudential policies (targeted at borrowers) on capital inflows. A positive output gap exerts a similar effect. In these economies, an economic boom increases financing needs of local firms. Macro prudential regulations targeted at borrowers restrict the ability of firms to satisfy these needs domestically and may prompt them to look for funds in the international markets, thus fostering capital inflows. This explains the positive sign.

5.2 Institutions and financial development

Since macro prudential regulations seem to have distinctive effects on capital inflows depending on whether a country is developed or not, in this section we test the hypothesis that institutional and financial development may also play a role in shaping the effect of these measures. In the same spirit of the previous section, we interact our

_		2004-2006			2007-2013	
_	Eq.1	E	q.2	Eq.1	Eq.2	
	All	All Devd (1) (2)	Dving (3)	All	Devd	Dving (6)
	(1)			(4)	(5)	
MPI borrowers	0.0084	0.074***	-0.060***	0.0079	0.0064	-0.022*
	(0.63)	(3.20)	(3.06)	(1.26)	(0.73)	(1.88)
MPI fin. inst.	-0.0080	-0.019***	0.044***	-0.0017	-0.014***	0.030***
	(1.39)	(2.85)	(3.17)	(0.37)	(2.67)	(3.15)
Capital Controls	-0.017		-0.068*	-0.012		-0.033**
$non\mbox{-}residents\ (plbn)$	(0.61)		(1.66)	(0.83)		(2.10)
Capital Controls	-0.031	0.0012	0.020	-0.034		-0.029
residents (siar)	(0.95)	(0.058)	(0.39)	(1.43)		(1.01)
R^2	0.34	0.36				
Observations	1190	1190				

Notes: The dependent variable is quarterly bond inflows. Results shown are the coefficients on interactions between the explanatory variables and time dummies for the period before and after 2007. Additional controls not shown are external debt to GDP, short-term external debt as a fraction of total external debt, total reserves as a fraction of external debt, the change in the MPI and capital controls variables, fixed and quarterly time effects. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.

Table 8: Sub-Samples: 2007

indexes of macro prudential regulations and capital control measures with two variables of interest: *Instit*, which is an index of government effectiveness from the World Governance Indicators database, which is a proxy of institutional quality, and *Fin Dev*, which is the ratio of domestic credit provided by the financial sector to GDP. In each case we use the values of the variables in 2000 so they do not vary over time.

Table 7 shows the results, and Figures 2 and 3 provide a graphical representation of the effects of macro prudential policies targeted at financial institutions institutions on capital inflows conditional on the institutional index and financial development level, respectively. Figure 2 shows that the effect of these macro prudential policies becomes less negative, the higher the index of institutional quality of the developed country. For developing economies, the conditional effect is not statistically significant. This is probably due to the fact that countries with higher levels of institutional quality also have sounder financial systems in which macro prudential measures are less stringent. Conversely, Figure 3 shows that the effect of macro prudential policies targeted at financial institutions becomes more positive, the higher the level of financial development of the developing country. In this case, the effect is not significant for developed

_		2004-2007			2008-2013	
_	Eq.1	Eq. 2		Eq.1	Eq.2	
	All	All Devd D	Dving	All	Devd	Dving
	$(1) \qquad (2)$		(3)	(4)	(5)	(6)
MPI borrowers	0.014	0.072***	-0.031*	0.0081	0.0074	-0.018
	(1.21)	(3.36)	(1.78)	(1.29)	(0.83)	(1.56)
MPI fin. inst.	-0.0083	-0.017***	0.028**	-0.0014	-0.011**	0.026***
	(1.57)	(2.58)	(2.24)	(0.31)	(2.09)	(2.70)
Capital Controls	-0.037		-0.048	-0.0074		-0.025
$non ext{-}residents\ (plbn)$	(1.63)		(1.63)	(0.49)		(1.56)
Capital Controls	-0.023	0.019	-0.021	-0.032		-0.038
residents (siar)	(0.78)	(0.96)	(0.55)	(1.36)		(1.41)
R^2	0.34	0.36				
Observations	1190	1190				

Notes: The dependent variable is quarterly bond inflows. Results shown are the coefficients on interactions between the explanatory variables and time dummies for the period before and after 2008. Additional controls not shown are external debt to GDP, short-term external debt as a fraction of total external debt, total reserves as a fraction of external debt, the change in the MPI and capital controls variables, fixed and quarterly time effects. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.

Table 9: Sub-Samples: 2008

economies. This brings support to the idea that the channel through which macro prudential regulations affect capital inflows in developing economies has to do with carry-trade opportunities: countries in which the financial sector is more developed are more affected by these measures (either because they are more easily enforced or because of wider coverage), and therefore present better opportunities for carry trade operations. Notice that, when the effect of macro prudential policies conditional on institutional quality and financial development is estimated for all countries in the sample, it becomes more negative (or less positive) when either of these indicators increases. This is due to the fact that the interaction in this case is working as a proxy for the level of development of countries. Then, a country with higher institutional index/financial development is typically a more developed country, in which the effect of macro prudential policies targeted at financial institutions is negative. On the contrary, this effect is positive in less developed countries, which usually have a lower institutional index/financial development.

When considering macro prudential policies targeted at borrowers, the effects conditional on institutional quality and financial development are positive for developed

_		Baseline		Q	uarterly MPI	
_	Eq.1	Eq	<i>q.2</i>	Eq.3	Eq.4	
	All	Devd	Dving	All	Devd	Dving (6)
	(1)	(2)	(3)	(4)	(5)	
MPI borrowers	0.0085	0.013	-0.020*	-0.0058	0.0021	-0.020**
	(1.37)	(1.63)	(1.88)	(1.28)	(0.39)	(2.36)
MPI fin. inst.	-0.0031	-0.011**	0.031***	0.0080	-0.041***	0.012**
	(0.71)	(2.33)	(3.42)	(1.55)	(3.08)	(2.35)
Capital Controls	-0.012		-0.028*	0.0059		0.0052
$non ext{-}residents\ (plbn)$	(0.86)		(1.86)	(0.39)		(0.34)
Capital Controls	-0.034		-0.038			
residents (siar)	(1.50)		(1.42)			
R^2	0.34	0.35		0.40	0.41	
Observations	1190	1190		1035	1035	

Notes: The dependent variable is quarterly bond inflows from IMF. In the left panel MPI variables are at an annual frequency, and in the right panel they are at a quarterly frequency. Additional controls not shown are external debt to GDP, short-term external debt as a fraction of total external debt, total reserves as a fraction of external debt, the change in the MPI and capital controls variables, fixed and quarterly time effects. t-values are reported below the coefficients. * means significant at 10%, ** significant at 5%, and *** significant at 1%.

Table 10: Robustness, Annual vs. Quarterly MPI indexes

economies, and negative for developing ones. For the whole sample, capital controls, both to residents and non-residents, exert a more positive (or less negative) effect on capital inflows when the institutional quality and financial development of a given country is higher. Again, these indicators function as proxies for the level of development of a country. In the case of developing economies, the effect of capital controls on inflows is less negative with higher financial development and institutional quality. Countries with sounder institutions and financial systems are likely to be less prone to volatile capital inflows seeking very short-term profitabilities, which are the targets of capital control measures.

5.3 Robustness analysis

In this section we perform some robustness checks in order to test the stability of our results.

First, we divide the sample period in two subsamples, to check whether there was a change in the way macro prudential and capital control measures affected capital inflows previous to the global financial crisis of 2008. Table 8 shows results for the case in which we divide the sample for years 2004-2006 and 2007-2013, while 9 shows the same for the case in which we split the sample between years 2004-2008 and 2009-2013. As it is clear from the tables, our main results survive and are present in both sample sub-periods. The effect of macro prudential policies on the incentives to do carry trade and, through this channel, on capital inflows does not seem to have changed significantly before and after the global financial crisis.

Second, we use measures of macro prudential policies at quarterly frequency, instead of annual frequency. These measures are constructed in Cerutti et al. (2017). Table 10 shows that our main results, namely that macro prudential policies targeted at financial institutions impact positively bond inflows in developing economies and negatively in developed ones.

6 Conclusions

In this paper we have studied the effects of macro prudential policies and capital control measures on capital inflows in developed and developing economies. Our main result is that macro prudential policies targeted at financial institutions impact bond inflows negatively in developed economies and positively in developing ones. This result is quite robust and survives when we control for the year in which the policy is implemented, to (partially) account for reverse causality. When considering total inflows (equity and bonds), the positive sign for developing economies survives, though for developed ones the coefficient is negative but not statistically significant. Splitting the sample in different time periods pre and post the global financial crisis yields the same results.

We argue throughout the paper that this result is a reflection of carry-trade opportunities present in developing economies, that are intensified when macro prudential policies limit the ability of domestic financial institutions to provide credit to firms. Large, non-financial firms see an opportunity to obtain profits by exploiting interest rate differentials and bring in external funds that they use to lend to local firms that do not have access to international capital markets. Two elements support our hypothesis: domestic credit is negatively influenced by macro prudential policies in developing economies (but not in developed ones) and the degree of financial development of the country reinforces the positive effect of such policies on capital inflows. These findings point to the fact that these economies see their domestic credit provision significantly affected by macro prudential regulations. Alternative hypothesis, such as precautionary savings by credit-constrained firms, do not seem to be supported by our data, as

the stance of the economic cycle does not seem to exert any effect on our results. 9

⁹The carry-trade hypothesis is very well explained in Bruno and Shin (2017). They find support for it when using firm level data for a group of developed and emerging economies. We see our analysis as complementary to theirs.

References

- **Ahmed, S. and A. Zlate**, "Capital flows to emerging market economies: A brave new world?," *Journal of International Money and Finance*, 2014, 48, 221–248.
- Angelini, P., S. Neri, and F. Panetta, "The Interaction between Capital Requirements and Monetary Policy," Journal of Money, Credit and Banking, 2014, 46, 1073–1112.
- Avdjiev, S., M. Chui, and H. S. Shin, "Non-financial corporations from emerging market economies and capital flows," *BIS Quaterly Review*, 2014, *December*, 67–77.
- Bailliu, J., C. Meh, and Y. Zhang, "Macroprudential rules and monetary policy when financial frictions matter," *Economic Modelling*, 2015, 50, 148–161.
- **Beirne, J. and C. Friedrich**, "Macroprudential policies, capital flows, and the structure of the banking sector," *Journal of International Money and Finance*, 2017, 75, 47–68.
- Bruno, V. and H. S. Shin, "Global Dollar Credit and Carry Trades: A Firm-Level Analysis," *Review of Financial Studies*, 2017, 30.
- _ , I. Shim, and H. S. Shin, "Comparative assessment of macroprudential policies," Journal of Financial Stability, 2017, 28, 183–202.
- Caballero, J., A. Fernandez, and J. Park, "Foreign Corporate Debt, Spreads, and Economic Activity in Emerging Economies: An Empirical Investigation," IDB Working Paper IDB-WP-719, IDB 2016.
- _ , U. Panizza, and A. Powell, "The Second Wave of Global Liquidity: Why Are Firms Acting Like Financial Intermediaries?," IDB Working Paper IDB-WP-641, IDB 2016.
- Cerutti, E., R. Correa, E. Fiorentino, and E. Segalla, "Changes in Prudential Policy Instruments-A New Cross-Country Database," *International Journal of Central Banking*, 2017, 13, 477–503.
- _ , S. Claessens, and L. Laeven, "The Use and Effectiveness of Macroprudential Policies: New Evidence," Working Paper, IMF 2015.
- Claessens, S., "An overview of macroprudential policy tools," IMF Working Paper 14/214, International Monetary Fund 2014.
- Fernandez, A., M. W. Klein, A. Rebucci, M. Schindler, and M. Uribe, "Capital Control Measures: a New Dataset," *IMF Economic Review*, 2016, 64, 548–574.

- Forbes, K., "The Microeconomic Evidence on Capital Controls: No Free Lunch," in Sebastian Edwards, ed., Capital Controls and Capital Flows in Emerging Economies: Policies, Practices and Consequences, University of Chicago Press, 2007, pp. 171–202.
- _ , M. Fratzscher, and R. Straub, "Capital Flow Management Measures: What Are They Good For?," Journal of International Economics, 2015, 96, 576–597.
- _ , _ , **T. Kostka, and R. Straub**, "Bubble Thy Neighbor: Portfolio Effects and Externalities from Capital Controls," *Journal of International Economics*, 2016, 99, 85–104.
- Galati, G. and R. Moessner, "Macroprudential policy a literature review," *Journal of Economic Surveys*, 2013, 27 (337), 846–878.
- Gourinchas, P. O. and H. Rey, "External Adjustment, Global Imbalances and Valuation Effects," in Helpman and Rogoff, eds., *Handbook of International Economics*, 2013, pp. 585–640.
- Magud, N., C. Reinhart, and K. Rogoff, "Capital Controls: Myth and Reality A Portfolio Balance Approach," NBER Working Paper 16805, NBER 2011.
- Mishkin, F., "Monetary Policy Strategy: Lessons from the Crisis," NBER Working Paper 16755, NBER 2011.
- Ostry, J., A. Ghosh, M. Chamon, and M. Qureshi, "Tools for managing financial-stability risks from capital," *Journal of International Economics*, 2012, 88, 407–421.
- Rubio, M. and J. Carrasco-Gallego, "Macroprudential and monetary policies: Implications for financial stability and welfare," *Journal of Banking and Finance*, 2014, 49, 326–336.
- **Smets, F.**, "Financial stability and monetary policy: How closely interlinked?," *International Journal of Central Banking*, 2014, 10, 263–300.
- **Turner, P.**, "The global long-term interest rate, financial risks and policy choices in EMEs," BIS Working Paper 441, BIS 2014.
- **Unsal, D. F.**, "Capital Flows and Financial Stability: Monetary Policy and Macroprudential Responses," *International Journal of Central Banking*, 2013, 9, 233–285.
- Warnock, K. Fork. Forbes., "Capital Flow Waves: Surges, Stops, Flight, and Retrenchment," *Journal of International Economics*, 2012, 88, 235–251.

A Data

A.1 Balance of Payment Statistics Database (IMF)

We obtain from here the capital flow variables. This database contains the financial account quarterly per country, classified by functional category, by type of financial instrument (equity, debt, and others), and presents the data separately by financial assets (net acquisition of assets) and liabilities (net incurrence of liabilities). Also, this database contains data of International Investment Position (IIP) that consist in stock of assets and liabilities at the end of each quarter. We compute gross flows as the difference of two consecutive periods in the stock of liabilities reported in the international investment position of the country. Our preferred measure for the empirical analysis that follows is the gross flow scaled by the stock in t-1, i.e., the growth rate. We drop those countries who have less than 12 observations in the sample. Also, we windsorize the sample at the 95 percentile.

A.2 Macroprudential Policies database

We use the macro prudential policy database from Cerutti et al. (2015). This database documents the use of macro prudential policies for 119 countries over the 2000-2013 period on a yearly basis. The authors construct 12 measures of macro prudential policies, presented as dummy variables that take the value of 1 if the country had that policy in place in that year, and 0 otherwise. They summarize the information through three main index of macro prudential policies, depending on which economic agents these policies are targeted to: borrowers, financial institutions and all (which is the sum of the previous two).

A.3 Capital Controls database

We use measures of capital controls from Fernandez et al. (2016). This database documents separate annual indicators of controls on inflows and controls on outflows for 10 categories of assets for 100 countries, or the period 1995-2013, based on the IMF's Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER). s in the case of macro pru- dential indexes, variables in this case are assigned a value of 1 if there was a policy in place in that country and year and 0 otherwise. For portfolio inflows, they group measures between those that affect assets purchased locally by non residents, and those that affect instruments sold or issued abroad by residents. Similarly, for outflows, they group measures according to whether they affect instruments sold or issued locally by non residents, and those that impact instruments purchased abroad by residents. These indexes are available for bonds and equity separately.

A.4 World Development Indicators (World Bank)

Data from the World Development Indicators (WDI, World Bank). Provides information at the country-year level. The data is in yearly frequency.

We use the following variables for our analysis:

- GDP per capita, PPP
- GDP constant
- GDP current
- GDP per capita
- External debt stocks, total
- External debt stocks, short-term
- Total reserves
- Bank capital to assets ratio
- Bank liquid reserves to bank assets ratio
- Bank nonperforming loans to total gross loans
- Domestic credit provided by financial sector
- Domestic credit to private sector
- Market capitalization of listed domestic companies
- Stocks traded, total value
- Stocks traded, turnover ratio of domestic shares

A.5 Datastream

From here we obtain the Monetary Policy Rate (monthly) per country.

A.6 Fred - St. Louis FED

We use the following variables:

- TED Spread: the difference between the interest rates on interbank loans and on short-term U.S. government debt ("T-bills") (value at the end of each month)
- VIX Index: S&P 500 CBOE Volatility Index (value at the end of each month)
- Federal Funds Effective Rate (monthly): Monetary Policy rate from US.

A.7 NBER

We use the crisis dummy from the NBER Dating Committee that takes the value of 1 if the quarter t had a crisis (according to the NBER Dating Committee), and 0 otherwise.

A.8 Institutional quality

- 1. Freedom House database: We use the Political Rights and Civil Liberties indexes. Both of them go from 1 to 7, with 1 representing the highest degree of freedom, and 7 the lowest. Then, we compute the freedom house index, that is the mean between these others two indexes.
- 2. Polity IV database: we use the Polity Index that goes from -10 to 10, from democracy to autocracy, and the Executive Constraints variable that explicitly measures how constrained the executive is in making arbitrary decisions.
- 3. World Governance Indicators database (World Bank): we use the Voice Accountability, Political Stability, Government Effectiveness, Regulatory Quality, Rule of Law and Control of Corruption variables. They all go from -2.5 (weak) to 2.5 (strong) governance performance.

A.9 Countries in the sample

Developed Countries			Deve	Developing Countries				
France	Japan	Sweden	Hungary	Pakistan	Poland			
Switzerland	Canada	Spain	Brazil	Kazakhstan	India			
Austria	US	UK	Colombia	Mexico	Ukraine			
Israel	Belgium	Finland	Latvia	Costa Rica	Turkey			
New Zealand	Germany	Australia	Bangladesh	Chile				
Italy	Cyprus	Slovenia	Peru	El Salvador				
Czech Republic	Portugal	Netherlands	Bulgaria	Georgia				

Notes:

Table 11: Countries in the Sample