

A Global Safe Asset for Emerging Market Economies

Markus K. Brunnermeier, Lunyang Huang and Yuliy Sannikov Central Bank of Chile Conference Santiago de Chile, 16. Nov. 2017

■ Motivation – 3 Stylized Facts

- Carry trade activity by EME corporations and households
- 2. Flight Safety cross-border capital flows
- 3. Official reserve holdings

Carry Trades

 EME corporate treasuries borrow in Dollars

EME gross issuance of international debt securities in foreign currency by non-financial firms

Bruno & Shin 2016

Carry Trades

 EME corporate treasuries borrow in Dollars

 Hungarian/Polish households borrow in Euros/Swiss Franc

EME gross issuance of international debt securities in

(b) Housing debt in domestic and foreign currency

Verner 2017

Carry Trades

- EME corporate treasuries borrow in Dollars
- Hungarian/Polish households borrow in Euros/Swiss Franc

- Sudden Stops:
 Carry Trade skewness "up the stairs, down the lift"
 - Brunnermeier, Nagel & Pedersen 2012

■ Flight to Safety

Risk-on, Risk-off

Flight to safe asset

■ Flight to Safety

Risk-on, Risk-off

Flight to safe asset

■ If asymmetrically supplied by AE

Flight to safety

cross-border capital flows

Flight to Safety

■ Risk-on, Risk-off

Flight to safe asset

■ If asymmetrically supplied by AE

Flight to safety **cross-border** capital flows

At times of global crisis, issuance of new debt

For AE at inflated prices

eases conditions

For EME at depressed prices

worsens conditions

- Question: Who insures whom? (rich the poor OR poor the rich?)
 - Correct insurance only if buffer is large (and debt long-term) enough so that no new debt issuance needed & sale off safe asset

A Global Safe Asset Brunnermeier et al.

Official Reserves

- Sudden Stop
- South East Asia crisis ⇒

precautionary reserves

CIA World Factbook data 2011

■ Official Reserves (without China)

"Buffer Approach"

Precautionary Reserves

Subsidizing carry trades

- IMF liquidity lines
- Central Swap line arrangements

Lean
against
Sudden Stop
outflows

"Rechanneling Approach"

Root cause: safe asset is supplied asymmetrically

Create globally supplied safe asset via pooling & tranching

Rechannel:

Instead of cross-border Across asset classes

Expand ESBies idea for euro area to EME:
 "SBBS (Sovereign-Bond Backed Securities) for the world"
 Brunnermeier et al. 2011, 2016

Overview

- Motivation
- What's a safe asset?
- Model
 - Autarky
 - Reserves and FX carry trades
- Sudden stop
 - Sufficient reserves to deter sudden stops
 - Insufficient reserves
 - Unanticipated sudden stops
 - Anticipated sudden stops
- Global Safe Asset from & for Emerging Market Economies

Safe assets

■ "Good friend analogy" - like reserve assets

"Safe asset tautology"

Safe assets

- "Good friend analogy" like reserve assets
 - Safe/available at any horizon "when it counts"
 - Precautionary buffer
 - held in addition to more risky assets
 - Risk[†] ⇒ demand for safe assets [†]

Safe assets

- "Good friend analogy" like reserve assets
 - Safe/available at any horizon "when it counts"
 - Precautionary buffer
 - held in addition to more risky assets
 - Risk[†] ⇒ demand for safe assets [†]
- "Safe asset tautology"
 - safe because it is "perceived to be safe"
 - safe independent of fundamentals
 - US Treasury downgrade by S&P in 2011 ⇒ yield ↓
 - German CDS spread ↑
 ⇒ yield ↓ during Euro crisis
 - Multiple equilibria
 - Bubble

Overview

- Motivation
- What's a safe asset?
- Model setup
 - Autarky
 - Add reserve holdings and FX carry trades
- Sudden stop
 - Sufficient reserves to deter sudden stops
 - Insufficient reserves
 - Unanticipated sudden stops
 - Anticipated sudden stops
- Global Safe Asset from & for Emerging Market Economies

Baseline model – autarky -

- Each household can only operate one firm
 - Physical capital

$$\frac{dk_t^i}{k_t^i} = \Phi(\iota_t^i)dt + \tilde{\sigma}d\tilde{Z}_t^i$$

Output

$$y_t^i = Ak_t^i$$

of which $\iota_t^i k_t^i$ is used to produce new physical capital

Demand for safe asset

Stationary Equilibrium

 $\blacksquare qK_t$ value of physical capital

•
$$dr^{k,i} = \frac{A-\iota}{q}dt + \Phi(\iota^i)dt + \tilde{\sigma}d\tilde{Z}_t^i$$

 $\blacksquare pK_t$ value of safe asset (absent inflation)

•
$$dr^D = \underbrace{\Phi(\iota)}_{a} dt$$

 \blacksquare Optimality (=) for $E \left[\int_0^\infty e^{ho t} \log c_t^i \, dt \right]$

• Investment rate, ι^i

Portfolio choice, $x^{k,i}$

lacktriangle Consumption, c^i

■ Optimality (=)

• Investment rate, ι^i

- Tobin's q: $\Phi'(\iota) = \frac{1}{q}$ (static problem)
 - For $\Phi(\iota) = \iota^0 + \frac{1}{\kappa} \log[\kappa(\iota \iota^0) + 1] \Rightarrow \iota = \iota^0 + \frac{1}{\kappa}(q 1)$
- Portfolio choice, $x^{k,i}$

lacktriangle Consumption, c^i

■ Optimality (=)

• Investment rate, ι^i

• Tobin's q:
$$\Phi'(\iota) = \frac{1}{q}$$
 (static problem)
• For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q - 1$

Portfolio choice, $x^{k,i}$

•
$$E[dr^K - dr^D]/dt = Cov[dr^k - dr^D, \frac{dn_t}{\underbrace{n_t}}] = x^{k,i}(\widetilde{\sigma})^2$$

$$\chi^{k,i} = \frac{E[dr^K - dr^D]/dt}{(\widetilde{\sigma})^2} = \frac{(A-\iota)/q}{(\widetilde{\sigma})^2}$$

- Dividend yield on capital must be ho
- Consumption, c^i

■ Optimality (=)

• Investment rate, ι^i

• Tobin's q:
$$\Phi'(\iota) = \frac{1}{q}$$
 (static problem)
• For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q - 1$

Portfolio choice, $x^{k,i}$

•
$$E[dr^K - dr^D]/dt = Cov[dr^k - dr^D, \frac{dn_t}{\underbrace{n_t}}] = x^{k,i}(\widetilde{\sigma})^2$$

$$\chi^{k,i} = \frac{E[dr^K - dr^D]/dt}{(\widetilde{\sigma})^2} = \frac{(A-\iota)/q}{(\widetilde{\sigma})^2}$$

- Dividend yield on capital must be ρ
- Consumption, c^i
 - Demand $\rho N_t = \rho (q+p) K_t$

■ Optimality (=) & market clearing (=)

- Investment rate, ι^i
 - Tobin's q: $\Phi'(\iota) = \frac{1}{q}$ (static problem)
 - For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q 1$
- Portfolio choice, $x^{k,i}$

•
$$E[dr^K - dr^D]/dt = Cov[dr^k - dr^D, \frac{dn_t}{n_t}] = x^{k,i}(\tilde{\sigma})^2$$

$$\chi^{k,i} = \frac{E[dr^K - dr^D]/dt}{(\tilde{\sigma})^2} = \frac{(A-\iota)/q}{(\tilde{\sigma})^2} = \frac{q}{q+p}$$

Capital market clearing

- Dividend yield on capital must be ρ
- \blacksquare Consumption, c^i Output market clearing
 - Demand $ho N_t =
 ho (q+p) K_t = (A-\iota) K_t$ Supply

$$q = \underbrace{\left(\frac{q}{q+p}\right)}_{=x^{k,i}} (A-\iota)/\rho$$

Equilibrium

Equilibrium w/o Safe Asset	Safe Asset equilibrium
$p_0 = 0$	$p = \frac{\widetilde{\sigma} - \sqrt{\rho}}{\sqrt{\rho}} q$
$q_0 = \frac{\kappa(A - \iota^0) + 1}{\kappa \rho + 1}$	

Overview

- Motivation
- What's a safe asset?
- Model
 - Autarky
 - Reserves and FX carry trades
- Sudden stop
 - Sufficient reserves to deter sudden stops
 - Insufficient reserves
 - Unanticipated sudden stops
 - Anticipated sudden stops
- Global Safe Asset from & for Emerging Market Economies

Our global economy

Later we will have many EMEs

EME Firms/Households

- includes carry trades
 - $\chi^{k,i}$
 - $\chi^{D,i}$
 - * $x^{\$,i} < 0$... negative since borrowing at rate $\bar{r}^\$$

- Carry trade, since $r^D = \Phi(\iota) > \bar{r}^{\$}$
 - Limited by \$-borrowing constraint (capital controls)

$$B_t^{\$,i} \ge -\phi q k_t^i = -\phi n_t^i x^{k,i}$$

- $x^{\$,i} = -\phi x^{k,i}$
- Capital holding

•
$$E[dr^k + \underbrace{\phi(r^D - \bar{r}^{\$})}_{\text{collateral boost}} - dr^D] = Cov[dr^k - dr^D, \frac{dn_t^k}{n_t^i}]$$

•
$$\frac{dn_t^i}{n_t^i} = x^{k,i}dr^k + (1 - x^{k,i} - x^{\$,i})dr^D + x^{\$,i}\bar{r}^\$dt - \frac{c_t^i}{n_t^i}dt$$

•
$$x^{k,i} = \frac{1}{\tilde{\sigma}^2} \left(\frac{A-\iota}{q} + \Phi(\iota) - r^D + \phi(r^D - \bar{r}^{\$}) \right)$$

EME Central Bank and Banks

- Bubble grows $dB_t = B_t \Phi(\iota) dt$
- *FX_t* US Treasuries earn a real interest rate of $r^{\$}$

$$dFX_t = \underline{r}^{\$} F \overline{X_t} dt + \Delta F X_t -$$

Newly acquired **US Treasuries**

Central Bank/Banks^{EME}

Domestic

Safe Asset

Bubble

Deposit rate on (domestic safe asset)

$$\underline{r}^{\$}FX_{t}dt + B_{t}\Phi(\iota)dt - r^{D}pK_{t}dt = Tdt$$

- set aggregate transfer Tdt = 0
- $ightharpoonup \Rightarrow r^D = \alpha r^{\$} + (1 \alpha) \Phi(\iota)$

Market Clearing – on balance growth path

- Balanced growth path: $\frac{dD_t}{D_t} = \frac{dB_t^{\$}}{B_t^{\$}} = \frac{dK_t}{K_t} = \Phi(\iota)dt$
- Goods market

$$\rho N_{t} = (A - \iota)K_{t} - (\frac{dD_{t}}{D_{t}} - r^{D}D_{t}) - (\frac{dB_{t}}{B_{t}} - \bar{r}^{\$}B_{t}^{\$})$$

$$\rho (q + p + b^{\$}) = A - \iota - (\Phi(\iota) - r^{D}) - (\Phi(\iota) - \bar{r}^{\$})b^{\$}$$

Capital markets

$$q = (q + p + b^{\$})x^k$$

Safe asset market

$$p = (q + p + b^{\$})(1 - x^k - x^{\$})$$

US dollar (debt) market clears by Walras' Law

Equilibrium effects

$$q = \frac{A - \iota}{\tilde{\sigma}\sqrt{\rho + \Phi(\iota) - r^D} - (\Phi(\iota) - r^D) - \phi(r^D - \bar{r}^{\$})},$$

$$\iota = \iota^0 + \frac{1}{\kappa}(q - 1),$$

$$r^D = \alpha \underline{r}^{\$} + (1 - \alpha)\Phi(\iota)$$

$$x^k = \frac{1}{\tilde{\sigma}^2} \left(\frac{A - \iota}{q} + \Phi(\iota) - r^D + \phi(r^D - \bar{r}^{\$})\right)$$

$$p = \frac{1 - x^k}{x^k} q.$$

- Two effects of reserves holding
 - Reserves upkeep Reserves only grow at $r^{\$}$ --- have to constantly buy US Treasuries ...
 - Portfolio rebalancing effect domestic safe asset holding is less attractive – increases q
- Effects of carry trades
 - As capital serves as collateral, it is attractive -> increases q
 - Requires larger reserves (α) -> effects above

Overview

- Motivation
- What's a safe asset?
- Model
 - Autarky
 - Reserves and FX carry trades
- Sudden stop
 - Sufficient reserves to deter sudden stops
 - Insufficient reserves
 - Unanticipated sudden stops
 - Anticipated sudden stops
- Global Safe Asset from & for Emerging Market Economies

Sudden Stop with high reserves

- Sun-spot which potentially triggers US investors not to fund anymore
- Threshold depends on maturity structure of \$ corporate bonds
 - Conservative: very short-term corporate bonds

■ Proposition: With sufficient reserves, $\alpha pK_t \geq B_t^{\$} \iff \alpha p(\alpha) \geq b^{\$}(\alpha)$, self-fulfilling suddens stops do not occur

Sudden Stop with insufficient reserves

- Public reserves are used up. Hence, $\alpha^+ = 0$
- Jump of the exchange rate by

$$j^{e} = \frac{D_{t}^{+} + (-B_{t}^{\$} - \alpha D_{t})}{D_{t}} = \frac{p^{+} - b^{\$}}{p} - \alpha$$

New steady state is

$$q = \frac{A - \iota^{+}}{\tilde{\sigma}\sqrt{\rho + \Phi(\iota) - r^{D}} - (\Phi(\iota) - r^{D}) - \phi(r^{D} - \bar{r}^{\$})},$$

$$\iota = \iota^{0} + \frac{1}{\kappa}(q^{+} - 1),$$

$$r^{D} = \alpha \underline{r}^{\$} + (1 - \alpha)\Phi(\iota),$$

$$\chi^{k,+} = \frac{\sqrt{\rho}}{\tilde{\sigma}},$$

$$p^{+} = \left(\frac{\tilde{\sigma}}{\sqrt{\rho}} - 1\right)\frac{A - \iota^{+}}{\tilde{\sigma}\sqrt{\rho}}.$$

Peso held by US investors

Unanticipated vs. anticipated Sudden Stop

 $\blacksquare \lambda$ = arrival rate of sunspot -> potential jump

Figure 5: Deposit value (deposit-capital ratio) before and after cr.

Figure 4: Capital price before and after crisis

Unanticipated vs. anticipated Sudden Stop

 $\blacksquare \lambda$ = arrival rate of sunspot -> potential jump

Figure 6: Jump of Exchange Rate

Figure 7: Jump of Capital Price

Global Safe Asset

- Many emerging market economies
- Sunspot has potential to trigger systemic sudden stop
 - For Δ fraction of EMEs

- $r^{senior} = r^{junior} = \Phi(\iota)$
- $q_{GSA} =$

$$q_{gsa} = \frac{A - \iota_{gsa}}{\tilde{\sigma}\sqrt{\rho} - \phi(\Phi(\iota_{gsa}) - \overline{r}^{\$})},$$

$$\iota_{gsa} = \iota^{0} + \frac{1}{\kappa}(q_{gsa} - 1),$$

$$r_{gsa}^{D} = \Phi(\iota_{gsa}).$$

■ Global Safe Asset – Conclusion

- Carry trade activity by EME corporations and households
- 2. Flight Safety cross-border capital flows
- 3. Official reserve holdings
- Distorts World Economy
- "Rechannelling" Approach instead of "buffer Approach" (reserves, IMF, swaplines)
- Root cause solution