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Abstract

Although advanced country �nancial systems have weathered numerous shocks in

recent years, the events triggered by the sub-prime crisis of August 2007 have been

�super-systemic� in scope, enveloping �nancial institutions across the major economies

as well as far away Iceland and New Zealand. In this paper, we apply network techniques

to develop a framework for analyzing �nancial contagion that isolates the probability of

contagion from its potential spread. Our results suggest that modern �nancial systems

may be robust-yet-fragile in nature. Under plausible assumptions, the greater connectiv-

ity implied by new �nancial instruments, such as credit derivatives, reduces the likelihood

of contagion. But the impact on the �nancial system, in the event of problems, may be

on a signi�cantly larger scale than before.
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1. Introduction

Are �nancial systems shock absorbers or shock ampli�ers? Policymakers and

academics have long remained divided over this fundamental question. On one

hand, some contend that �nancial innovation and integration make the �nancial

world a safer place (Greenspan, 1999); while others argue the opposite by appeal-

ing to the same driving forces (Rajan, 2005; Tucker, 2005). On this view, recent

rapid �nancial innovation has been both good and bad cholesterol � serving to

lower the probability of crisis, but fattening the tail of the distribution of losses

for the �nancial system as a whole (Gieve, 2006; Gai and Haldane, 2007). Al-

though advanced country �nancial systems have weathered numerous shocks in

recent years (the collapse of Amaranth, the events surrounding GM, 9/11, and

the Dotcom crash to name a few), the events triggered by the sub-prime crisis of

August 2007 have been �super-systemic�in scope, enveloping �nancial institutions

across the major economies as well as far away Iceland and New Zealand.1

The intricate network of claims and obligations that now link the balance sheets

of �nancial intermediaries raises challenges for the positive analysis of contagion

in the modern �nancial system. In a seminal analysis, Allen and Gale (2000)

demonstrate how the spread of contagion depends crucially on the pattern of

interconnectedness between banks. When the network is �complete�, with all

banks having exposures to each other such that the amount of interbank deposits

held by any bank is evenly spread over all other banks, the impact of a shock is

readily attenuated. By contrast, when the network is �incomplete�, with banks

only having exposures to a few counterparties, the system is more fragile. The

initial impact of a shock is concentrated among neighbouring banks. Once these

1We owe the term "super-systemic" to Andy Haldane.
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succumb, the premature liquidation of long-term assets and the associated loss of

value bring previously una¤ected banks into the front-line of contagion.2

The �nancial turmoil of 2007/8 has also made clear how the interdependent

nature of �nancial balance sheets creates an environment for indirect contagion

to occur. As Cifuentes et.al (2005), Shin (2008) and Brunnermeier and Pederson

(2008) stress, the knock-on e¤ect of the default of a �nancial institution on asset

prices can trigger further rounds of default as other �nancial entities are forced

to write down the value of their assets. Contagion due to direct interlinkages of

claims and obligations may thus be reinforced, particularly if the market for key

�nancial assets is illiquid.

Given the speed with which shocks propagate, there is a need to develop tools

that permit economists to articulate the probability and impact of shocks to the

�nancial system. The complexity of �nancial systems means that policymakers

have scant information about the true interlinkages between �nancial intermedi-

aries. In this context, models such as Allen and Gale (2000), which are based on

rigid structures with a handful of banks, have limited appeal. And more recent

literature on endogenous network formation (e.g. Leitner, 2005; Castiglionesi and

Navarro, 2007) also fails to o¤er a framework that allows for arbitrary network

structures or for a distinction to be made between the probability and spread of

contagion.

In this paper, we develop a network model of �nancial contagion that builds on

techniques from the literature on complex systems (Strogatz, 2001). The model

allows for arbitrary network structure and explicitly accounts for the nature and

scale of aggregate and idiosyncratic shocks as well as asset price interactions.

2See Friexas et.al (2000) for similar results. Network models have also been applied to a range
of other topics in �nance: for a comprehensive survey, see Allen and Babus (2008).
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Although the model can be solved analytically under certain assumptions, we

present numerical results to illustrate and clarify the non-linear system dynamics

of the model.3 In so doing, we are able to isolate the probability of contagion in

the �nancial system from its potential spread.

We �nd that �nancial systems exhibit a robust-yet-fragile tendency. While

greater connectivity reduces the likelihood of contagion, the impact on the �nancial

system, should problems occur, could be on a signi�cantly larger scale than before.

Our results thus nest the two views of �nancial systems as shock absorbers and/or

ampli�ers. The wider and deeper is �nancial innovation and integration, the more

likely that the �nancial system serves as a shock absorber by enabling risk sharing.

But innovation also has a dark side and can lead risk sharing to become risk

spreading. So, although the incidence of acute �nancial distress may have fallen

with greater �nancial inter-connectedness, episodes of distress could have greater

impact.

The recent rescue of American International Group (AIG) serves to illustrate

the type of analysis made possible by our framework. A key reason given by poli-

cymakers for the rescue was concern that banks across the international �nancial

system might have been exposed to AIG via credit derivative contracts. But how

far could contagion have spread had AIG been allowed to fail? More generally, how

might the expansion of credit risk transfer over the past decade have a¤ected the

nature of contagion? Given the limited information that policymakers have about

the true interlinkages involved, the connections implied by credit derivatives are,

perhaps, best captured by a random graph network of the type we consider here.

3Gai and Kapadia (2008) provide details of the analytical solution, applying techniques used
in percolation theory (Callaway et al., 2001; Newman et al., 2001; Watts, 2002) and the epidemi-
ological literature on the spread of disease in networks (e.g. Newman, 2002; Meyers, 2007).
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Our results suggest that under plausible parameter values, greater use of credit

derivatives might have reduced the likelihood of contagion. But, by creating com-

plex and far-reaching interlinkages in the �nancial system, their increased use may

mean that when contagion breaks out, it is transmitted much more widely.

A natural criticism of our framework is that it assumes that �nancial connec-

tions between intermediaries are formed randomly and exogenously and are static

in nature. This leads us to model the contagion process in a relatively mechanical

fashion, holding balance sheets and the size and structure of interbank linkages

constant as default propagates through the system. Although not cast in a tradi-

tional optimizing set-up, our approach, nevertheless, yields a useful and realistic

benchmark for analysis. Arguably, in normal times, developed country banks are

robust and minor variations in their default probabilities do not a¤ect lending de-

cisions on the interbank market. But in crises, as illustrated by the sudden failures

of Bear Stearns and Lehman Brothers, contagion may spread rapidly, with banks

having little time to alter their behaviour before they are a¤ected. Note also that

banks have no choice over whether to default. This precludes strategic behaviour

on networks of the type discussed by Morris (2000), Jackson and Yariv (2007) and

Galeotti and Goyal (2007), where nodes can choose whether to adopt a particular

state (e.g. adopting a new technology).

Our paper is related to a large empirical literature which uses counterfactual

simulations to assess the danger of contagion in a range of national banking sys-

tems (see Upper, 2007, for a comprehensive survey). This literature has largely

tended to use actual or estimated data on interbank lending to simulate the ef-

fects of the failure of an individual bank on �nancial stability.4 The evidence

4A parallel literature explores contagion risk in payment systems �see, for example, Angelini
et.al (1996).
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of contagion risk from idiosyncratic shocks is mixed. Fur�ne (2003) and Wells

(2004) report relatively limited scope for contagion in the U.S. and U.K. banking

systems. By contrast, Upper and Worms (2004) and Van Lelyveld and Liedorp

(2006) suggest that contagion risk may be somewhat higher in Germany and the

Netherlands. Meanwhile, Mistruilli�s (2007) results for the Italian banking system

echo the �ndings of this paper: he �nds that while only a relatively low fraction

of banks can trigger contagion, large parts of the system are a¤ected in worst-

case scenarios. Moreover, he shows that when moving from an analysis of actual

bilateral exposures (which form an incomplete network) to a complete structure

estimated using maximum entropy techniques, the probability of contagion from a

random, idiosyncratic bank failure is reduced but its spread is sometimes widened.

Contagion due to aggregate shocks is examined by Elsinger et.al (2006) who

combine a model of interbank lending in the Austrian banking system with models

of market and credit risk. They take draws from a distribution of risk factors and

compute the e¤ects on banks�solvency, calculating the probability and the severity

of contagion. Their �ndings also echo the results reported in our paper. While

contagious failures are relatively rare, if contagion does occur, it a¤ects a large

part of the banking system.

As noted by Upper (2007), existing empirical studies are plagued by data

problems and the extent to which reported interbank exposures re�ect true linkages

is unclear: generally, interbank exposures are only reported on a particular day

once a quarter and exclude a range of items, including intraday exposures. As such,

they underestimate the true scale of �nancial connectivity. Moreover, national

supervisory authorities do not generally receive information on the exposures of

foreign banks to domestic institutions, making it di¢ cult to model the risk of
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global contagion in the increasingly international �nancial system. All of this,

coupled with short time series for the relevant data, makes it di¢ cult to empirically

assess the e¤ects of changes in network structure, as perhaps induced by credit

risk transfer, on contagion risk. This highlights the importance of analytical and

simulation-based approaches to explore these issues.

The structure of the paper is as follows. Section 2 describes the analytical

framework. Section 3 uses numerical simulations to study the e¤ects of failures

of individual institutions and articulate the likelihood and extent of contagion.

It also considers the impact of liquidity e¤ects and credit derivatives on system

stability. A �nal section concludes.

2. Analytical Framework

Consider a �nancial network in which n �nancial intermediaries, �banks� for

short, are randomly linked together by their claims on each other. In the language

of graph theory, each bank represents a node on the graph and the interbank expo-

sures of bank i de�ne the links with other banks. Since interbank linkages comprise

assets as well as liabilities, the links in the network are directed : incoming links,

which point into a node or bank, correspond to the interbank assets / exposures of

that bank (i.e. money owed to that bank by a counterparty); by contrast, outgoing

links, which point out from a node, correspond to its interbank liabilities. Figure

1 shows an example of a directed �nancial network in which there are �ve banks.

Two crucial properties of graphs such as those in Figure 1 are their degree

distribution and average degree. Let us denote the number of incoming links, or

in-degree, to bank i by ji, and the number of outgoing links, or out-degree, by ki.

We can then de�ne the joint degree distribution of in- and out-degree, pjk, to be the
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probability that a randomly chosen node simultaneously has in-degree j and out-

degree k. Further, since every interbank asset of a bank is an interbank liability

of another, every outgoing link for one node is an incoming link for another node.

Therefore, the average in-degree in the network, 1n
P

i ji =
P

j;k jpjk, must equal

the average out-degree, 1n
P

i ki =
P

j;k kpjk. We simply refer to this quantity as

the average degree and denote it by

z =
X
j;k

jpjk =
X
j;k

kpjk: (1)

In what follows, the joint distribution of in- and out-degree governs the poten-

tial for the spread of shocks through the network. A feature of our analysis is that

this joint degree distribution, and hence the structure of the links in the network,

is entirely arbitrary, though a speci�c distributional assumption is made in our

numerical simulations.

Suppose that the total assets of each bank are normalised to unity and that

these consist of interbank assets, AIBi , and illiquid external retail assets, such as

mortgages and corporate loans, ARi . Since we might expect a bank with more

incoming links to have a greater total interbank asset position, we allow for the

relative shares of interbank and retail assets to depend on the bank�s in-degree,

ji. Given these assumptions,

AIBi (ji) +A
R
i (ji) = 1 8 i; (2)

where AIBi (0) = 0.5 We assume that the total interbank asset position of every

bank is evenly distributed over each of its incoming links. Although this assump-

5Across the entire �nancial system, we might expect total retail assets to be �xed. This would
imply a dependence between the average share of retail assets on bank balance sheets and the
number of �nancial intermediaries in the system. As discussed below, our numerical simulations
take this dependency into account.
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tion is stylised, it provides a useful benchmark which emphasises the possible

bene�ts of diversi�cation.

Since every interbank asset is another bank�s liability, interbank liabilities,

LIBi , are endogenously determined. Apart from interbank liabilities, the only

other component of a bank�s liabilities are exogenously given customer deposits,

Di. The condition for bank i to be solvent is therefore

(1� ��)AIBi (ji) + qA
R
i (ji)� LIBi �Di > 0; (3)

where � is the fraction of banks with obligations to bank i that have defaulted,

� is the average loss-given-default on interbank loans, and q is the resale price

of the illiquid asset. The value of � is constrained to lie between zero and one:

� = 1 corresponds to a zero recovery assumption, namely that when a linked bank

defaults, bank i loses all of its interbank assets held against that bank. The value

of q may be less than one in the event of asset sales by banks in default, but equals

one if there are no ��re sales�. The solvency condition can also be expressed as

� <
Ki � (1� q)ARi (ji)

�AIBi (ji)
, for �AIBi (ji) 6= 0; (4)

where Ki = AIBi (j) + ARi (j) � LIBi � Di is the bank�s capital bu¤er, i.e. the

di¤erence between the book value of its assets and liabilities.

To model the dynamics of contagion, we suppose that all banks in the network

are initially solvent and that the network is perturbed at time t = 1 by the

initial default of a single bank. Although purely idiosyncratic shocks are rare, the

crystallisation of operational risk (e.g. fraud) has led to the failure of �nancial

institutions in the past (e.g. Barings). Alternatively, bank failure may result from

an aggregate shock which has particularly adverse consequences for one institution:

this can be captured in the model through a general erosion in the stock of retail
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assets or, equivalently, capital bu¤ers across all banks, combined with a major loss

for one particular institution.

Recall that ji denotes the number of incoming links for bank i. Since linked

banks each lose a fraction 1=ji of their interbank assets when a single counterparty

defaults, it is clear from (4) that the only way default can spread is if there is a

neighbouring bank for which

Ki � (1� q)ARi (ji)
�AIBi (ji)

<
1

ji
: (5)

We de�ne banks that are exposed in this sense to the default of a single neigh-

bour as vulnerable and other banks as safe. The vulnerability of a bank clearly

depends on its in-degree, j. Speci�cally, a bank with in-degree j is vulnerable with

probability

�j = P

�
Ki � (1� q)ARi (j)

�AIBi (j)
<
1

j

�
8 j � 1: (6)

Further, the probability of a bank having in-degree j, out-degree k and being

vulnerable is �j � pjk.

The model structure described by equations (2) to (6) captures several features

of interest in systemic risk analysis. First, as noted above, the nature and scale of

adverse aggregate or macroeconomic events can be interpreted as a negative shock

to the stock of retail assets, ARi , or equivalently, to the capital bu¤er, Ki. Second,

idiosyncratic shocks can be modelled by assuming the exogenous default of a bank.

Third, the structural characteristics of the �nancial system are described by the

distribution of interbank linkages, pjk, and much can be learnt about the nature

of contagion by simply exploring the e¤ects of varying the average degree in the

network, z. Fourth, the implications of di¤erent dependencies between the total

interbank asset position and the number of exposures can be explored by changing
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the functional form of AIBi (ji). And �nally, liquidity e¤ects associated with the

potential knock-on e¤ects of default on asset prices are captured by allowing q to

vary.

Gai and Kapadia (2008) use probability generating function techniques to ob-

tain analytical results on the transmission of shocks in the system as a function

of vj and pjk in the special case where the total interbank asset position is inde-

pendent of the number of incoming links the bank has (i.e. AIBi (ji) is constant

and does not depend on ji) and both � and q are set equal to 1. They show that

under these assumptions, �nancial systems exhibit a robust-yet-fragile tendency.

While greater connectivity reduces the likelihood of contagion, its potential spread,

should problems occur, could be signi�cantly greater.

The intuition underpinning these results is straightforward. In a more con-

nected system, the counterparty losses of a failing institution can be more widely

dispersed to, and absorbed by, other entities. So increased connectivity and risk

sharing may lower the probability of contagion. But, conditional on the failure of

one institution triggering contagious defaults, a higher number of �nancial link-

ages also increases the potential for contagion to spread more widely. In particular,

greater connectivity increases the chances that institutions which survive the ef-

fects of the initial default will be exposed to more than one defaulting counterparty

after the �rst round of contagion, thus making them vulnerable to a second-round

default. The impact of any crisis that does occur could, therefore, be larger.

Although Gai and Kapadia (2008) discuss how assuming an uneven distribution

of interbank assets over incoming links would not change any of their fundamental

results, the e¤ects of the other simplifying assumptions required to obtain an

analytical solution are less clear. In particular, they do not explore the implications
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of making the total interbank asset position dependent on the number of exposures,

making it di¢ cult to assess, for example, the e¤ects of more widespread use of

credit derivatives. Therefore, in what follows, we use numerical simulations to

explore the implications of relaxing some of the simplifying assumptions needed

to solve the model analytically.

3. Numerical Simulations

3.1. Methodology

In our numerical simulations, we assume a uniform (Poisson) random graph

in which each possible directed link in the graph is present with independent

probability p. In other words, the network is constructed by looping over all

possible directed links and choosing each one to be present with probability p.

Consistent with bankruptcy law, we do not net interbank positions, so it is possible

for two banks to be linked with each other in both directions. The average degree,

z, is allowed to vary in each simulation. And although our model applies to

networks of fully heterogeneous �nancial intermediaries, we take the capital bu¤ers

and asset positions on banks�balance sheets to be identical.

As a benchmark, we consider a network of 1,000 banks. Clearly, the number of

�nancial intermediaries in a system depends on how the system is de�ned and what

counts as a �nancial intermediary. But several countries have banking networks

of this size, and a �gure of 1,000 intermediaries also seems reasonable if we are

considering a global �nancial system involving investment banks, hedge funds, and

other players. Given this rather high number of banks, however, when calculating

the probability and conditional spread of contagion, we only count episodes in
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which over 5% of the system defaults, as this seems a suitable lower bound for

de�ning a systemic �nancial crisis in such a large system which will inevitably

include some fairly smaller institutions. When assessing the impact of credit risk

transfer, we change these assumptions to re�ect the smaller number of major

players in credit derivative markets and their greater systemic importance.

Except for the credit derivative experiment, interbank assets are assumed not

to depend on the number of incoming links and are held constant so that they

comprise 20% of total assets, with retail assets making up the rest �the 20% share

of interbank assets is broadly consistent with the �gures for developed countries

reported by Upper (2007). Banks� capital bu¤ers are set at 4%, a �gure cali-

brated from data contained in the 2005 published accounts of a range of large,

international �nancial institutions.6 Since each bank�s interbank assets are evenly

distributed over its incoming links, interbank liabilities are determined endoge-

nously within the network structure. And the liability side of the balance sheet is

�topped up�by customer deposits until the total liability position equals the total

asset position.

In the experiments that follow, we draw 1,000 realisations of the network for

each value of z used. In each of these draws, we shock one bank at random, wiping

out all of its external assets �this type of idiosyncratic shock may be interpreted

as a fraud shock. The failed bank defaults on all of its interbank liabilities. As a

result, neighbouring banks may also default if their capital bu¤er is insu¢ cient to

cover their loss on interbank assets. Any neighbouring banks which fail are also

assumed to default on all of their interbank liabilities, and the iterative process

continues until no new banks are pushed into default.

6Further details are available on request from the authors.
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3.2. Benchmark Case

As a benchmark, Figure 2 depicts the numerical solution under the assumptions

needed to solve the model analytically. With no links, contagion is impossible

by de�nition. Therefore, for very low values of z, the likelihood of contagion is

increasing in connectivity.

More interesting is what happens for higher values of z. Gradually, the fre-

quency of contagion falls as risk-sharing e¤ects serve to reduce the number of

vulnerable banks in the system. But when contagion does break out, it a¤ects an

increasing fraction of the system. Indeed, for z > 8, contagion never occurs more

than �ve times in 1,000 draws but in each case where it does break out, every

bank in the network fails. As well as pointing towards the robust-yet-fragile na-

ture of �nancial networks, this serves to highlight that a priori indistinguishable

shocks to the network can have vastly di¤erent consequences for contagion. In

each draw, the initial shock is the failure of a single bank. In general, this does

not cause contagion. But, in a in a small handful of cases, it is catastrophic. This

feature of the complex network cautions against assuming that past resilience to

a particular shock will continue to apply to future shocks of a similar magnitude.

It also highlights the acute di¢ culties that policymakers may have when trying to

assess the contagion risk from the failure of an institution if they do not have a

good understanding of the structure of the �nancial network.

Figure 3 shows how the results change as banks�capital bu¤ers vary. As might

be expected, an erosion of capital bu¤ers increases the probability of contagion for

�xed values of z.7 For small values of z, the extent of contagion is also slightly

7Reduced capital bu¤ers may also increase the likelihood of an initial default. Therefore, they
may contribute to an increased probability of contagion from this perspective as well.
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greater when capital bu¤ers are lower but, in all cases, it reaches one for su¢ ciently

high values of z. When the capital bu¤er is increased to 5%, however, this occurs

well after the peak probability of contagion. This neatly illustrates how increased

connectivity can simultaneously reduce the probability of contagion but increase

its spread conditional on it breaking it out.

3.3. Positive Recovery Rates

Solving the model analytically requires assuming a 100% loss-given-default on

interbank assets. This assumption may well be realistic in the midst of a crisis �in

the immediate aftermath of a default, the recovery rate and the timing of recovery

will be highly uncertain and banks� funders are likely to assume the worst-case

scenario. But to assess the robustness of the results, Figure 4 relaxes the zero

recovery assumption. Instead, we assume that when a bank fails, its default in

the interbank market equals its asset shortfall (i.e. its outstanding loss after its

capital bu¤er is absorbed) plus half of any remaining interbank liabilities, where

the additional amount is interpreted as re�ecting bankruptcy costs that are lost

outside the system.8 As we might expect from equation (6), this reduces the

likelihood of contagion because fewer banks are vulnerable when the recovery rate

is positive. But it is also evident that relaxing the zero recovery assumption does

not fundamentally a¤ect our broad results.

8Since interbank assets make up 20% of each bank�s total asset position, interbank liabilities
must, on average, make up 20% of total liabilities. Therefore, for the average bank, if we take
(insured) customer deposits as senior, the maximum bankruptcy cost under this assumption is
10% of total assets / liabilities, which accords with the empirical estimates of bankruptcy costs
in the banking sector reported by James (1991).
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3.4. Liquidity Risk

We now incorporate liquidity e¤ects into our analysis. When a bank fails,

�nancial markets may have a limited capacity to absorb the illiquid external assets

which are sold. As a result, the asset price may be depressed. Following Schnabel

and Shin (2004) and Cifuentes et.al (2005), suppose that the price of the illiquid

asset, q, is given by

q = e��x; (7)

where x > 0 is the fraction of system (illiquid) assets which have been sold onto

the market (if assets are not being sold onto the market, q = 1). We calibrate � so

that the asset price falls by 10% when one-tenth of system assets have been sold.

We integrate this pricing equation into our numerical simulations. Speci�cally,

when a bank defaults, all of its external assets are sold onto the market, reducing

the asset price according to equation (7). We assume that when the asset price

falls, the external assets of all other banks are marked-to-market to re�ect the

new asset price. From equation (6), it is clear that this will reduce banks�capital

bu¤ers and has the potential to make some banks vulnerable, possibly tipping

them into default.

The incorporation of (market) liquidity risk introduces a second potential

source of contagion into the model from the asset-side of banks�balance sheets.

Note, however, that liquidity risk only materialises upon default. Realistically,

asset prices are likely to be depressed by asset sales before any bank defaults. So

accounting only for the post-default impact probably understates the true e¤ects

of liquidity risk.
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Figure 5 illustrates the e¤ects of incorporating liquidity risk into the model. As

we might expect, liquidity e¤ects magnify the extent of contagion when it breaks

out. Contagion is also slightly more likely for given values of z.

As shown, liquidity e¤ects do not drastically alter the main results of our model.

But this should not be taken to mean that liquidity e¤ects are unimportant. In

part, the limited e¤ect of liquidity risk re�ects the already high spread of contagion

embedded in the benchmark scenario. But if a fraction of banks were assumed

to be totally immune to counterparty credit risk (i.e. they would survive even

if all their counterparties defaulted), then liquidity risk would probably be much

more signi�cant in amplifying the extent of contagion for intermediate levels of

connectivity. And, to the extent that liquidity risk materialises before any bank

defaults, it can be viewed as having the potential to erode capital bu¤ers and

increase the likelihood of an initial default.

3.5. The Impact of Credit Derivatives

We now illustrate the type of analysis made possible by our framework by using

it to assess the possible impact of credit derivatives on the nature of contagion.

In recent years, the use of credit derivatives has grown tremendously. For the net

buyers of credit protection (typically traditional banks), this has reduced their

exposure to non-�nancial corporates. But, at the same time, it has increased

both their number of links to �nancial counterparties and their overall exposure

to them. Meanwhile, net sellers of credit protection (e.g. insurance companies and

monolines) have implicitly taken on corporate credit risk and become part of the

�nancial network through their activities. Perhaps more contentiously, it has also

been argued that for the system as a whole, the greater use of credit risk transfer



A Network Model of Super-Systemic Crises 18

may have slightly reduced capital bu¤ers.

To capture these features in our model, we assume that the greater use of

credit derivatives has meant that a typical bank has a greater number of incoming

links and a correspondingly higher share of interbank assets on their balance sheet.

Speci�cally, we assume the following functional form for AIBi (ji)

AIBi (ji) = aj
b
i + c; (8)

where a > 0 and b > 0 are parameters controlling the extent to which the total

interbank exposure increases with the number of incoming links.9 We also assume

that the total stock of retail assets in the economy has remained constant. To-

gether, these assumptions imply that the number of institutions in the network

must have increased �we associate this with the integration of insurance compa-

nies, hedge funds and monolines into the system. To capture the possible erosion in

capital bu¤ers, we suppose that the total capital in the system remains unchanged

despite the increase in the number of participants � as a result, all institutions

become slightly less well capitalised as credit derivatives take on a greater role.

All of these e¤ects key automatically o¤ an increase in the average degree, z.

Since our focus is on the relatively limited set of key players in global credit

derivative markets, we suppose that in the initial state before the advent of credit

derivatives, there were only 100 banks with each having a 4% capital bu¤er and

just two interbank links on average. We then simulate the system for di¤erent

values of z, assuming that a = 0:02, b = 0:85, c = 0:03, that the loss-given-

default on interbank exposures is 100% and that there are no liquidity e¤ects.

9 Intuitively, introducing this relationship curtails the risk-sharing bene�ts of greater connec-
tivity because the greater absolute exposure associated with a higher number of links partially
o¤sets the positive e¤ects from greater diversi�cation.
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Bearing in mind that the typical bank currently has an interbank asset share of

approximately 20% (Upper, 2007), it seems from the second column of Table 1

that this parameterisation generates reasonably plausible interbank asset shares

for the corresponding number of links. For example, if a bank is linked to one-�fth

of the system (z = 20), interbank assets comprise 28.5% of its balance sheet.

Table 1 shows how the probability and spread of contagion vary with z. Given

our focus on major international �nancial institutions in this analysis, we adopt a

lower threshold for recording contagion events, counting all episodes in which more

than one bank defaults as a result of the initial failure. It is clear from the table

that the greater use of credit derivatives, as captured by an increase in z, may

have reduced the likelihood of contagion following an initial failure. Moreover, to

the extent that credit risk transfer may reduce the probability of an initial default,

the results may understate its bene�cial e¤ects. But the role of credit derivatives

as a potential shock ampli�er is made clear by the sharply increasing spread of

contagion. Even with an average of �ve links, contagion only a¤ects roughly 5%

of the system when it breaks out. But an increase to ten or �fteen links changes

the picture completely �once started, crises become super-systemic.

4. Conclusion

In this paper, we develop a model of contagion in arbitrary �nancial networks

that nest the two competing views of �nancial systems as shock absorbers or

ampli�ers. In so doing, our framework helps clarify how shocks are transmitted

across markets and banking systems. A key �nding is that while greater connec-

tivity helps lower the probability of contagion, it can also increase its spread in the

event of problems occurring. Illiquid markets for key �nancial assets compound
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the problem, amplifying both the likelihood and extent of such contagion.

Our model helps illustrate how the failure of a large organization linked to

other entities via credit derivatives might play out in the absence of a public

sector rescue. The use of credit derivatives in our model creates far-reaching

interlinkages and large absolute exposures compared with �nancial systems that

lack such instruments. We demonstrate how the expansion of credit derivative

activity may have worked to curtail some of the risk-sharing bene�ts o¤ered by such

innovation, leaving open the scope for a much more virulent or �super-systemic�

crisis.

Finally, the paucity of relevant balance sheet data on many �nancial entities

and the international nature of �nancial intermediation make the empirical mod-

elling of contagion risk di¢ cult to undertake. By isolating probability and impact,

our paper also makes a methodological contribution �pointing towards analytical

and numerical ways of assessing the e¤ects of changes in network structure on

contagion risk. Further research along these lines that sharpens the calibration

and relaxes some of the more mechanical assumptions of the analysis seems an

important next step.
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Figure 1: A Directed Network with Five Nodes 
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Figure 2: Contagion in the Benchmark Case 
 



A NETWORK MODEL OF SUPER-SYSTEMIC CRISES 

 

26

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Average Degree (i.e. connectivity)

Frequency of Contagion
(3% Capital Buffer)

Extent of Contagion (3%
Capital Buffer)

Frequency of Contagion
(4% Capital Buffer)

Extent of Contagion (4%
Capital Buffer)

Frequency of Contagion
(5% Capital Buffer)

Extent of Contagion (5%
Capital Buffer)

 
 

Figure 3: Contagion under different Capital Buffers 
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Figure 4: Contagion with Positive Recovery Rates 
 



A NETWORK MODEL OF SUPER-SYSTEMIC CRISES 

 

27

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Average Degree (i.e. connectivity)

Frequency of Contagion

Extent of Contagion

Frequency of Contagion (with
liquidity effects)

Extent of Contagion (with
liquidity effects)

 
 

Figure 5: Liquidity Effects and Contagion 
 
 
 
 
 
 
 
 

Average 
Degree (z) 

Share of 
Interbank 
Assets (%) 

Share of 
Retail 

Assets (%) 

Total 
Number of 

Banks 

Capital 
Buffer (%) 

Frequency of 
Contagion 

(%) 

Extent of 
Contagion 

(% of system)
2 6.6% 93.4% 100 4% 7.8% 3.8% 
5 10.9% 89.1% 105 3.82% 6.2% 5.4% 
10 17.2% 82.8% 113 3.55% 2.1% 35.4% 
15 23.0% 77.0% 121 3.30% 0.9% 67.8% 
20 28.5% 71.5% 131 3.06% 0.9% 89.1% 
25 33.9% 66.1% 141 2.83% 0.2% 100% 

 
 

Table 1: Credit Derivative Simulation 


