Floats, pegs and the transmission of fiscal policy

Giancarlo Corsetti (Cambridge University) Keith Kuester (Philadelphia Fed) Gernot Müller (University of Bonn)

October 2010

An extremely popular piece of economics: fiscal policy is more effective under a peg

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

• Conventional wisdom: Greater monetary accommodation.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion

- Conventional wisdom: Greater monetary accommodation.
- Popularity of this tenet somewhat surprising.

- Conventional wisdom: Greater monetary accommodation.
- Popularity of this tenet somewhat surprising.
- In practice, central banks are typically concerned with destabilizing effects of relaxing fiscal policy on financial and currency markets: policy rate are raised to defend the parity.

- Conventional wisdom: Greater monetary accommodation.
- Popularity of this tenet somewhat surprising.
- In practice, central banks are typically concerned with destabilizing effects of relaxing fiscal policy on financial and currency markets: policy rate are raised to defend the parity.
- Early critics also in the academic literature. Dornbusch (1980) qualifies the Mundell-Fleming prediction, that stimulus causes real appreciation, a theoretical curiosity.

- Conventional wisdom: Greater monetary accommodation.
- Popularity of this tenet somewhat surprising.
- In practice, central banks are typically concerned with destabilizing effects of relaxing fiscal policy on financial and currency markets: policy rate are raised to defend the parity.
- Early critics also in the academic literature. Dornbusch (1980) qualifies the Mundell-Fleming prediction, that stimulus causes real appreciation, a theoretical curiosity.
- Dornbusch solution: model medium-term adjustment. Expansion today foreshadows deficit monetization tomorrow.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

- Conventional wisdom: Greater monetary accommodation.
- Popularity of this tenet somewhat surprising.
- In practice, central banks are typically concerned with destabilizing effects of relaxing fiscal policy on financial and currency markets: policy rate are raised to defend the parity.
- Early critics also in the academic literature. Dornbusch (1980) qualifies the Mundell-Fleming prediction, that stimulus causes real appreciation, a theoretical curiosity.
- Dornbusch solution: model medium-term adjustment. Expansion today foreshadows deficit monetization tomorrow.
- But if this is the case, the conventional wisdom does not necessarily hold!

Corsetti, Kuester & Müller

 Analysis of the relative effectiveness of fiscal policy across exchange rate regimes using standard new-Keynesian small open economy model.

Introduction

Model

Transmission

Sensitivity

Conclusion 3/29

- Analysis of the relative effectiveness of fiscal policy across exchange rate regimes using standard new-Keynesian small open economy model.
- Because of emphasis on intertemporal optimization, NK models require precise specification of policies over both short- and long-term horizons.

- Analysis of the relative effectiveness of fiscal policy across exchange rate regimes using standard new-Keynesian small open economy model.
- Because of emphasis on intertemporal optimization, NK models require precise specification of policies over both short- and long-term horizons.
- As in Dornbusch (1980) emphasis is on the medium-term adjustment
 but we abstract from deficit monetization.

- Analysis of the relative effectiveness of fiscal policy across exchange rate regimes using standard new-Keynesian small open economy model.
- Because of emphasis on intertemporal optimization, NK models require precise specification of policies over both short- and long-term horizons.
- As in Dornbusch (1980) emphasis is on the medium-term adjustment
 but we abstract from deficit monetization.
- Following Corsetti Meier and Mueller (2009) (CMM), we shift our focus on plausible alternative monetary and debt-consolidation regimes, involving dynamic adjustment of taxes and/or spending.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

- Analysis of the relative effectiveness of fiscal policy across exchange rate regimes using standard new-Keynesian small open economy model.
- Because of emphasis on intertemporal optimization, NK models require precise specification of policies over both short- and long-term horizons.
- As in Dornbusch (1980) emphasis is on the medium-term adjustment
 but we abstract from deficit monetization.
- Following Corsetti Meier and Mueller (2009) (CMM), we shift our focus on plausible alternative monetary and debt-consolidation regimes, involving dynamic adjustment of taxes and/or spending.
- Instead of monetary accommodation per se, what matters is the monetary and fiscal policy mix at all horizons!

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

• Conventional wisdom confirmed in typical experiments assuming exogenous autoregressive spending shocks matched by either lump-sum taxation, or smoothed adjustment in distortionary taxation.

Introduction

Model

Transmission

Sensitivity

Conclusion 4/29

- Conventional wisdom confirmed in typical experiments assuming exogenous autoregressive spending shocks matched by either lump-sum taxation, or smoothed adjustment in distortionary taxation.
 - But this experiment posits a specific and not necessarily plausible dynamic policy mix.

- Conventional wisdom confirmed in typical experiments assuming exogenous autoregressive spending shocks matched by either lump-sum taxation, or smoothed adjustment in distortionary taxation.
 - But this experiment posits a specific and not necessarily plausible dynamic policy mix.
- A key analytical insight from a simple yet powerful characterization of pegs:

- Conventional wisdom confirmed in typical experiments assuming exogenous autoregressive spending shocks matched by either lump-sum taxation, or smoothed adjustment in distortionary taxation.
 - But this experiment posits a specific and not necessarily plausible dynamic policy mix.
- A key analytical insight from a simple yet powerful characterization of pegs:
 - Because of PPP, positive inflation today needs to be offset by negative one tomorrow (implicit price level target).

- Conventional wisdom confirmed in typical experiments assuming exogenous autoregressive spending shocks matched by either lump-sum taxation, or smoothed adjustment in distortionary taxation.
 - But this experiment posits a specific and not necessarily plausible dynamic policy mix.
- A key analytical insight from a simple yet powerful characterization of pegs:
 - Because of PPP, positive inflation today needs to be offset by negative one tomorrow (implicit price level target).
 - On impact, the long-term real rate (which is relevant to private demand) necessarily rises one-to-one with unexpected inflation, even if short-term rates fall.

- Conventional wisdom confirmed in typical experiments assuming exogenous autoregressive spending shocks matched by either lump-sum taxation, or smoothed adjustment in distortionary taxation.
 - But this experiment posits a specific and not necessarily plausible dynamic policy mix.
- A key analytical insight from a simple yet powerful characterization of pegs:
 - Because of PPP, positive inflation today needs to be offset by negative one tomorrow (implicit price level target).
 - On impact, the long-term real rate (which is relevant to private demand) necessarily rises one-to-one with unexpected inflation, even if short-term rates fall.
 - ► Long and short rates move in opposite directions (exposing the weakness of the so-called Walters' critique).

- Conventional wisdom confirmed in typical experiments assuming exogenous autoregressive spending shocks matched by either lump-sum taxation, or smoothed adjustment in distortionary taxation.
 - But this experiment posits a specific and not necessarily plausible dynamic policy mix.
- A key analytical insight from a simple yet powerful characterization of pegs:
 - Because of PPP, positive inflation today needs to be offset by negative one tomorrow (implicit price level target).
 - On impact, the long-term real rate (which is relevant to private demand) necessarily rises one-to-one with unexpected inflation, even if short-term rates fall.
 - ► Long and short rates move in opposite directions (exposing the weakness of the so-called Walters' critique).
- Implication for our question?

• Under a peg, different types of debt consolidation after stimulus may affect the size of impact inflation, but not the sign of it.

- Under a peg, different types of debt consolidation after stimulus may affect the size of impact inflation, but not the sign of it.
- No such constraint under floating rates!

- Under a peg, different types of debt consolidation after stimulus may affect the size of impact inflation, but not the sign of it.
- No such constraint under floating rates!

Main message:

- Under a peg, different types of debt consolidation after stimulus may affect the size of impact inflation, but not the sign of it.
- No such constraint under floating rates!

Main message:

 Impact multipliers (the impact response of long-term rates) are quite sensitive to alternative debt consolidation regimes under a float, less so under a peg.

- Under a peg, different types of debt consolidation after stimulus may affect the size of impact inflation, but not the sign of it.
- No such constraint under floating rates!

Main message:

- Impact multipliers (the impact response of long-term rates) are quite sensitive to alternative debt consolidation regimes under a float, less so under a peg.
- Fiscal stimulus not necessarily less effective under a float, despite less 'monetary accommodation'.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Plan of the talk

• A NK model of a small open economy

Transmission

- Revisiting the conventional wisdom
- A useful analytical result: private demand and long-real rate under a peg.
- ► The conventional wisdom on its head: interaction of currency regimes with medium-term fiscal framework
- Sensitivity and extensions: incomplete markets and limited participation

Corsetti, Kuester & Müller

Introduction

Model

Model

- Standard new Keynesian small open economy model
 - ► Imperfectly competitive firms produce country specific varieties
 - Pricing in producer currency, prices sticky
 - Domestic consumption biased towards home goods
 - Government spending falls on home goods
 - Complete markets (but sensitivity with incomplete markets and fraction of households (λ) without access to asset market)
- Policies
 - Monetary policy: interest rate feedback rule or peg
 - **Debt-sensitive** government spending subject to exogenous shocks
 - Lump-sum taxes respond to spending and debt

Final goods and price indices

$$C_{t} = \begin{bmatrix} (1-\omega)^{\frac{1}{\sigma}} \left(\left[\int_{0}^{1} Y_{H,t}(j)^{\frac{e-1}{e}} dj \right]^{\frac{e}{e-1}} \right)^{\frac{\sigma}{\sigma}} \\ +\omega^{\frac{1}{\sigma}} \left(\left[\int_{0}^{1} Y_{F,t}(j)^{\frac{e-1}{e}} dj \right]^{\frac{e}{e-1}} \right)^{\frac{\sigma}{\sigma}} \end{bmatrix}^{\frac{\sigma}{\sigma-1}}$$

Price indices

$$P_{t} = \left[(1-\omega) P_{H,t}^{1-\sigma} + \omega P_{F,t}^{1-\sigma} \right]^{\frac{1}{1-\sigma}}$$
$$P_{H,t} = \left(\int_{0}^{1} P_{H,t}(j)^{1-\epsilon} di \right)^{\frac{1}{1-\epsilon}} P_{F,t} = \left(\int_{0}^{1} P_{F,t}(j)^{1-\epsilon} di \right)^{\frac{1}{1-\epsilon}}$$

Real exchange rate

$$Q_t = \frac{P_t \mathcal{E}_t}{P_t^*}$$

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Firm's problem

• If allowed, adjust $P_{H,0}(j)$ so as to

$$\max E_0 \sum_{t=0}^{\infty} \xi^t \Lambda_t Y_t(j) \left(P_{H,0}(j) - \Omega_t \right)$$

Subject to demand function

$$Y_t(j) = \left(\frac{P_{H,0}(j)}{P_{H,t}}\right)^{-\sigma} Y_t$$

$$Y_t = (1-\omega) \left(\frac{P_{H,t}}{P_t}\right)^{-\sigma} C_t + \omega \left(\frac{P_{H,t}}{P_t^*}\right)^{-\sigma} C_t^* + G_t$$

And production function

$$Y_t(j) = H_t(j)^{\alpha}$$

Corsetti, Kuester & Müller

Introduction

Household problem

Allocate consumption and labor, trade in non-contingent bonds

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[\ln(C_t) - \frac{H_t^{1+\varphi}}{1+\varphi} \right]$$

- subject to budget constraint
- Baseline: complete markets.
- More experiments: incomplete markets and limited participation

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion 10/29

Government

Monetary policy

under a float:
$$R_t = R + \phi(\Pi_{H,t} - \Pi_H)$$

under a peg: $\mathcal{E}_t = \mathcal{E}$

Government budget

$$R_t^{-1}D_{t+1} = D_t + P_{H,t}G_t - T_t$$

Spending and tax feedback rule

$$G_t = (1-\rho)G + \rho G_{t-1} + \psi_G \frac{D_t}{P_{t-1}} + \varepsilon_t$$
$$T_{R,t} = \psi_T \frac{D_t}{P_{t-1}}$$

Corsetti, Kuester & Müller

Introduction

Transmission: the experiment

Exogenous increase of government spending by one percent of GDP

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion

Transmission: the experiment

Exogenous increase of government spending by one percent of GDP

Study response of economy for 30 quarters

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion 1

Model simulation: parameterization

Average spending share	gy	0.2
Autocorrelation spending	ρ	0.9
Debt-sensitivity of spending	ΨG	-0.02
Debt-sensitivity of taxes	ψ _T	0.02
Monetary policy	φ	1.5
Discount factor	β	0.99
Discount factor Inverse of Frisch elasticity	$\beta \\ \varphi$	0.99 1
Discount factor Inverse of Frisch elasticity Trade price elasticity	$egin{array}{c} \beta \ \varphi \ \sigma \end{array}$	0.99 1 1
Discount factor Inverse of Frisch elasticity Trade price elasticity Prob. of price fixed	$\beta \\ \varphi \\ \sigma \\ \xi$	0.99 1 1 0.9

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion

The conventional wisdom revisited: exogenous AR(1) shocks with $\phi_G = 0$

The conventional wisdom revisited: exogenous AR(1) shocks with $\phi_G = 0$

• Output multipliers with pegs lower, with floats larger, than predicted by conventional wisdom.

Transmission

Sensitivity
- Output multipliers with pegs lower, with floats larger, than predicted by conventional wisdom.
- Yet relative ranking is the same:

- Output multipliers with pegs lower, with floats larger, than predicted by conventional wisdom.
- Yet relative ranking is the same:
 - on impact output is 25 percent higher with a float

- Output multipliers with pegs lower, with floats larger, than predicted by conventional wisdom.
- Yet relative ranking is the same:
 - \blacktriangleright on impact output is 25 percent higher with a float
- Key: stronger response of inflation and policy rates with floating rates (the central bank following a Taylor rule).

- Output multipliers with pegs lower, with floats larger, than predicted by conventional wisdom.
- Yet relative ranking is the same:
 - \blacktriangleright on impact output is 25 percent higher with a float
- Key: stronger response of inflation and policy rates with floating rates (the central bank following a Taylor rule).
- For future reference, note that by PPP, price level is stationary under a peg.

- Output multipliers with pegs lower, with floats larger, than predicted by conventional wisdom.
- Yet relative ranking is the same:
 - \blacktriangleright on impact output is 25 percent higher with a float
- Key: stronger response of inflation and policy rates with floating rates (the central bank following a Taylor rule).
- For future reference, note that by PPP, price level is stationary under a peg.
 - Price level and exchange rate instead display a unit-root behavior under a float.

- Output multipliers with pegs lower, with floats larger, than predicted by conventional wisdom.
- Yet relative ranking is the same:
 - ▶ on impact output is 25 percent higher with a float
- Key: stronger response of inflation and policy rates with floating rates (the central bank following a Taylor rule).
- For future reference, note that by PPP, price level is stationary under a peg.
 - Price level and exchange rate instead display a unit-root behavior under a float.
- But let's have a closer look at the transmission mechanism.

• Well known that in NK model consumption demand is driven by the long-term rate (real return on a bond of infinite duration).

Transmission

Sensitivity

Conclusion

16/29

- Well known that in NK model consumption demand is driven by the long-term rate (real return on a bond of infinite duration).
- In our specification, solving the Euler forward, holding the expectations hypothesis:

$$c_t = -\frac{1}{\gamma} E_t \underbrace{\sum_{s=0}^{\infty} (r_{t+s} - \pi_{t+1+s})}_{\equiv z_t}, \tag{1}$$

Introduction

Model

Transmission

Sensitivity

Conclusion

16/29

- Well known that in NK model consumption demand is driven by the long-term rate (real return on a bond of infinite duration).
- In our specification, solving the Euler forward, holding the expectations hypothesis:

$$c_t = -\frac{1}{\gamma} E_t \underbrace{\sum_{s=0}^{\infty} (r_{t+s} - \pi_{t+1+s})}_{\equiv z_t}, \tag{1}$$

• Since the long-term rate in real terms *z_t* synthesizes the whole path of current and future expected inflation and policy rates, it so depends on the fiscal and monetary mix at each point in time.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion 16/29

- Well known that in NK model consumption demand is driven by the long-term rate (real return on a bond of infinite duration).
- In our specification, solving the Euler forward, holding the expectations hypothesis:

$$c_t = -\frac{1}{\gamma} E_t \underbrace{\sum_{s=0}^{\infty} (r_{t+s} - \pi_{t+1+s})}_{\equiv z_t}, \tag{1}$$

- Since the long-term rate in real terms z_t synthesizes the whole path of current and future expected inflation and policy rates, it so depends on the fiscal and monetary mix at each point in time.
- In the example above, positive inflation and policy rates throughout under a float explain the smaller output response to stimulus.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

• Under a float, long-term rates are sensitive to the anticipated fiscal and monetary mix in the future.

Transmission

Sensitivity

Conclusion

17/29

- Under a float, long-term rates are sensitive to the anticipated fiscal and monetary mix in the future.
- As in the 'spending reversal model' (Corsetti, Mueller, Meier 2009), we assume fiscal consolidation with a feedback effect from debt to spending $\phi_G = 0.02$ consistent with VAR empirical evidence for e.g. the US.

- Under a float, long-term rates are sensitive to the anticipated fiscal and monetary mix in the future.
- As in the 'spending reversal model' (Corsetti, Mueller, Meier 2009), we assume fiscal consolidation with a feedback effect from debt to spending $\phi_G = 0.02$ consistent with VAR empirical evidence for e.g. the US.
- Deviations of inflation from steady state, positive in the short run, turn negative over time, already in anticipation of the dynamic cuts in spending along the adjustment path.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion 17/29

- Under a float, long-term rates are sensitive to the anticipated fiscal and monetary mix in the future.
- As in the 'spending reversal model' (Corsetti, Mueller, Meier 2009), we assume fiscal consolidation with a feedback effect from debt to spending $\phi_G = 0.02$ consistent with VAR empirical evidence for e.g. the US.
- Deviations of inflation from steady state, positive in the short run, turn negative over time, already in anticipation of the dynamic cuts in spending along the adjustment path.
- As lower inflation means lower policy rates, long-term real rates may well fall on impact, with expansionary effects on consumption.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Debt consolidation is quite relevant to fiscal transmission under a float

• Under a peg, by PPP lim $t \to \infty P_t = P^*$, implying $\sum_{t=0}^{\infty} \pi_t = 0$.

Introduction

Model

Transmission

Sensitivity

Conclusion 1

19/29

- Under a peg, by PPP lim $t \to \infty$ $P_t = P^*$, implying $\sum_{t=0}^{\infty} \pi_t = 0$.
- Given the exchange rate constraint on the nominal short-term rate, the initial response of the real long-term rate is:

$$z_{0} = \underbrace{\left(\sum_{t=0}^{\infty} -\pi_{t+1}\right) - \pi_{0}}_{=0} + \pi_{0} = \pi_{0}.$$
 (2)

Transmission

Sensitivity

Conclusion 19/29

- Under a peg, by PPP lim $t \to \infty$ $P_t = P^*$, implying $\sum_{t=0}^{\infty} \pi_t = 0$.
- Given the exchange rate constraint on the nominal short-term rate, the initial response of the real long-term rate is:

$$z_{0} = \underbrace{\left(\sum_{t=0}^{\infty} -\pi_{t+1}\right) - \pi_{0}}_{=0} + \pi_{0} = \pi_{0}.$$
 (2)

• In response to stationary shocks, by PPP, a credible exchange rate target constrains the impact response of the real long-term interest rate to be equal to the initial, unanticipated, change in the CPI.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

- Under a peg, by PPP lim $t \to \infty$ $P_t = P^*$, implying $\sum_{t=0}^{\infty} \pi_t = 0$.
- Given the exchange rate constraint on the nominal short-term rate, the initial response of the real long-term rate is:

$$z_{0} = \underbrace{\left(\sum_{t=0}^{\infty} -\pi_{t+1}\right) - \pi_{0}}_{=0} + \pi_{0} = \pi_{0}.$$
 (2)

- In response to stationary shocks, by PPP, a credible exchange rate target constrains the impact response of the real long-term interest rate to be equal to the initial, unanticipated, change in the CPI.
- In response to fiscal shock, this is true for whatever regime of debt consolidation, as shown next.

Transmission

Debt consolidation less consequential for impact multipliers under a peg

Debt consolidation is less consequential for impact multipliers under a peg

 As seen above, real rates must increase (and consumption fall) with impact inflation. Debt consolidation is less consequential for impact multipliers under a peg

- As seen above, real rates must increase (and consumption fall) with impact inflation.
- By the dynamic of inflation, negative real rates in the short run are followed by positive rates in the medium run (all in deviations from steady state).

Debt consolidation is less consequential for impact multipliers under a peg

- As seen above, real rates must increase (and consumption fall) with impact inflation.
- By the dynamic of inflation, negative real rates in the short run are followed by positive rates in the medium run (all in deviations from steady state).
- In our experiment, negative and positive rates offset each other as regards their effects on the long-term real rate on impact.

So, is fiscal policy necessarily more effective under a peg?

• Without an exchange rate objective, prospective spending cuts boost the multiplier of government spending.

So, is fiscal policy necessarily more effective under a peg?

- Without an exchange rate objective, prospective spending cuts boost the multiplier of government spending.
- Long-term rates respond more strongly to medium-run fiscal framework under a float, and can fall with spending reversals.

The conventional wisdom on its head

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

23/29

• We have seen that under a peg, the long-term rate in real terms cannot but rise with inflation. It then generally moves in opposite direction relative to the short-term real rate.

- We have seen that under a peg, the long-term rate in real terms cannot but rise with inflation. It then generally moves in opposite direction relative to the short-term real rate.
- This exposes the fallacy in the Walters' critique (WC).

- We have seen that under a peg, the long-term rate in real terms cannot but rise with inflation. It then generally moves in opposite direction relative to the short-term real rate.
- This exposes the fallacy in the Walters' critique (WC).
 - Walters: A small open economy pursuing a currency peg is unstable, since shocks are amplified by procyclical movements in the countrys specific monetary stance (short-term real rates).

- We have seen that under a peg, the long-term rate in real terms cannot but rise with inflation. It then generally moves in opposite direction relative to the short-term real rate.
- This exposes the fallacy in the Walters' critique (WC).
 - ➤ Walters: A small open economy pursuing a currency peg is unstable, since shocks are amplified by procyclical movements in the countrys specific monetary stance (short-term real rates).
- Traditional counterargument:

Transmission

- We have seen that under a peg, the long-term rate in real terms cannot but rise with inflation. It then generally moves in opposite direction relative to the short-term real rate.
- This exposes the fallacy in the Walters' critique (WC).
 - Walters: A small open economy pursuing a currency peg is unstable, since shocks are amplified by procyclical movements in the countrys specific monetary stance (short-term real rates).
- Traditional counterargument:
 - rising domestic price level eventually crowds out exports, naturally stabilizing demand through the real exchange rate channel.

- We have seen that under a peg, the long-term rate in real terms cannot but rise with inflation. It then generally moves in opposite direction relative to the short-term real rate.
- This exposes the fallacy in the Walters' critique (WC).
 - Walters: A small open economy pursuing a currency peg is unstable, since shocks are amplified by procyclical movements in the countrys specific monetary stance (short-term real rates).
- Traditional counterargument:
 - rising domestic price level eventually crowds out exports, naturally stabilizing demand through the real exchange rate channel.
- The modern paradigm clarifies a deeper issue.

- We have seen that under a peg, the long-term rate in real terms cannot but rise with inflation. It then generally moves in opposite direction relative to the short-term real rate.
- This exposes the fallacy in the Walters' critique (WC).
 - Walters: A small open economy pursuing a currency peg is unstable, since shocks are amplified by procyclical movements in the countrys specific monetary stance (short-term real rates).
- Traditional counterargument:
 - rising domestic price level eventually crowds out exports, naturally stabilizing demand through the real exchange rate channel.
- The modern paradigm clarifies a deeper issue.
 - Competitiveness is still key as driver of PPP. But the real exchange rate and the interest rate channels cannot be treated independently of each other: they both shape the intertemporal price relevant for private consumption/saving decisions.

Sensitivity: financial imperfections

• Three exercises (AR(1) spending shock only):

Introduction

Model

Transmission

Sensitivity

Conclusion 25/29

Sensitivity: financial imperfections

• Three exercises (AR(1) spending shock only):

Incomplete asset markets at international level

Transmission

Sensitivity

Sensitivity: financial imperfections

• Three exercises (AR(1) spending shock only):

- Incomplete asset markets at international level
- Restricted asset market participation

Transmission
Sensitivity: financial imperfections

- Three exercises (AR(1) spending shock only):
 - Incomplete asset markets at international level
 - Restricted asset market participation
 - Risk premia

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion 25/29

Sensitivity: financial imperfections

- Three exercises (AR(1) spending shock only):
 - Incomplete asset markets at international level
 - Restricted asset market participation
 - Risk premia
- Not much action here. Intuitively, the transmission mechanism is driven mainly by intertemporal price movements (not by wealth effects). As long as these movements are not sensitive to financial-market structure, results do not change much.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Incomplete vs complete international financial markets

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity Conclusion

on 26/29

Restricted asset market participation

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity Conclusion

n 27/29

Country risk

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion

• Let me conclude be repeating the main message:

Introduction

Model

Transmission

Sensitivity

Conclusion 29/29

- Let me conclude be repeating the main message:
 - Impact multipliers (the impact response of long-term rates) are quite sensitive to alternative debt consolidation regimes under a float, less so under a peg.

• Let me conclude be repeating the main message:

- Impact multipliers (the impact response of long-term rates) are quite sensitive to alternative debt consolidation regimes under a float, less so under a peg.
- ► Fiscal stimulus not necessarily less effective under a float, despite less 'monetary accommodation'.

• Let me conclude be repeating the main message:

- Impact multipliers (the impact response of long-term rates) are quite sensitive to alternative debt consolidation regimes under a float, less so under a peg.
- ► Fiscal stimulus not necessarily less effective under a float, despite less 'monetary accommodation'.
- and by adding a comment, about the usefulness of NK (DSGE) model in shedding new light on classical problems, clarifying theoretical, empirical and policy dimensions.

• Let me conclude be repeating the main message:

- Impact multipliers (the impact response of long-term rates) are quite sensitive to alternative debt consolidation regimes under a float, less so under a peg.
- ► Fiscal stimulus not necessarily less effective under a float, despite less 'monetary accommodation'.
- and by adding a comment, about the usefulness of NK (DSGE) model in shedding new light on classical problems, clarifying theoretical, empirical and policy dimensions.
- We see our work as a contribution to our understanding of the preconditions for successful (fiscal) stabilization.

Corsetti, Kuester & Müller

Introduction

Model

Transmission

Sensitivity

Conclusion 29/29