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ABSTRACT 
 

This paper builds a model of financial sector vulnerability and integrates it into a 
macroeconomic framework, typically used for monetary policy analysis. The main question 
to be answered with the integrated model is whether or not the central bank should include 
explicitly the financial stability indicator (FSI) in the interest rate reaction function.  
Contingent claims analysis (CCA) used to create an aggregate financial stability indicator, 
the Distance to Distress (DTD).  It is found in general, that including Distance to Distress in 
the reaction function reduces inflation volatility while increasing the variability of output.  
The preliminary conclusions are that it is better to include DTD in the interest rate reaction 
function if exchange rate pass-through is higher;  if financial vulnerability (DTD) has a 
larger impact on the exchange rate, as well as on GDP (or the reverse, there is more impact 
of GDP on bank’s equity and thus DTD –endogeneity).  
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I.   INTRODUCTION 

 This article builds a model of financial sector vulnerability and integrates it into a 
macroeconomic framework, typically used for monetary policy analysis. The integration of 
the analysis of financial sector vulnerability into macroeconomic models is an area of 
important and growing interest for policymakers, in both developed and emerging markets. 
However, estimating the effect of shocks to vulnerability on the risk of banks in a coherent 
manner requires both a model of banking sector risk and a tractable methodology for 
simulating shocks and estimating their effect on various risk measures.  

 Financial stability models and monetary policy models, by their nature, are very 
different frameworks.  There is keen interest in putting together these two types of analysis.  
Monetary policy models are widely used by central banks to understand the transmission 
mechanisms of interest rates to the macroeconomy and inflation.  

Market-based financial stability incicators (FSIs) 2  summarize both the credit channel 
and credit risk transmission from distressed borrowers in the economy.  FSIs provide 
information on the banking sector’s financial condition which is related to the quantity of 
credit extended and the possible or expected effects of this channel on the real economy and 
GDP (credit expansion and the “financial accelerator”).  FSIs also capture the reduced 
financial soundess of banks when borrowers default in periods of economic distress which 
leads to lower banking sector assets, higher banking asset volatility. This is a reflection of the 
economic condition of borrowers and of the real economy. 

 
Since the economy and interest rates affect financial sector credit risk, and the 

financial sector affects the economy, an important issue is whether market-based financial 
stability indicators should be included in monetary policy models and, if so, how.3  Including 
an aggregate credit risk indicator in the GDP gap equation and testing whether the coefficient 
is significant or not is an important first step to get a better understanding of how the 
financial sector credit risk affects GDP. The most important question is whether or not the 
central bank should include explicitly the financial stability indicator in the interest rate 
reaction function. The alternative would be to react only indirectly to financial risk by 
reacting to inflation and GDP gaps, since they already include the effect financial factors 
have in the economy. An alternative could also be designed where the central bank only 
reacts directly to financial risk whenever financial stability indicator breaches a 
predetermined threshold.  
 

                                                 
2 The term FSI used here is an indicator derived from forward-looking market information, including indicators 
from the CCA model.  This should not be confused with the accounting ratio financial stability indicators.  

3 Bernanke, Gertler and Gilchrist (1999) introduce financial frictions into a business cycle model. 
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 This paper uses contingent claims analysis (CCA) tools developed in finance to 
estimate the riskiness of banks and to construct the financial stability indicators. The basis of 
CCA is that the liabilities of a financial institution or firm derive their value from assets 
which are stochastic.  The expected variation (volatility) of assets over a future horizon, 
relative to the promised payments on liabilities provides a measure of financial distress risk. 
CCA methodology is frequently used to estimate the probability that an entity (in our case, 
banks, but also corporations or even governments) will default on its obligations. Due to its 
explicit focus on risk and probability of distress or default, and its link to market prices of 
equity, CCA has many advantages. Equity data by nature incorporate the forward-looking 
expectations of the market in a way that static indicators of bank risk, such as nonperforming 
loan ratios and provisioning cannot.  The high frequency of observations, at least for equity 
and interest rate data, allow for much faster updating of risk measures than data available 
only at monthly or quarterly frequencies.  The CCA financial risk indicators are calculated 
for individual banks and then aggregated into a system-wide financial stability indicator.  
 

The CCA system-wide FSI is modeled jointly with a practical five equation dynamic, 
stochastic macroeconomic model used to set monetary policy.  The macro model closely 
resembles the one proposed by Berg, Karam and Laxton (2006) as a useful toolkit applicable 
to the analysis of monetary policy in many small open economies. As they claim, “in the new 
Keynesian synthesis, there has been a convergence between the useful empirically motivated 
IS/LM models developed in several policymaking institutions and dynamic stochastic general 
equilibrium approaches that take expectations seriously and are built on solid microeconomic 
foundations.”4  

 The specific model used here consists of an equation for the output gap (IS), an 
equation for inflation (Phillips curve or aggregate supply), an equation for the exchange rate 
(interest parity condition), a yield curve relating short and long-run interest rates, and the 
Central Bank reaction function (Taylor rule). Indeed, the primary tool for macroeconomic 
management is the interest rates set by the central bank as a reaction to the deviations of 
inflation from the target and the output gap (Taylor, 1993). It is worth noting that several 
equations include in the right hand side the expected levels of the dependent variables. In 
addition to the macro equations, a CCA module is included, which interacts with the macro 
equations affecting each other in several ways. Moreover, the model contains a steady state 
to which the variables converge, thanks to the reaction of monetary authorities.  

 Finally, in order to assess the inclusion of risk indicators in the monetary authorities 
reaction function, we construct efficiency frontiers mapping inflation and output volatilities, 
after the artificial economy is hit with stochastic shocks drawn from a normal distribution. 

                                                 
4 Berg, Karam and Laxton (2006), page 3. 



  4  

 

 Section II presents the background of CCA, discusses the data used in the analysis. 
Section III lays out the macroeconomic framework, as well as the equations required to 
simulate Distance to Distress (DTD), which will be included in the macro setting. Section IV 
presents the results of the simulations and, finally, Section V concludes and presents possible 
extensions in this line of research.  
 

II.   RISK MEASURES FROM CONTINGENT CLAIMS ANALYSIS 

A.   Background 

The contingent claims approach (CCA) provides a methodology to combine balance 
sheet information with widely used finance and risk management tools to construct marked-
to-market balance sheets that better reflect underlying risk.  The risk adjusted balance sheets 
use option pricing tools to value the liabilities which are modeled as claims on stochastic 
assets.  It can be used to derive a set of risk indicators that can serve as barometers of risk for 
firms, financial sector vulnerability, and sovereign risk. 
 

A contingent claim is any financial asset whose future payoff depends on the value of 
another asset.  The prototypical contingent claim is an option – the right to buy or sell the 
underlying asset at a specified exercise price by a certain expiration date.  A call is an option 
to buy; a put is an option to sell and the value of each is contingent on the price of the 
underlying asset to be bought or sold.  Contingent claims analysis is a generalization of the 
option pricing theory pioneered by Black-Scholes (1973) and Merton (1973).  Since 1973, 
option pricing methodology has been applied to a wide variety of contingent claims.  In this 
paper we focus on its application to the analysis of credit risk and guarantees against the risk 
of default, and their links to macroeconomic and financial developments. 
 

The contingent claims approach is based on three principles: (i) the values of 
liabilities are derived from assets; (ii) liabilities have different priority (i.e. senior and junior 
claims); and, (iii) assets follow a stochastic process.  The liabilities consist of senior claims 
(such as senior debt), subordinated claims (such as subordinated debt) and the junior claims 
(equity or the most junior claim).  For a bank, as the value of its total assets decline, the debt 
that it owes to other institutions becomes riskier, and its value declines, while and credit 
spreads on its risky debt rise.   
 
 

Balance sheet risk is the key to understanding credit risk and the probability of crisis.  
Default happens when assets cannot service debt payments, that is, when assets fall below a 
distress barrier comprising the total value of the firm’s liabilities.  Uncertain changes in 
future asset value, relative to promised payments on debt, is the driver of default risk.  Figure 
1 illustrates the key relationships.  The uncertainty in asset value is represented by a 
probability distribution at time horizon T.  At the end of the period the value of assets may be 
above the promised payments indicating that debt service can be made, or below the 
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promised payments leading to default.  The area below the distribution in Figure 1 is the 
“actual” probability of default.  The asset-return probability distribution used to value 
contingent claims is not the “actual” one but the “risk-adjusted” or “risk-neutral” probability 
distribution, which substitutes the risk-free interest rate for the actual expected return in the 
distribution.  This risk-neutral distribution is the dashed line in Figure 1 with expected rate of 
return r, the risk-free rate.  Thus, the “risk-adjusted” probability of default calculated using 
the “risk-neutral” distribution is larger than the actual probability of default for all assets 
which have an actual expected return (μ) greater than the risk-free rate r (that is, a positive 
risk premium).5   
 
 
 

 
Figure 1: Distribution of Asset Value and Probability of Default 
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The calculation of the actual probability of default is outside the CCA/Merton Model 
but such a probability can be calculated by combining the CCA/Merton model with an 
equilibrium model of underlying asset expected returns to produce estimates that are 
consistent for expected returns on all derivatives, conditional on the expected return on the 
asset.  One does not have to know expected returns to use the CCA/Merton models for the 
purpose of value or risk calculations, but for calibration into actual probabilities such data are 
necessary.  The value of assets at time t is A(t).  The asset return process is 

/ A Adt tdA A μ σ ε= +  , where Aμ  is the drift rate or asset return, Aσ is equal to the standard 

                                                 
5 See Merton (1992, pp.334-343; 448-450). 
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deviation of the asset return, andε  is normally distributed, with zero mean and unit variance.  
The probability distribution at time T is shown in (a) below. 
 

Default occurs when assets fall to or below the promised payments, tB .  The 
probability of default is the probability that t tA B≤  which is: 

( )( ) ( )2
0 2,Prob( ) Prob exp = Prob/ 2t t A A A tA B A t t B d μμ σ σ ε ε≤ = − + ≤ ≤ −⎡ ⎤⎣ ⎦  

Since (0,1)Nε , the “actual” probability of default is 2,( )N d μ− , 

where
( ) ( )2

0
2,

ln / / 2t A A

A

A B t
d

tμ

μ σ

σ

+ −
= .  is distance to distress with a drift of mu and ( )N is 

the cumulative standard normal distribution.  
 

The probability distribution of assets (dashed line in Figure 1) has drift of the risk-
free interest rate, r.  Risk adjusted probability of default is 2( )N d− , where 

( ) ( )2
0

2

ln / / 2t A

A

A B r t
d

t

σ

σ

+ −
= . This is distance to distress with drift of r, the risk-free rate.  

See Annex  1 for more information on the Merton Model, how to link actual and risk-
adjusted probabilities of default, and extension of the CCA model. 

 
Financial fragility is intimately related to probability of default.  Shocks to prices or 

liquidity frequently end up being converted into credit risk in a crisis, as banks’ debtors 
income flows weaken and they run into difficulties servicing their loans to banks.  Default is 
hard to handle in traditional macro models in part due to assumptions which usually exclude 
such possibility.6  In addition, flow-of-funds and accounting balance sheets cannot provide 
measures of risk exposures which are forward-looking estimates of losses.  CCA, on the 
other hand, is a framework that explicitly includes and estimates the probability of default. 
 
Since there is a nonzero chance of default, the value of debt is risky and therefore less than 
the value of risk free debt: 
 

Risky debt + guarantee against default ≡ Risk-free debt 
 
 The value of “risky” debt can therefore be modeled as the default-free value of the debt less 
the expected loss: 
 

Risky debt ≡ Risk-free debt - Guarantee Against Default 
 
                                                 
6 Transverality conditions exclude the possibility of default. 
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Given that this guarantee derives its value from the underlying (stochastic) asset, the value of 
the risky debt can be modeled as a contingent claim.  This identity holds both conceptually 
and in terms of value.  If the debt is collateralized by a specific asset, then the guarantee 
against default can be modeled as a put option on the asset with an exercise price equal to the 
face value of the debt.  The debt holder is offering an implicit guarantee as it is obligated to 
absorb the losses if there is default.  However, often a third party is the guarantor, as is the 
case when government guarantees the deposit liabilities of banks or the pension-benefit 
promises of firms. 7   
 

Using the Black-Scholes-Merton differential equation for pricing contingent claims, 
the value of risky debt is a function of the default free value of debt (i.e. distress barrier) at 
time 0, asset level at time 0, volatility of the asset, the time horizon until the expiration date 
of the claim, and the risk-free interest rate.  Since 1973, the Merton Model methodology has 
been applied to a wide variety of corporations and financial institutions, as well as 
sovereigns.8   
 

Banks do not frequently default9, and regulators are likely to be interested less in the 
probability of such an event than they are in the possibility that bank assets will fall below a 
level at which the authorities might be expected to intervene.  One useful threshold is a 
minimum capital threshold.  This barrier would be the default barrier plus say 8% of assets.  
The CCA model can be used of this analysis.  This three layer model would give “distance-
to-minimum capital” as well as “distance to distress.” Annex 1 provides more details on this 
extension of the CCA model. 
 
  

B.   Calculating Risk Indicators for Individual Banks or Financial Institutions 

Domestic equity markets provide pricing and volatility information for the calculation 
of implied assets and implied asset volatility in corporate, bank and non-bank financial 
institutions.  The simplest method solves two equations for two unknowns, asset value and 
asset volatility (shown in Annex 1).  Levonian (1991) used explicit option prices on bank 
equity to measure equity volatility and calibrate Merton Models for banks.  Moody’s-KMV 
has successfully applied its version of the CCA model to measure the implied assets values 
and volatilities and to calculate expected default frequencies (EDFs) for over 35,000 firms 
and financial institutions in 55 countries around the world KMV (1999 and 2001).     
 

                                                 
7 The CCA framework is an extension of Merton’s models of risky debt (1974) and deposit insurance (1977).   

8 See Gray and Malone (2008). 

9 This has not been the case for many banks in the last Sub-Prime Crisis. 
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For unlisted corporates and banks, the relationship between the accounting 
information and the risk indicators, of companies with traded equity, can be used as a guide 
to map accounting information of companies without traded equity to default probabilities 
and risk indicators for institutions that do not have traded equity.  (An example is Moody’s 
RiskCalc for corporate sectors in many countries and for banks in the U.S.) 
 

The  CCA model for banks and financial institutions uses a time series of the daily 
market capitalization, the volatility of the market capitalization, and the distress barrier 
(derived from book values of deposits and debt) to estimate a time series of the implied 
market value of bank assets and asset volatility.  Several useful risk indicators can be 
calculated for each bank or institution: (i) distance to distress; (ii) the risk adjusted and actual 
probabilities of default; (iii) the expected losses (put option) to depositors and debt holders; 
(iv) potential size of financial guarantees of the public sector; and, (v) sensitivity of risk 
indicators to changes in underlying bank assets, asset volatility or other factors.  The steps 
used to calculate the implied assets and asset volatility of the individual bank or financial 
institution, and the risk indicators, is shown in Figure 2.  

 
 

Figure 2:   Calibrating Bank CCA Balance Sheets and Risk Indicators 
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C. A Distance-to-Distress Indicator for Chile 
 

A useful indicator of banking or financial sector risk over time is a graph of average 
distance-to-distress (DTD) where 2dtd d= .10  Figure 3 shows the estimated time pattern of 
DTD for the Chilean banking system from 1998 to 2007.  This procedure used historical 
volatility of market capitalization calculated with GARCH(1,1). 

 
 

 
 

Figure 3:  Distance to Distress for the Banking System 
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It is clear in the figure that the period of higher risk for the banking system coincides 
with the fallout from the LTCM/Russian crisis, between late 1998 and early 1999. Since 
then, the Chilean banking system has gradually reduced its risk, though this trend appears to 
have leveled off in late 200511. Other periods where markets assessed suddenly higher risk 
for the Chilean banks are easily discerned, for example, the decline in world stock markets 

                                                 
10 Derivation of the CCA risk indicators shown in Figure 3 are taken from Gray, Echeverría and Luna (2006) 
who used daily market capitalization data for the banks obtained by the Central Bank of Chile from the Bolsa de 
Santiago. Bank debt was obtained from the Superintendence of Banks and Financial Institutions’ (SBIF) 
database. Financial practitioners use various methods for estimating the volatility of daily asset returns. Two 
frequently used methods model daily volatility either as a GARCH(1,1) or as a moving average process. The 
results shown here were obtained using the GARCH(1,1) methodology for all banks in the sample, but the 
results of the moving-average model are similar. A detailed technical analysis is developed in Echeverría, 
Gómez and Luna (2008). 

11 As we see below, this leveling-off has occurred at a very low level of risk. 
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following the collapse of the internet bubble in 2000 and the period preceding the Brazilian 
presidential elections in the third quarter of 2002. 
 
 In Figure 3, it is also clear the relation between the distance to distress of the banking 
system with both GDP annual growth and the output gap.  The regressions with output and 
output gap as the dependent variable with DTD as one of the independent variables are 
shown in Annex 2.  DTD has a significant impact on both output and output gap. Other 
systemic risk indicators that could be used are described in detail in Gray, Merton and Bodie 
2007 and 2008.12 (also see Goodhart et al. 2006a and 2006b, Gray and Walsh 2008, Gray and 
Malone 2008, Haldane et al. 2007, and Segoviano 2006a, 2006b). 
 

III.   LINKING MACROFINANCE INDICATORS TO A SIMPLE DYNAMIC, STOCHASTIC 
MACROECONOMIC POLICY MODEL 

 In this section, we will lay out an integrated, “macrofinance policy model” in which  
macrofinancial outputs are incorporated directly into macroeconomic policy models.  Our 
focus here will be on a modular exposition of the parts of the model and the equations that 
comprise these parts, as well as giving intuition for how they are linked together and can be 
used for the analysis of a wide range of policies. 
 
 Distance-to-distress for the banking system is included in the GDP gap equation, the 
parity condition, and in the policy rate reaction function.  The model parameters are then 
estimated using historical data, including the distance-to-distress indicator but some of them 
are also calibrated. 13  The approach can be used to examine the tradeoffs between GDP, 
inflation, with and without the inclusion of distance-to-distress for the banking system in the 
monetary authorities reaction function.14 
     
 The five equation dynamic, stochastic macroeconomic model used to set monetary 
policy was already briefly described.  This model, close to the one by Berg, Karam, and 
Laxton (2006), was built in the Central Bank of Chile at the start of the implementation of 
                                                 
12 Examples of forward-looking indicators of systemic risk from the CCA model are distance-to-distress (DTD), 
expected loss (i.e. implicit put option), or the default probability weighted by the assets of individual financial 
institutions. The skewness from equity put options is another indicator that can indicate financial system distress 
and also periods of excessive exuberance.  See Gray, Merton, and Bodie 2008a and 2008b. 

13 A related issue is whether an indicator of market risk appetite such as the VIX should be included in 
monetary policy models along with the risk indicator. This could help estimate the impact of the credit risk 
indicator on the GDP gap, adjusted for changes in risk appetite.  

14 There are several other interesting routes to take in linking risk analytics more closely with macroeconomic 
models. These include incorporating default risk and a risk premium into the Mundell-Fleming model to 
separate out the effects of changes in interest rates due to changes in the market for liquidity, and changes in 
interest rates due to changes in the risk premium on debt (See Gray and Malone, forthcoming IMF WP).  
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fully fledged inflation targeting in 2000. An application of it to the design of monetary policy 
using efficiency frontiers is found in Herrera, García and Valdés (2002).  It is one specimen 
of a class of macroeconomic policy models that can be used for policy analysis in small open 
economies.  
 
   

Module 1: Output, Inflation, exchange rate, and a Taylor rule 
 
 The first module of our macrofinance policy model consists of equation for the most 
important macro variables. Thus, there is an equation for the output gap, an equation for 
inflation, an equation for inflation expectations, and a Taylor rule for setting the domestic 
policy rate.  The domestic policy rate is a short term interest rate set by the central bank.   
 
Equation for output gap 

 

y
tt

eq
tt

eq
tt

eq
tttttt

ldtdqqlrrl

rrygapygapygapygap

εβββ

ββββ

++−+−+

−+++=

−−−−

−−−−−

)0,min()()(

)(

7446225

114332211     (1) 

 
Where ygap corresponds to the output gap, r is the short-run real interest rate, rl the long-run 
real interest rate, q is the real exchange rate and ldtd is the natural logarithm of distance to 
default (ln(DTD)), which is also modeled here. As was explained in detail above, distance to 
default (DTD) is a financial risk indicator that could reflect, in general, the financial 
conditions that the economy faces. Finally, y

tε  is a shock to GDP.  
 
Phillips curve 
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 Where tπ  stands for inflation, ts is the nominal exchange rate and 1−tpf is the foreign 
price level. , inflation expectations, lags of the rate of nominal exchange rate depreciation, 
the local currency debt risk premium 
 
Exchange rate equation (interest parity condition) 
 

q
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The real exchange rate depends on the domestic policy rate, the foreign policy rate, the 
sovereign spread for domestic debt, the sovereign spread for foreign debt 
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 According to uncovered interest rate parity, the expected change in the spot exchange 
rate should be related to the differential between the domestic and foreign interest rates, plus 
some risk premium.  In practice, it has been found that a rise in domestic interest rates is 
usually associated with a subsequent appreciation, rather than a depreciation of the exchange 
rate as standard economic theory predicts.   
 
Long term interest rate (yield curve) 
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This equation describes the relationship between long run ( trl )  and short run ( tr )interest 
rates  
 
Reaction Function (Taylor rule) 
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The monetary policy interest rate depends on its own lag, expected inflation gap ,output gap, 
and distance to default. While including a measure of financial stability in the Taylor rule for 
setting interest rates may be able to improve efficiency (welfare), in particular if financial 
stability affects output, there may be better ways to target financial stability than the interest 
rate. 
 
Module 2:  Distance to Distress Model for the Banking System 
 
This module completes the whole system to be simulated 
 
The value of assets AA is derived from the Black & Scholes (B&S) model,  
  

 ( *exp( * )* 2) / 1 AA EE BB r t cdfd cdfd= + −        (6) 
 
where EE is the value of the Equity (or the same, the value of the call option). BB is the value 
of the debt in the B&S model, but here it is also the default barrier, where ‘r’ is the risk free 
interest rate and ‘t’ is time -fixed in the model to one year.  Finally cdfd2 = N(d2), where N() 
is the normal cumulative distribution function and d2 is derived from the B&S model 
explained in section II (the same is true for cdf1= N(d1)).  
 
The transformation of N(d2) and N(d1) into cdfd2 and cdfd1 is required because the software 
used to solve the model does not have an explicit function for the cumulative normal 
distribution function. The following two equations are used to build such approximations: 
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 The cumulative distribution function of d2 
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And the cumulative distribution function of d1 

2

2 3

1 (1/ 2.506628)* ( 1/ 2*( 1 ))*(0.4361836*(1/ (1 0.33267* 1))
( 0.1201676)*(1/ (1 0.33267* 1)) 0.937298*(1/ (1 0.33267* 1)

1
) )

Ec XP d
d d

dfd d− − +

+ − + + +

=
       (8) 

 
Where d1 and d2 definitions are in section II and correspond to: 

1 2 *  d d Sa t= +        and       (9) 
 

22 ( ( / ) ( ( ) / 2)* ) /( * _)d log AA BB r Sa t Sa t dtd shk= + − +    (10) 
 
Note that d2 is equal, precisely, to Distance to Default (DTD = d2) 
 
It is apparent from equation 10 that assets volatility, Sa and assets value, AA are crucial for 
finding DTD. Thus, the system of non linear equations requires an equation for Sa to have a 
solution: 
     

( * ) / ( * 1) Sa Se EE AA cdfd=          (11) 
 
Where, Se stands for volatility of the equity.15  
 
As the reader may recall, distance to default affects GDP in equation 1 of the macro model. 
In the following equation, GDP growth affects banks’ capital, EE and through it distance to 
default, as well as GDP making the system completely endogenous:   
 

( ) ( ) ( )( ) ( ) ( )( )( ) 1   0.01* y 1 y 4 / 3 y _ eq 1 y _ eq 4 / 3  EE EEρ= − + − − − − − − −  (12) 

 
Finally, another measure of risk, described in Gray, Merton and Bodie (2008) and Gray and 
Malone (2008) that could be used here is the spread put, which is a function of the value of 
the Put option, the default barrier, the risk free rate and time: 
 

                                                 
15 A through explanation is found in Gray and Malone (2008).     
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( )( )_   1/ t *log 1  PUT / BB*exp r * t  0.00925382 spread put = − − − −  

 
 

IV.   STOCHASTIC SIMULATIONS AND POLICY ANALYSIS 

In order to understand how the model works, we obtained impulse responses (Figure 4). 
Next, we assess different alternatives of monetary policy as well as calibrations of the model 
by building efficiency frontiers with the volatilities of GDP and inflation (García, Herrera 
and Valdés, 2002; Laxton and Pesenti, 2003) .  
 
Responses of GDP, inflation, the exchange rate, and the monetary policy interest rate r, as 
well as the CCA derived risk indicator ldtd, are obtained after a shock of 100 basis points is 
given to every variable (Figure 4).  

  
• After a shock to inflation (cost-push shock), the monetary policy rate (MPR) goes up, 

reducing the output gap (ygap) and appreciating de currency (RER falls). The RER 
fall also contributes to depress the output. On the other hand, DTD barely moves. 

• In the case of a positive shock to the output gap, GDP and inflation increase, and so 
do interest rates, while the exchange rate falls in agreement with economic intuition. 
The system takes around six years to return to equilibrium after the shock. 

• The shock to the real exchange rate q has a very moderate impact on inflation and 
GDP. The movements observed in the other variables are barely noticeable. 

• A Monetary Policy Interest Rate hike generates a large appreciation of the currency 
followed by a depreciation before the real exchange rate converges back to 
equilibrium. Given that GDP also falls after the shock, these two variables put 
downward pressure to inflation, which exhibits an extremely persistent negative 
deviation from its steady state level.  

• Once the long-run real interest rate (rl) is hit by the respective shock output and both 
output and inflation decrease. Given that monetary authority reacts to economic 
developments through a Taylor rule, a reduction of the short-run interest rate is called 
for. As a result, the real exchange rate exhibits a large positive swing.  

• Finally, a negative shock to distance to default (DTD) is implemented causing a 
recession. Due to the fact that DTD is included in the policy reaction function, the 
original shock is followed by a reduction in the MPR. Moreover, arbitrage through 
the uncovered interest parity results in a large real depreciation. 

• In general, the model works as expected according to standard economic intuition 
signs and magnitudes are sensible. While there is strong interaction among macro 
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variables, DTD movements are small. However, DTD has a large impact on MPR, 
MPR and OPG. 
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Figure 4: Impulse Responses 
 

Shock to inflation Shock to output gap 

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

200004 200204 200404 200604 200804 2010

dp y q

r rl ldtd

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

200004 200204 200404 200604 200804 20100

dp y q

r rl ldtd

Shock to exchange rate Shock to short term interest rate 

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

200004 200204 200404 200604 200804 2010

dp y q

r rl ldtd

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

200004 200204 200404 200604 200804 20100

dp y q

r rl ldtd

Shock to long term interest rate Shock to distance to default 

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

200004 200204 200404 200604 200804 20100

dp y q

r rl ldtd

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

200004 200204 200404 200604 200804 20100

dp y q

r rl ldtd

Source: authors’ calculations 



  17  

 

 The efficiency frontiers are built combining the volatility of inflation and GDP that 
results after the economy is hit repeatedly by shocks drawn from a normal distribution. 
Indeed, standard deviations of the variables were computed between periods 20 and 25 after 
the shock hits the artificial economy.  The purpose of the exercise is to compare frontiers that 
were obtained using different policy rules or even different calibrations of the model. 
Whenever a frontier is closer to the origin, one says that the policy choice is better for the 
central bank and the society as a whole.  
 

Each of the figures below includes two frontiers.  One obtained with the baseline 
model that includes a traditional Taylor Rule in which there is only inflation and GDP gaps 
(theta=0.5, rho=0.6 and gamma =0.6), i.e., authorities do not react to the risk indicator (blue 
line).  The other corresponds to an alternative reaction function for monetary policy that also 
includes ldtd  in it (with a coefficient equal to 0.5) in a non-linear way (red line).  Namely, 
besides reacting to inflation and GDP gaps the monetary authority also reacts to distance to 
default, but only when it is below a certain critical value, indicating that the banking system 
is close to default.  

 
 Reaction size to DTD in the policy rule 

Compared to the frontier obtained with the standard Taylor rule (blue line in the left 
panel of Figure 5), a central bank’s reaction function that also includes dtd implies a lower 
level of inflation volatility while volatility of GDP increases (red line in the same chart). The 
reduction of inflation volatility ranges from 5 to 10 basis points for the same level of output 
volatility (Figure 5). In general, a stronger reaction to DTD moves the frontier upward and 
leftward. In other words, volatility of inflation decreases while volatility of production grows 
the opposite happens when the coefficient of DTD is smaller. The red line moves down (red 
line of the right panel in Figure 5). 
 
Figure 5: Efficiency frontier 
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 GDP impact on bank equity (endogeneity)  

 
A comparison of this graph with the previous one shows that if there is no feedback 

from GDP to bank equity and thus to dtd (endogeneity), the rule without distance to default 
leads to a frontier that is closer to the origin (Figure 6, right panel). Thus, the policy that 
excludes dtd is preferred to the alternative. Regarding inflation, some gain can still be 
obtained by including dtd in the monetary rule, given that part of the red line goes further 
towards the left, i.e. inflation volatility is lower. However, if volatility of both inflation and 
GDP are taken into account, one can say that the closest points to the origin are in the blue, 
therefore, the central bank faces smaller combinations of volatilities. 

 
Figure 6: Efficiency frontier and endogeneity of bank’s equity  
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 No effect of DTD on real exchange rate 

 
In this experiment the impact of DTD on the risk premium and the exchange rate was 

reduced (Figure 7, right panel). Again, the blue line, which represents the frontier obtained 
with no dtd in the reaction function, includes points that are closest to the origin, closer  than 
points in the red line (rule with dtd). Thus this policy of not reacting to dtd should be 
preferred by the central bank. 
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Figure 7: Efficiency frontier and interest parity condition 
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 Previous: Lower pass-through 
Again a policy in which the Central Bank reacts to DTD is more efficient in 

economies where the pass-though of inflation to exchange rate is low (see Figure 8). This is 
an important issue in economies that have small levels of inflation or small price inertia, in 
this case it would be preferred that the Central Bank reacts to DTD. 

 
Figure 8: Efficiency frontier and pass-through 

Base model Lower Pass-through  

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

1.0% 1.5% 2.0% 2.5% 3.0%
Inflation volatility

O
ut

pu
t v

ol
at

ili
ty

No Policy

MPR to DTD

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

1.0% 1.5% 2.0% 2.5% 3.0%
Inflation volatility

O
ut

pu
t v

ol
at

ili
ty

No Policy

MPR to DTD

Source: authors’ calculations 
 

In summary, if pass-through is higher, if financial vulnerability or DTD has a larger 
impact on the exchange rate, and on GDP (or GDP also has a larger impact on bank’s equity 
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and through it on DTD –more endogeneity), it is better to include DTD in the reaction 
function.  

V.   CONCLUSIONS 

This main objective of this paper is the integration of the analysis of financial sector 
vulnerability into macroeconomic models, which is an area of important and growing interest 
for policymakers in both developed and emerging markets. This paper uses contingent claims 
analysis (CCA) tools, developed in finance, to construct financial stability indicators and 
incorporate them in a standard monetary policy model. The economy and interest rates affect 
financial sector credit risk, while the financial sector affects the economy. Market-based 
financial stability incicators (FSIs) summarize both the credit channel and credit risk 
transmission from distressed borrowers in the economy. 

 
The new framework is simple, but powerful for monetary policy analysis. Indeed, the 

model has the main variables analyzed by policymakers, but is small enough to understand 
easily how it works. Even though, it is an artificial economy used to be stochastically 
simulated, the empirical evidence supports the model. In addition, impulse responses behave 
in accordance with economic intuition. 
 

The main question to be answered with the integrated model is whether or not the 
central bank should include explicitly the financial stability indicator in the interest rate 
reaction function. The alternative is to react only indirectly to financial risk by reacting to 
inflation and GDP gaps, since they already include the effect financial factors have in the 
economy. In order to reach the objective, efficiency frontiers are built with the volatility of 
inflation and output obtained from the stochastic simulations. It is found in general, that a 
including DTD in the reaction function reduces inflation volatility while increasing the 
variability of output. 

 
A set of exercises were also performed in which some of the parameters of the model 

were calibrated to reflect and assess actual differences among economies regarding exchange 
rate pass-through, the relation between financial risk and exchange rate (through the parity 
condition and the endogeneity of the financial indicator: its effect on GDP and the impact 
GDP on banks equity and distance to default.  

 
The conclusions are that it is better to include DTD in the interest rate reaction 

function if exchange rate pass-through is higher;  if financial vulnerability (DTD) has a larger 
impact on the exchange rate, as well as on GDP (or the reverse, there is more impact of GDP 
on bank’s equity and thus DTD –endogeneity). 

 
Finally, this paper is the first to address the subject of forward-looking financial 

stability indicators in a monetary policy model and there are a number of refinements and 
extensions that could be introduced in the future.   
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A non exhaustive list of refinements and extensions includes: 
 

 Combinations of financial scenarios (strong, normal, fragility) could be incorporated. 
 The effects of interest rates on the FSI/DTD indicator and feedbacks of the indicator 

on interest rates could be included. 
 Different FSIs could be tested.  Note that forward-looking market based indicators 

can indicate financial vulnerability and when these indicators are abnormally high 
could be indicators of exuberance and might be incorporated into monetary policy 
analysis during boom/exuberance periods.16 

 Extensions could include FSIs which are market-based indicators of capital adequacy.  
(Distance to minimum capital is described at the end of Annex 1 and ways that capital 
adequacy might be included in the monetary policy model equation is described in 
Annex 3.) 

 Changes in the dynamics of the macro model should be tested (GEM). 
 Empirical data in other countries could be used and the model or its extensions can be 

applied to other economies. 
 

                                                 
16 See Gray, Merton, Bodie (2008a and 2008b). 
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Annex 1– Estimating Implied Assets and Volatility, Default Probabilities 
and Extensions of the Merton Model 
 
 This Annex provides details on estimating implied assets and asset volatility and 
extensions of the Merton Model.  
 
Calculating Implied Assets and Implied Asset Volatility  
 
The value of assets is unobservable, but it can be implied using CCA. 
In the Merton Model for firms, banks and non-bank financials with traded equity use equity, 
J, and equity volatility, 

J
σ , and the distress barrier in the following two equations to solve 

for the two unknowns A, asset value, and Aσ , asset volatility.  (See Crouhy, Mark and Galai 
(2000)). 
 

0 1 2N( ) N( )J A d B d= −  

1
( )

J A
J A N dσ σ=  

 
Extensions of the Merton Model 
 
 Numerous extensions of the original Merton Model have been developed that relax 
certain assumptions in the original model.  Restrictions of the model include the assumptions 
that: (i) default can occur only at the maturity date of the debt; (ii) there is a fixed default 
barrier; (iii) there is a constant risk-free rate; and, (iv) asset volatility is constant.  Cossin and 
Pirotte (2001) provide a good summary of extensions of the Merton Model.  Black and Cox 
(1976) extended the Merton Model to relax the assumptions (i) and (ii) above by introducing 
a “first passage time” model where default can occur prior to the maturity of the debt if the 
asset falls below a specified barrier function for the first time.   
 
 Although the strict theoretical condition in the Merton Model for default is that the 
value of assets is less than the required payments due on the debt, in the real world, default 
typically occurs at much higher asset values, either because of a material breach of a debt 
covenant or because assets cannot be sold to meet the payments (“inadequate liquidity”) or 
because the sovereign decides to default and induce a debt renegotiation rather than sell 
assets.  To capture these real-world conditions for default in the model, we specify a market 
value of total assets at which default occurs.  We call this level of assets that trigger default 
the “distress barrier.”  This barrier can be viewed as the present value of the promised 
payments discounted at the risk-free rate.  The approach used in the KMV model sets the 
barrier level equal to the sum of the book value of short-term debt, promised interest 
payments for the next 12 months, and half of long-term debt (see Crouhy, et. al. (2000)  and 
KMV (1999, 2001)).   
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 In the 1990s the KMV model was based the VK model (Vasicek and Kealhofer) 
which has multiple layers of liabilities and several confidential features.  MKMV’s EDF 
(expected default frequency) credit measure is calculated using an iterative procedure to 
solve for the asset volatility.  This distance-to-distress was then mapped to actual default 
probabilities using a database of detailed real world default probabilities for many firms.  The 
MKMV distance-to-distress and the CEDF (cumulative expected default probabilities) are 
calculated as follows: 
 

( ) ( )2
0ln / / 2t A A

A

KMV

A B t
DD f

t

μ σ

σ

+ −
=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

( )( )t KMVCEDF f DD t=  
 
Note that this definition of   KMVDD  includes the real drift of the asset, Aμ , whereas the 
distance-to-distress from the Merton approach has r for the asset drift.  Since MKMV 
estimates the actual default probabilities, the risk neutral default probabilities are calculated 
from the correlation of the implied asset with the market, the market Sharpe Ratio, and time 
horizon.   
 
 The Merton Model has been extended to include stochastic interest rates as well. 
Shimko, Tejima, and Van Deventer (1993) include a Vasicek interest rate term structure 
model which relaxes assumption (iii) above allowing the risk free interest rate to change and 
including the correlation of asset return with the interest rate.  There are two stochastic 
factors, the asset and the interest rate and this model is frequently called the STV model.  
This closed form model is a very useful extension by including the impact of changing 
interest rate term structures.  Longstaff and Schwartz (1995) take the Black and Cox (1976) 
model and add in stochastic interest rates, similar to the way STV includes interest rates.  
 
 The CreditGrades model (2002) includes a diffusion of a firm’s assets and a first 
passage time default with a stochastic default barrier.  The model was modified to 
incorporate equity derivatives (Stamicar and Finger 2005).  Recent research has studied the 
relationship between the volatility skew implied by equity options and CDS spreads (Hull et. 
al. 2004).  They establish a relationship between implied volatility of two equity options, 
leverage and asset volatility.  This approach is, in fact, another way of implementing 
Merton’s Model to get spreads and risk-neutral default probabilities directly from the implied 
volatility of equity options.  A similar approach using several equity options is discussed in 
Zou (2003). 
   

Financial support for liquidity and potential credit risk from the authorities is likely to 
be provided before “default” barrier is reached.  A minimum capital barrier, or simply a 
capital barrier, can be defined in addition to the default barrier.  The default barrier plus 4% 
of market value of assets will be used as the “minimum  4% capital” barrier.  The default 
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barrier plus 8% of market value of assets will be used as the “minimum  8% capital” barrier.  
Figure A1 below shows the area between the minimum capital barrier and the default barrier.  
The area represents the probability of falling below minimum capital but not as far as default.  
The value of this area is calculated as the implicit put option below the minimum capital 
barrier minus the implicit default put option.  We will call the value of the area as the “capital 
barrier put option” or “capital barrier expected loss.”   
This is particularly relevant to the central bank as it is a measure loss directly related to 
liquidity support/financial support which would be needed to get the bank asset level above 
the minimum capital level.  
 
 
  Figure 2           Volatile Assets Relative to Debt Distress Barrier and “Minimum  
    Capital Barrier” 
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Annex 2  Regression Results of Output and Output Gap on Distance to 
Distress of the Banking System 

The first regression is on:  

 

Dependent Variable: DLOG(YS,0,3)
Sample (adjusted): 1998M05 2007M02
Included observations: 106 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.011 0.002 4.830 0.000
R(-1) -0.001 0.000 -3.723 0.000
DLOG(TCR(-1),0,3) 0.046 0.019 2.438 0.017
DLOG(DTDS(-1),0,3) 0.012 0.003 3.551 0.001
DLOG(YS(-1),0,3) 0.463 0.074 6.283 0.000

R-squared 0.574     Mean dependent var 0.009
Adjusted R-squared 0.557     S.D. dependent var 0.013
S.E. of regression 0.008     Akaike info criterion -6.677
Sum squared resid 0.007     Schwarz criterion -6.552
Log likelihood 358.890     F-statistic 34.036
Durbin-Watson stat 1.912     Prob(F-statistic) 0.000  

 
 
 

Dependent Variable: YGAP
Sample (adjusted): 1998M02 2007M02
Included observations: 109 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C -1.736 0.470 -3.691 0.000
DLOG(TCR(-3),0,3) 4.134 1.639 2.522 0.013
LOG(DTDS(-1)) 0.934 0.256 3.653 0.000
YGAP(-1) 0.513 0.082 6.275 0.000
YGAP(-3) 0.225 0.072 3.113 0.002

R-squared 0.661     Mean dependent var -0.035
Adjusted R-squared 0.648     S.D. dependent var 1.201
S.E. of regression 0.712     Akaike info criterion 2.204
Sum squared resid 52.766     Schwarz criterion 2.328
Log likelihood -115.126     F-statistic 50.695
Durbin-Watson stat 1.842     Prob(F-statistic) 0.000  

 
These regressions show that changes in DTD are significant in explaining both GDP 
quarterly growth (equation #1) and the output gap (equation #2) with the expected (positive) 
sign.  

tttttt yedtdrcy εαααα +Δ+Δ+Δ++=Δ −−−− 14131211  

ttttt gapedtdcgap εααα ++Δ+Δ+= −−− 141211  



  29  

 

Annex 3– Extensions to Include Capital Adequacy 
 
The central bank may expand its set of policy instruments to better accommodate its 

multiple objectives.  Additional tools that can be used to target financial stability include the 
reserve requirements for banks and other measures of capital adequacy, such as Value-at-
Risk based measures advocated in Basel II. The distance to minimum capital concept 
described at the end of Annex 1 could be a forward-looking indicator related to capital 
adequacy.  As described by Gray and Malone (2008) a rule could be specified for targeting 
such a measure of capital adequacy, C, as follows: 
 
  

ttttt fsiygapCC ,1032111 ])[1( εηηφφ ++−+= −  
 

The closer the parameter 1φ  is to one, the more continuity is built into the capital 
adequacy requirement.  As in the case of interest rates, some continuity is important, because 
significant changes in capital adequacy requirements, or interest rates, in a short amount of 
time can also potentially contribute to instability as banks move en masse to comply with 
new requirements.  The second term in the above rule, which is multiplied by the coefficient 

11 φ− , allows the central bank to use capital adequacy requirements, or other variables that 
affect the risk profile of the banking sector, to respond to deviations of inflation, output, and 
financial stability from their targets.   

Lower capital adequancy requirements, by stimulating lending, may be able to 
contribute to higher investment that stimulates output when output is below target.  Likewise, 
more stringent capital adequacy requirements can help increase the financial stability 
indicator when it is below target, by lowering the probability of banking sector instability or 
widespread defaults.   
  
 
 


