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Abstract

This article first discusses ways of decomposing a time series into trend
and cyclical components, paying particular attention to a new class of
model for cycles. It is shown how using an auxiliary series can help
to achieve a more satisfactory decomposition. A discussion of balanced
growth then leads on to the construction of new models for converging
economies. The preferred models combine unobserved components with
an error correction mechanism and allow a decomposition into trend, cycle
and convergence components. This provides insight into what has hap-
pened in the past, enables the current state of an economy to be more
accurately assessed and gives a procedure for the prediction of future ob-
servations. The methods are applied to data on the US, Japan and Chile.

KEYWORDS: Band pass filter, error correction, Kalman filter, state
space, turning point, unobserved components.

1 Introduction

Determining turning points in the business cycle is a difficult problem. Making
sensible predictions concerning the growth path of an economy in the medium
or long term is even harder. The aim of this article is to explore what can be
achieved by analysing and modeling time series observations on GDP and other
macroeconomic time series.

Separating out trends and cycles is fundamental to a good deal of economic
analysis. It is often done by applying filters in a rather arbitrary fashion. For
example, the low-pass filter introduced by Hodrick and Prescott (1997) is fre-
quently used to remove trends in situations where it can create considerable
distortions; see Harvey and Jaeger (1993) and Cogley and Nason (1995). Rather
than simply defining the cycle as the detrended series, a band pass filter may
be used to extract it, the argument being that high frequency as well as low
frequency components need to be removed. Baxter and King (1999) consider
the design of band pass filters and their implementation in finite samples. Their
prime concern is to approximate the ‘ideal’ filter, a perfectly sharp band pass
filter which removes all frequencies outside a certain range. However, as with



the Hodrick-Prescott (HP) filter, considerable distortions can arise as shown by
Murray(2001).

The view expressed in this paper is trends and cycles are best constructed
using unobserved component, or structural, time series models. The parameters
in such models are typically estimated by maximum likelihood and, once this
has been done, optimal estimates of the components are obtained by smoothing
algorithms. The calculations are most easily performed by putting the model
in state space form.

Section 2 begins by discussing the basic ideas of structural time series models
and reviewing the link with the HP filter. An extended class of cyclical models is
then introduced. Harvey and Trimbur (2001) produce argue that these models
enable smoother cycles to be extracted and that they lead to a more satisfactory
decomposition into trend and cycle at the end of the series. The extraction of
these generalised cycles is closely linked to the application of Butterworth band
pass filters. These filters are widely used in engineering but have only recently
been introduced into economic statistics; see Gomez (2001). The analysis of
such filters reveals that a model yielding the equivalent of an ideal band pass
filter can be obtained as a limiting case. Fitting models with the generalised
cyclical component to US macroeconomic series illustrates the point about their
yielding clearer and smoother cycles than are normally obtained.

Structural models can also be extended so as to include more than one cycle.
A model with two cycles turns out to work well on quarterly Chilean GDP data.

Multivariate models are discussed in section 3. A related series with a
more pronounced cycle, such as investment, may help in extracting a ‘bet-
ter’ cycle from GDP. Multivariate models can also be set up so as to handle
economies which have converged and so have a stable relationship. These are
called balanced growth models. However, the more relevant question for devel-
oping economies, such as Chile, is whether convergence is actually taking place.
Section 4 examines ways of assessing and modeling convergence between two
economies. A dynamic error correction model is proposed and then extended so
as to incorporate a mechanism which allows convergence to take place smoothly.
Unobserved component and autoregressive versions of these models are fitted to
per capita data on GDP in the US and Japan.

Section 5 brings together the material from the earlier sections to set out
bivariate models for the levels of two converging economies. The preferred
models combine unobserved components with an error correction mechanism
and allow a decomposition into trend, cycle and convergence components. This
provides insight into what has happened in the past, enables the current state
of an economy to be more accurately assessed and gives a procedure for the
prediction of future observations. The properties of these models are explored
and they are fitted to the Japanese and US series. Finally the scope for using
these models for making medium term predictions for Chile is assessed.



2 Trends, cycles and balanced growth

2.1 Univariate models

The local linear trend model for a set of observations, y;,t =1, ..,T, consists of
stochastic trend and irregular components, that is

ye=p e, t=1..T (1)

The trend, p,, receives shocks to both its level and slope so

Pe = M1+ By g, n, ~ NID(0,
By Bi1+ G ¢, ~ NID(0,

a2),
) ©)

where the irregular, level and slope disturbances, e¢,n, and (,, respectively,
are mutually independent and the notation NID (0, (72) denotes normally and
independently distributed with mean zero and variance o2. If both variances
(7% and (r% are zero, the trend is deterministic. When only a% is zero, the slope
is fixed and the trend reduces to a random walk with drift

By = Hy_q T B+, (3)

Allowing ag to be positive, but setting 0727 to zero gives an integrated random
walk (IRW) trend, which when estimated tends to be relatively smooth. This
model is equivalent to a cubic spine and is often referred to as the ‘smooth trend’
model.

The statistical treatment of unobserved component models is based on the
state space form (SSF). Once a model has been put in SSF, the Kalman filter
yields estimators of the components based on current and past observations.
Signal extraction refers to estimation of components based on all the information
in the sample. Signal extraction is based on smoothing recursions which run
backwards from the last observation. Predictions are made by extending the
Kalman filter forward. Root mean square errors (RMSEs) can be computed for
all estimators and prediction intervals constructed.

The unknown variance parameters are estimated by constructing a likelihood
function from the one-step ahead prediction errors, or innovations, produced
by the Kalman filter. The likelihood function is maximized by an iterative
procedure. The calculations can be done with the STAMP package of Koopman
et al (2000). Once estimated, the fit of the model can be checked using standard
time series diagnostics such as tests for residual serial correlation.

HP filtering can be carried by applying a signal extraction algorithm to a
special case of the smooth trend model in which the signal-noise ratio, ¢ =
ag /o2, is set to 1/1600 for quarterly data. Figure 1 shows cycle obtained from
HP detrending of quarterly, seasonally adjusted’ data on GDP for Chile. The

1 Seasonal adjustment was carried out using the basic X-12-ARIMA option in PcGive
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Figure 1: HP filter for Chile GDP (seasonally adjusted)

result is a rather noisy series from which no clear message emerges, particularly
towards the end. The HP filter applied to US GDP is more satisfactory in that
the business cycle emerges clearly, but again it is not clear what is happening
at the end of the series; the HP cycle is very similar to one shown in figure 2

Estimating the parameters of a smooth trend model for GDP will not usually
result in a HP cycle as there is nothing in the model to distinguish long-term
from short-term movements. Short-term may be captured by including a serially
correlated stationary component, 1;, in the model. Thus

yt:/*‘t+wt+6t7 t:177T (4)

An autoregressive process is often used for 9,, as in Kitagawa and Gersch (1996).
Another possibility is the stochastic cycle

b, cos )\, sin )\, Ve y Kt
:p + ) t:17...7T7 (5)
oF —sin )\, cos . Uiy K

where . is frequency in radians and x; and k; are two mutually independent
white noise disturbances with zero means and common variance o2. Given the
initial conditions that the vector (¢, 15)" has zero mean and covariance matrix
(riI,it can be shown that for 0 < p < 1, the process ¢, is stationary and
indeterministic with zero mean, variance 02, = 02 /(1 — p?) and autocorrelation

function

p(1) =p"cos A7, T=0,1,2,.. (6)
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Figure 2: Trend and cycle in US GDP from a structural time series model

For 0 < A, < 7, the spectrum of ¢, displays a peak, centered around A., which
becomes sharper as p moves closer to one. The period corresponding to A,
is 2m/A.. In the limiting cases when A\, = 0 or m, 1, collapses to first-order
autoregressive processes with coefficients p and minus p respectively. More
generally the reduced form is an ARM A(2, 1) process in which the autoregressive
part has complex roots. The complex root restriction can be very helpful in
fitting a model, particularly if there is reason to include more than one cycle.

Harvey and Jaeger (1993) showed that extracting a cycle from US GDP using
a smooth trend plus cycle model gave a very similar result to the HP filter. This
correspondence continues to hold with series shown in figure 2 which is from
1947/1 to 2001/3. The problem at the end of the series is apparent and so the
challenge is to devise models which are capable of giving a clearer breakdown
into trend and cycle.

2.2 Extracting smoother cycles

The cycle extracted for US GDP in figure 2 comes from a model in which the
irregular variance was estimated to be zero. Thus, as with the HP filter, the cycle
is the same as the detrended series. A clearer indication of the business cycle
might be obtained by a model which manages to force some of the stationary
part of the series into the irregular component. The same idea is inherent in
the notion of a band-pass filter centred on the business cycle frequencies; see
Baxter and King (1999).

The smoothness of a trend depends on the shape of the weighting function -
the kernel - for extracting it and the signal-noise ratio. In the local linear trend
model of (1), the weighting pattern for a random walk plus drift is a double



exponential. For the integrated random walk trend the kernel decays more
slowly; some examples can be found in Harvey and Trimbur (2001). Furthermore
if the IRW trend model is fitted, the signal-noise ratio is usually smaller than it
is for a random walk with drift: the result is a wider bandwidth and a smoother
trend. A similar device may be employed for the cycle. To this end we consider
a double, or second-order, stochastic cycle :

1/}75 _ Ccos Ac sin Ac 1/}t—1 4 1/]5,t71
e | TP sinAe cosA. || ¥, Vi1 |’

Yy | _ cos A\ sin A\, Vg1 Ky
[ Vo | Pl —sin)e coshe V51 + K} (7)
where k; and k} are as in the first-order cycle, (5), and p and A, satisfy the
same conditions.
General classes of higher order trends and cycles may be defined. A higher
order trend will give a nonlinear forecast function and so may not be attractive.

On the other hand, there may be merit in higher order cycles. Harvey and
Trimbur(2001) define the nth order stochastic cycle, for positive integer n, as

Vg | CoS ¢ sin Ao (R n Kt
Vie | Pl —sin\. cos)e (R 0

7/)1',1, _ Cos A¢ sin A 7/’1',1571 1/%'—1,75 s
[ Vi | Pl _sinA. cos A Vit + 0 » 1=2.50 (8)

The fact that there is no x} and 1 , , is a matter of convenience in working
out properties. It enables us to write

1/’1',1, = C(L)l/)ifl,t: i=2,..,n
with ¢, , = C(L)k¢,where

1—pcosA.L

L =
¢(r) 1—2pcos AL+ p?L?

Repeated substitution yields
Ve = [C(L)]" e 9)

The properties of the cycle are most easily expressed in the frequency do-
main. The power spectrum, for p < 1, is given directly from the spectral
generating function as:

feipAe,n) = |C(e™™)

2
K

(rz/27r (10)

n

o 1+ p? cos? A\, — 2pcos A, cos A
21 |1+ p* 4 4p? cos? A — 4(p + p?) cos Ac cos A + 2p? cos 20




As n increases the shape of the spectrum becomes such that there is relatively
less power at high frequencies. If the cycle is embedded in white noise, that is

Yo =V, +e, e~ WN(0,02), (11)

the gain function is found to be

1—|—p2 cos? Ae—2pcos A cos A i
4k 1+ p14+4p2 cos? A.—4(p+p?) cos A. cos A+2p2 cos 2X
G(A;pa )‘c) = - 7 (12)
1 + q |: ‘ 1+‘p cos? )\(:7‘2/0 cos A cos A ‘ :|
K| 14-p*+4p? cos? Ao—4(p+p?) cos A cos A+2p? cos 2A

where g, = 02 /02. The higher is n, the more a block of frequencies around .
is passed by the filter. When a model of the form (11) is fitted, the irregular
component tends to become bigger as n increases, the signal-noise ratio, g,
becomes smaller and the estimated cycle tends to become smoother. Similar
conclusions hold if a trend is in the model as in (4).

If p =1, Gomez (2001) shows that the signal extraction filter for the cycle
is a member of Butterworth class. More generally, Harvey and Trimbur(2001)
refer to a filter obtained with 0 < p < 1 as a generalised Butterworth band-pass
filter of order n.

With p equal to one the gain becomes more rectangular as n increases and
an ideal band-pass filter is obtained as a limiting case. Baxter and King (1999)
argue for the desirability of ideal band pass filters and suggest how they may
be approximated in the time domain by truncating weights beyond a certain
lag and then modifying them so they sum to zero. A model containing a higher
order cycle can also approximate an ideal band pass filter, but without sacrificing
observations at the beginning and end of the series. However, the model suggests
that this may be unappealing, one reason being that the cycle is nonstationary.
Business cycles are normally thought of as being stationary, so the additional
flexibility resulting from the inclusion of the damping factor is an important
generalisation.

Fitting a fully specified model consisting of trend, cycle and irregular compo-
nents, together with any other necessary components, such as a seasonal, yields
a filter which is optimal for extracting a cycle with clearly defined properties
and which is consistent with the data. The calculations may be programmed
in Ox using the Ssfpack set of subroutines documented in Koopman, Shephard
and Doornik (1999). Figure 3 shows the cycle extracted from US GDP when
n = 2. This cycle is smoother than the one shown in figure 2 and, even more
importantly, it gives a much clearer indication of the state of the economy at
the end of the series. It appears that the US is at the top of a boom and there
is a strong indication of a turning point.

2.3 Several cycles: the case of Chile

Fitting the trend plus cycle model to the logarithms of annual data on Chilean
GDP, in 1995 pesos, from 1870 to 1995 gives the trend shown in figure 4. The
period of the cycle is P = 1205 with p = 0.75 and the signal-noise ratio, g¢, being



.04
0 U W A
-02-
-04-
-.06-
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
Figure 3: Second-order cycle for US GDP
14,
[—-LRCHILEGDP— TrendeRCHILEGDﬂ /"
1
13,
13
12. \ : \ \ \ \ \ \ \ \ \ \
1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
2 [=—Cyclq /\/\
oA /J\ N m ﬂ MAA al ///\ /\
V\J 9,/ \/ \/\j (AT \/ V.
-2
_4

. I
1870 1880

. I I I I I . I I . .
1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

Figure 4:



14
13.
13

1960 1970 1980 1990 2000 1960 1970 1980 1990
I 05

i

o

2000

—— Short-term cycle

.M&\AAAAAQ AAAAAAAA

-.025

0 w/\\/ \M/m//\ ;U vuvvvxjvuvvvvv

1960 1970 1980 1990 2000 11960“‘19%6‘ 71980 1990

2000

1960 1970 1980 1990 2000 1960 1970 1980 1990

Figure 5: Decomposition of real Chile GDP into trend, two cycles, seasonal and
irregular

0.0056. Fitting the same model to the quarterly data set, 1960/1 to 2001/42,
in real 1986 Chilean pesos, is less successful: the recessions in the 1970s and
1980s are very pronounced and because they so dominate the sample period they
become incorporated into the trend, leaving only very short term movements
in the cycle. However, estimating a model with two cyclical components solves
the problem. The first cycle, which picks up the major recessions, has a period
of 10.66 years with p = 0.97, while the second has p = 0.92 and a period of
just under three years. If one uses the monthly series, from 1982/01 to 2001/07,
only the same short term cycle can be extracted; Caputo (2001) argues that
this cycle has a meaningful interpretation. As can be seen from figure 1, the
HP filter (applied to seasonally adjusted data) is unsatisfactory as it yields a
confusing mixture of short and long term cycles together with the noise from the
irregular. The Baxter-King filter would be of little help as it normally focuses
on frequencies between six and thirty-two quarters.

Figure 5 shows the five components into which the series is decomposed. Of
particular note is the fact that the economy is near the trough of the longer
term cycle. Figure 6 shows forecasts of the series, with one RMSE on either

2The last two quarters arc cstimates

2000
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Figure 6: Forecasts for Chile real GDP

side, together with extrapolations of the two cycles.

The series has a seasonal component, which shows marked changes over the
period; the graph of individual seasons is particularly informative. The reasons
behind these changes in seasonality will not be investigated further here, though
it is interesting to ponder on the effect of trying to tackle such movements
with a non-model-based seasonal adjustment procedure such as the U.S. Census
Bureau’s X-12.

3 Multivariate models and balanced growth

More precise information on the target series can sometimes be obtained by
bringing in information in a related series. This is done by constructing a
bivariate model. For example, the cycle in investment is quite marked and so
it may help in giving a better estimate of the cycle in GDP. Several auxiliary
series may be used in a multivariate systems, but the principle remains the same.
The ideas of co-integration, common trends and balanced growth are directly
relevant to the potential gains in efficiency.

3.1 Bivariate structural time series models

The bivariate local level model is

Yiz = Myt e, M1z = Mig—1 T Mgs t=1,..,T, (13)
Yar = Moy T €2 Hog = Hop_1 T+ 72

10



The covariance matrix of (1);;,7s;) may be written
2
- O1n Pp013n02y
y =
pn01U0277 0277

where p, is the correlation. More generally,

yit:uit+¢it+6it7 2.2172, tzl,...,T7 (14)

where ;; is a local linear trend and 1, is a cycle as defined earlier.

The similar cycle model, introduced by Harvey and Koopman (1997), allows
the disturbances driving the cycles to be correlated across the series. However,
the damping factor and the frequency, p and ., are the same in all series, so the
cycles in the different series have similar properties; in particular their move-
ments are centred around the same period. This seems eminently reasonable if
the cyclical movements all arise from a similar source such as an underlying busi-
ness cycle. Furthermore, the restriction means that it is often easier to separate
out trend and cycle movements when several series are jointly estimated.

3.2 Stability and balanced growth

In the balanced growth model, the same trend, p,, appears in the two series.
Thus the bivariate local level model becomes

Yir = M+ a+ e, t=1,..,T, (15)
Yor = gt €2,

In terms of (13), pn =1 and 01, = 02,y. A corresponding property holds for the
slope disturbance in the local linear trend.

The series have a stable relationship over time in that they are evolving in
such a way that their difference y; — y9; is stationary. In other words the series
are co-integrated with a known co-integrating vector. A stability test of the null
hypothesis if a stable relationship can be carried out using a stationarity test,
such as the one proposed by Nyblom and Mikeldinen (1983). Under the null
hypothesis, the limiting distribution of the test statistic is Cramér-von Mises.
The test can be modified so as to include a nonparametric correction for serial
correlation as Kwiatkowski et al (1992). Parametric adjustments can also be
made. If there are no constant term in (15), that is = 0, the series contain an
identical common trend. The test statistic is then constructed without the mean
subtracted and its asymptotic distribution under the null is then comes from
a different member of the Cramér-von Mises family, see Harvey and Carvalho
(2001).

The common trend restriction is a strong one, but it can lead to considerable
gains in the efficiency with which components in the target series are estimated.
An analysis can be found in Harvey and Chung (2000) in connection with the es-
timation of the underlying change in the level of unemployment. Another point
of interest is that the paper demonstrates how state space methods can be used

11



to combine information produced at different sampling intervals. Thus, in the
case of the UK, quarterly survey data is combined with monthly claimant count
figures to produce a better estimate of the underlying change in unemployment.

3.3 Japan and the U.S.

Models with smooth trends were fitted to the logarithms of quarterly, season-
ally adjusted, data on real GDP per capita in the US and Japan over the period
1961:1 to 2000:1.The data were obtained from the OECD Main Economic Indi-
cators and the population series were constructed as quarterly moving averages
of annual figures spread over all four quarters. The series are in 1990 US dollars;
the choice of conversion date of course affects the gap between the series, but is
otherwise irrelevant.

Fitting a univariate model to Japan does not yield a satisfactory cycle®. By
contrast, it becomes much more like the US cycle in the similar cycle bivariate
model. Table 1 shows the estimates of the parameters, obtained using STAMP,
together with the standard error (SE) for each equation and the Box-Ljung
statistic, Q(P), based on the first P residual autocorrelations. The correlations
between the slope, cycle and irregular disturbances were -0.143, 0.274 and 1
respectively. The period of 27.07 quarters corresponds to 6.77 years.

TABLE 1 Bivariate M odel
Hyperparameters Japan Us
Trend oe(x1073) 1.638 0.907
Cycle o.(x1073) 7177 7.642
oy (x1073) 1722 1834
p 0.91 0.91
Period (2m/X;) 27.07 27.07
Irregular o.(x1073) 4.380 0.174
Fit log L
SE(x10-3) 11.144  9.058
Diagnostics Q(11) 11.766  14.719

Figure 7 are for the bivariate model. Their presence means that the trends
are quite smooth. However, it is clear that the forecasts will diverge as there is
virtually no growth in Japan at the end of the series. This issue is taken up in
section 5 where a convergence model is fitted.

4 Models of Converging Economies

Two countries have converged if the difference between them is stable. If initial
conditions are unimportant, stability implies that the difference between the
series, v, is stationary for virtually the whole period. If the mean of y; is zero
the countries are in a state of absolute convergence. If the mean, «, is not zero
we have conditional or relative convergence. This is a possibility if we entertain

3The cycle is almost nonstationary, with p = 0.998, while the period is only 2.97 years.
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Figure 7: Trends and cycles from a bivariate structural time series model

the existence of increasing costs of convergence and possible barriers to absolute
convergence; see, for example, Bernard and Durlauf (1996). The limiting growth
paths for the regions are then parallel, differing by «.

Suppose now that we wish to model the process of convergence. If two
economies are converging, the model for y; will have the property that forecasts
converge to a. The models set up below are able to satisfy this condition and
they become stationary for economies which have converged.

4.1 Stylised facts

Suppose we wish to look at stylised facts without positing a particular mecha-
nism for convergence. The difference, y;,is assumed to be made up of a stochastic
trend or level, p,, together with other components such as cycle and irregular
as in (4). The smoothed estimates of the trend describe the time path reflecting
the long-run difference between the two economies. Simply plotting this time
path may be very informative. For example, figure 8 shows the difference in
the trend of per capita GDP between the USA and Japan obtained by fitting a
smooth trend, that is with (r% set to zero, plus cycle model using the STAMP
package of Koopman et al (2000). We can go further and carry out tests of
whether the gap between the two economies has narrowed significantly and/or
whether the gap is zero, that is 1 = 0, indicating that absolute convergence has
taken place. The result can be seen from the graph where a confidence interval
of two RMSE’s is shown. The level in the trend at the end of the sample is
0.230 with a RMSE of 0.032 giving a ‘t — value’ of 7.10. Although Japan came
close to catching up with the USA in the early 1990’s the movement since then
has been in the opposite direction.

13
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4.2 Error correction mechanisms

The use of non-stationary components to model convergence is apparently con-
tradictory since once convergence has taken place the series are stationary. It
is now shown how an error correction mechanism (ECM) can be used to cap-
ture convergence dynamics instead of approximating the process by a stochastic
trend.

The simplest model is

Yt :Oé+/lt, 122 :¢Nt71 +77t7 tzl:"'aT: (16)

with a fixed initial value, py. The crucial point is that this is not constructed
as a model of a stable contrast but rather as a model of transitional dynamics
in a situation where the initial value is some way from zero. If ¢ < 1, the
gap tends to narrow over time. It makes little sense to have ¢ negative and so
we may assume that ¢ > 0. Of course when the initial conditions have worked
themselves out, the series becomes stationary. The equivalent error correction
(EC) representation for p, is

Ayt = ((b_l)(yt*l _a)+nt :6+(¢_1)yt*1 +77t7 t:27"'7Ta (17)

where § = a(1 — ¢). This can be interpreted as saying that, for data in loga-
rithms, the expected growth rate in the current period is a negative fraction of
the gap between the two economies after allowing for the permanent difference,
«a. For example, with ¢ = 0.98 and a ratio of 1.65 in income per head, which
corresponds to a gap in logarithms of 0.5, the difference in growth rates is 1%.
Some idea of what different values of ¢ imply about the closing of the gap can
be obtained by noting that the 7—step ahead forecast from an AR(1) model
is ¢” times the current value. Thus ¢" is the fraction of the gap expected to
remain after 7 time periods.

14



Written in the EC form, (17), the model accords with the notion of conver-
gence in the cross-sectional literature, as expounded by Barro and Sala-i-Martin
(1992) and others, except that there the growth rate is taken to be a linear func-
tion of the initial value, giving a model which is internally inconsistent over time;
see Evans and Karras (1996, p 253).

The ECM may be generalised to allow for richer dynamics. Within an au-
toregressive framework, (17) may be augmented with lagged values of differenced
observations. Fitting such a model to the US-Japan series without the constant
gave

Ay: = —0.0086y;_1 + 0.127Ay;_1 + 0.083Ay;_5 + 0.136Ay;_5 + 0.128 Ay,

The equation standard error, denoted SE ( equal to 7, here ) is 0.0126 and
Q(11), the Box-Ljung statistic based on 11 residual autocorrelations, is 7.29;
under the null hypothesis of correct specification, the asymptotic distribution
of this statistic is x2. With a constant added to the right hand side

Ay, = 00029 —0.0156y,_1 +0.118Ay,—y +0.076Ay_y +0.133Ay,_s  +0.127Ay,_y,
(0.0019)  (0.0056) (0.081) (0.083) (0.083) (0.083)

with SE = 0.0125 and Q(11) = 6.84. The estimate of ¢ has fallen from 0.991
to 0.984. The ‘t—statistic’ of the constant is 1.54 and the implied value of « is
0.187. None of the lagged differences is statistically significant at the 5% level.
With no lags, the estimate of ¢ was 0.979 and the implied value of o was 0.143.
However, there was evidence of residual serial correlation with Q(11) = 25.14.

4.3 Unobserved components and smooth convergence

The UC approach is to add cycle and irregular components to the error correc-
tion mechanism. This avoids confounding the transitional dynamics of conver-
gence with short-term steady-state dynamics. Thus

yt:a+ut+wt+6t7 lu’t:(rzs:ut—l +77t7 t:177T (18)

Estimation is effected by using the state space form with a diffuse prior for p, (
as though it were nonstationary). Although « is regarded as a fixed parameter,
it can also be estimated by including it in the state vector with a diffuse prior.
Care must be taken as a is not identified when ¢ is unity; it is advisable to
carry out numerical optimisation with respect to a transformed variable, such
as —log(1—¢), which lies between 0 and co, thereby keeping ¢ strictly less than
one. The appendix explores ML estimation for the simple model in (16). A
likelihood ratio test of the null hypothesis that a = 0 can be carried out, but in
order to ensure comparability of likelihood the one for the unrestricted model
must be calculated by treating « as being fixed.
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Smoother transitional dynamics can be achieved by specifying u, in (18) as

Ky = (rzslut—l +67&—17 t=1,..,T, (19)

/81‘, = ¢6t71 + Ct:
If we write the model with what might be termed a second-order ECM, that is
Apy = (d—Dpy_y + By, t=1,...T, (20)

Aﬂt = (@5 - 1)5t—1 + Cta

it can be seen that there is a convergence mechanism operating on both the
gap in the level and the gap in the growth rate. Alternatively this second-order
ECM can be expressed as

Apy=—(1=)Pp 1+ 6°Apy 4+,

showing that the underlying change depends not only on the gap but also on
the change in the previous time period. This means that changes take place
more slowly. Note that the model is a special case of the second-order cycle,
(7), obtained by setting A, = 0.

The model is equivalent to an AR(2) process with both roots equal to ¢.
Obviously the condition for stationarity is |¢| < 1. With a value of ¢ close to one,
1, will behave in a similar way to the smooth trend shown in figure 8. On the
other hand, the first-order ECM behaves rather like a random walk specification
and tracks the observations closely, leaving little scope for the addition of short-
term non-transitional components. The ACF of the second-order model is

p(r) =[1+{(1=¢)/(1+¢)}7l¢7,

so the decay is slower than in an AR(1) with the same value of ¢. The k—step
ahead forecast function, standardised by dividing by the current value of the

gap, is
flk) =1+ (1=gNk)¢*,  k=0,1,2,..

where A = p,_1/p,. If X = 1/¢, the expected convergence path is the same
as in the first order model. Some notion of the average convergence behaviour
is obtained by setting A so that f(k) is the same as the ACF; this implies
A =2/(1 + ¢). However, the most interesting aspect of the second-order model
is that if the convergence process stalls sufficiently, the gap can be expected to
widen in the short run.

Estimating the first-order UC model, (18), resulted in relatively small values
for the cycle and irregular variances. The same thing happened when a random
walk trend was fitted in the preliminary model, instead of a smooth trend. The
dominance of the transitional component over the cycle and irregular means
that the model is not too far from a simple ECM as in (17). The convergence
parameter, ¢, is 0.984 for absolute convergence and 0.977 when « is estimated.
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Figure 9: Forecasts for second-order convergence model

The estimate of « is 0.134, but the LR statistic is 3.33 which is not significant
against a x? distribution.

The second-order convergence model, (20), fared much better insofar as it
was able to separate out a cyclical component. The results are shown in table
2. The smoothed path of y, is very similar to that shown in figure 8. Figure
9 shows the predictions for the series, y;, over a twenty year horizon. These
predictions show some influence from the cycle. The parameters obtained when
the smooth trend was fitted to give figure 8 are shown in the last column. The
estimate of «, 0.180, now has a statistically significant LR statistic of 6.46.

TABLE 2 US — Japan
Hyperparameters  Absolute Relative  Trend
Convergence oe(x1073) 1.933 1.286 1.244
o 0.963 0.943 1 (fixed)
Cycle 0, (x1073) 11.33 11.51 11.25
Pe 0.94 0.96 0.95
Period (2m/Ac) 50.51 50.14 50.91
Irregular o.(x1073) 0.014 0.071 1.54
Gap e? 0 (fixed) 0.180 -
Fit log L 454.679 457909  451.94
SE(x103) 12.7 12.4 12.8
Diagnostics Q(11) 11.54 10.85 9.37

It was argued in section 2 that the higher order cycles of (8) may be more
clearly defined in that they cut out more high frequencies. Such cycles could
also be used in (18), although they may be more effective in the bivariate models
to be described in the next section.
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5 Bivariate models for the levels of converging
economies

The previous section devised a mechanism for capturing convergence between
two economies. This section explores how this mechanism can be incorporated
into a bivariate model for the levels of converging economies. The aim is to be
able to extract trend and convergence components and to make forecasts which
take convergence to a common trend into account. The extension to multivariate
modeling is not covered but a discussion can be found in Harvey and Carvalho
(2001).

5.1 Bivariate error correction mechanism

A bivariate model for two converging economies can be set up as

Ayir = d1(Y2,e-1 — Y1,6-1) + 01y (21)
Aysy = Po(y1,e-1 —v2,6-1) + 712
where y;; denotes, for example, per capita output for economy ¢ at time t.
Absolute convergence and no growth is initially assumed for simplicity. Thus
the growth rate of the first economy depends on the gap between its level and

that of the second economy and vice versa.
The model corresponds to the first-order vector autoregression

yie = (I—d)yre—1+ Pry2—1 + 10y (22)
yor = oy —1 + (1 — Po)yas—1 + g

The roots of the transition matrix

C[1-¢ &
‘b‘[(ﬁz 1—@]

are one and ¢; + ¢, — 1. The condition for the second root to lie inside the unit
circle is 0 < ¢ + ¢, < 2. This being the case, the long-run forecasts converge
to the same value since

klij)loq)k_[% 1—%} (23)

where ¢ = ¢y /(b + ¢5). This is a standard result from the theory of Markov
chains.

The model (21) can be premultiplied by a matrix with unit Jacobian thereby
transforming it to

Y1t — Y2t = ¢(y1,t—1 - y2,t—1) N1 — Mot

Yot = U1 T Met
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where ¢ =1 — (¢4 + ¢5) and
Tgr = Py1e + (1 — @)yar; (24)

the disturbance 7, is defined similarly. The first equation corresponds to the
univariate convergence equation of (17) since it is an ECM for the difference
Y1t — Y2¢- In the second equation the weighted sum follows a random walk and,
as is clear from (23), this is the growth path to which the two economies are
converging.

Parameterising the model in terms of ¢ and ¢ has some attractions. The
stability condition is |¢| < 1, though it makes little sense to have ¢ negative.
It seems desirable (though not essential for stability) to have 0 < ¢ < 1. This
condition implies that ¢, and ¢, are both greater than or equal to zero. Note
that if ¢» = 1, then ¢ is not identified.

Benchmark model Setting ¢, = 0 (or ¢; = 0) implies that country one
(two) converges to country two (one), the benchmark country. Provided ¢,
is positive, ¢, = 0 does not imply a second unit root and so a test of this
hypothesis can be based on standard distribution theory. Note that y; ;1 —
Y2,+—1 s stationary (the variables are co-integrated) in (21).

Trend and constant The model may be extended so as to include a com-
mon deterministic trend and a constant « to allow for relative convergence.
Thus

yie = a+Ft+py (25)
yor = Bt+ po,
where
Apyy = (o1 — H14—1) + M (26)
Apgy = Polpiy 41 — Moy 1) + M2

The gap, Yo+ — Y1,+,1s as in (16), except that the sign of « is different (this is
more convenient for what follows). Substituting for p;, and uo, gives

Ay = B—dra+o1(y2,0-1 — Y1,e-1) + 11y (27)
Ay = B+ pga+ do(Y1,—1 — Y2,0—1) + M2t

Note that the weighted average, (24), is a random walk with a drift of 5 and
that the gap, y2+ — y1,4,1s as in (17).
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5.2 Autoregressive models

The dynamics in (27) may be extended by adding lagged differences to the right
hand side of the equations and re-arranging to give

P P
Ay = 61— (W1 —v2u-1) T O Ay + > o, Atasr + 11
r=1 r=1
p . p .
Ayor = St do(Urim1 —y2m1) + O b, Ayti—r + 3 o, At v + 1z
r=1 r=1

where 6; = B(1— ?:1( jlj +¢sz))+(fl)i¢ia, i = 1,2. The parameters a and (3
can be identified from the estimated constants once estimates of ¢, and ¢, have
been obtained. The model belongs to the vector error correction mechanism
(VECM) class. The co-integrating vector is known and ML estimation can be
carried out by OLS since the regressors are the same in each equation. If we
were to set « to zero then the restriction that the slopes are the same would
need to be enforced.

In the benchmark model, ¢, is set to zero in one equation and so (3 is iden-
tified from that equation. Using the estimate of 3, an estimate of a parameter
can extracted from the estimated constant in the other equation. There should,
in theory, be gains from SURE estimation, although in practice it seems to make
little difference here.

A bivariate model was estimated for the US and Japan with p = 4. For Japan
we find ¢; = 0.0184 while for the US, ¢, = —0.0046. The model is stable, but
the negative sign for 52 suggests that it should be set to zero, as in a benchmark
model. Indeed the ‘¢—statistic’ is only 0.937; recall that this is asymptotically
standard normal provided ¢ is positive. The benchmark model gave an estimate
of ¢; equal to 0.0176, corresponding to ¢ = 0.9824. From the estimates of the
constants, o and [ are estimated as 0.140 and 0.0062 respectively. The estimate
of (8 corresponds to an annual growth rate of 2.6%. Recall that the univariate
estimate of a from modelling the difference as an autoregression was 0.143.

5.3 Unobserved components

Embedding the ECM within a UC model by adding a cycle and an irregular to
(25) gives

yie = a+fBl+p,+ten (28)
Yoo, = Pt+ pg + Yo +en
If ¢, and 1y, are modelled as similar cycles, subtracting yq; from yo; in (28)
gives a univariate model of the form (18).

The vector (pys, ptg;)’ may be initialised with a diffuse prior in the SSF.
The parameters o and  may also be included in the state and initialised with
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a diffuse prior, though it order to compare likelihoods they should be treated
as fixed. Note that if ¢; = ¢, = 0, then there is no convergence. The pure
trend model of section 2 is then obtained provided « is set to zero. However, a
balanced growth model is obtained if 7, ; and 7, , are perfectly correlated with
the same variance.

A smooth stochastic trend can replace the random walk with common drift.
This is most natural if a second-order model for the convergence dynamics,
generalising (20), is adopted. We then have

yir = a+ pgy + ¥y + e, (29)
Yor = Hop T 1/121, + €at,

pe = (1= @)uy g + P11 + B14—1, (30)
Bie = (1—01)B141+ D181+ it
poy = (L= o)itay 1+ bty 1+ Bay 1,

Bay = (1—¢2)Bay 1+ Pafr 1+ Cay
Again, if ¢, = ¢ = 0, then there is no convergence but a balanced growth model
is obtained if ¢, , and (,, are perfectly correlated with the same variance.

The model can be re-arranged so as to have two convergence components
defined in terms of deviations from the common trend, that is uj-t = g — Pt

and ﬁj‘,t = Bit — Bye»i = 1,2, where i, is

Pot = gy + (1 — P) gy (31)

and similarly for Baﬁt' Then

yie = ol = @)+l + gy + vy + e, (32)
Y2r = —5@ + [_5/(1 - E)WL T gy T Yoy + €21,
with
,LLLE = QSNL—l + 51,7&—17
/BL = d)ﬁi,tfl + d,t:
Pot = M1 T Boi1s
Bot = Boi—1tCous

The second convergence component can be obtained from the first since E/LL +
(1- 5)#51, = 0. Both economies converge to the growth path of the common
trend, except insofar as the first economy is at a constant level, «, above (or
below) the second one. Convergence is at the same rate, ¢.

If the second economy is taken to be a benchmark then ¢, = 0 in the last
two equations of (30). In this case po, is a smooth trend. Setting up the model
as in (32) with ¢ = 0, focuses attention on the transitional gap between the
two economies as uL = 4y — Moy and ﬁh = 1+ — Ba¢ The implied model for

Y1 — yau is as in (18) with p, replaced by u!,.
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5.4 UC Model for Japan and US

The smooth stochastic trends model fitted in sub-section 3.3 gives an indication
of the kind of results which might be expected from a convergence model and
can provide starting values for some of the parameters. As already noted, the
model is a limiting case which results when ¢; = ¢, =0 and a = 0.

Japan Japan
TABLE 3  Hyperparameters Absolute US Relative US
Convergence o¢(x1073) 1.466 0.989 1.399 1.007
0.969 0.958
Cycle 7 (x1073) 6932 7464 9413  7.681
p 0.903 0.892
Period(2m/X;) 24.77 28.67
Irregular o.(x1073) 4.482 0.521 0 0
Gap Q@ 0(fized) (000117;;
Fit log L 988.050 988.766
SE(x1073) 8.9 1.06 8.9 10.6
Diagnostics Q(11) 12.37 14.77 12.37 14.77

The results of fitting the bivariate convergence model are shown in table 3.
The model was estimated with the US taken as the benchmark, with « set to
zero and « unrestricted. When the more general model with no restrictions on
¢, and ¢, was estimated it collapsed to the benchmark model. This is consistent
with what was found when the bivariate autoregressive model was fitted.

The main features are:

i) The cycle parameters are similar to those obtained with the bivariate pure
trend model reported in table 1 and the fitted cycles seem to provide a more
satisfactory decomposition than was obtained for the univariate model for the
difference.

ii) The estimate of « is only slightly smaller than the one obtained in the
univariate gap model. Again there is clear evidence of relative convergence,
though the LR statistic is only 1.432.

iii) The estimated convergence component, ,LLL, assigned to Japan, is very
similar to the smoothed gap shown in figure 8.

iv) Figure 10 shows the forecasts for the two countries. It can be seen that
they converge to the same growth path, p,, but at a constant distance , «, apart.
A value of & = —0.174 implies that the level of Japanese per capita GDP is
about 16% below that of the US.

5.5 Chile and US

The difference between Chilean and US GDP is characterised by an enormous
swing in favour of the US during the 60s and 70s followed by an equally strong
movement in favour of Chile. This makes modelling any kind of convergence
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Figure 10:

process extremely difficult. The difficulty is compounded by the fact that the
cyclical processes in the two countries have little common. In the case of Chile,
the structural time series model for quarterly per capita GDP is virtually the
same as the one fitted to GDP in section 2. Extracting a trend and then
subtracting from the US trend yields the pattern shown in figure 11. Both
series are in 1986 US dollars. The forecasts are simply extrapolations made
using the smooth trend model?

6 Conclusion

This article has described an extension to the class of structural time series
models which allows more clearly defined cycles to be extracted from economic
time series. This was illustrated with US GDP. The attraction of this model-
based approach is that the filters implicitly defined by the model are consistent
with each other and with the data. Furthermore they automatically adapt to
the ends of the sample and, if desired, root mean square errors can be calculated.
The models can also be used to gain insight into the more ad hoc filters used
in business cycle analysis, indicating when it might be appropriate to use them
and when they can lead to serious distortions of the kind which can arise for
the HP filter and band pass filters. The preferred model for Chilean GDP has
two cycles, both of which have a direct and meaningful interpretation in terms

of economic activity. This decomposition could not have been achieved by an
ad hoc filter.

1Fitting a smooth trend model results in only the slope disturbance being non-zero. This
is not surprising since the series is constructed from two estimated smooth trends.
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Figure 11: Difference in underlying levels of US and Chilean real per capita
GDP (logarithms)

Bivariate structural time series models allow the information on another
series to be taken into account in order to extract better information from
a target series. Joint modelling of different countries may also be useful. A
bivariate model of Japanese and US GDP was shown to give a more informative
decomposition of Japanese GDP. The model used was subsequently developed
to include a convergence mechanism. This yielded more coherent forecasts for
the levels of GDP in the two countries.
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