Monetary Policy and Dutch Disease: The Case of Sticky Prices and Wages.

Constantino Hevia Di Tella Juan Pablo Nicolini Minneapolis Fed and Di Tella

October 2014

- Inflation Targeting regimes have been extremely successful.
- Inflation very close to target and very low volatility.
- Even during a period of large foreign shocks.
- Implication: exchange rate freely floats.
- Highly volatile nominal (and real) exchange rates. Correlated with commodity price. DD.

HP-Filtered Exchange Rate and Commodity Price Data shown as percentage deviation from trend

Note: Series are first logged and then HP-filtered with a smoothing parameter of 14400

	In US dollars		In H	In Euros	
	Std. Deviation	Correlation	Std. Deviation	Correlation	
Chile					
Exchange Rate	0.0506	0 4720	0.0580	0 5122	
Price of Copper	0.1241	-0.4729	0.1266	-0.3132	
Norway					
Exchange Rate	0.0559	0 5/138	0.0316	0 4332	
Price of Oil	0.1459	-0.5430	0.1374	-0.4332	

Summary Statistics Exchange Rate and Commodity Price

Note: Data is first logged and then HP-filtered with a smoothing parameter of 14400

- Is this volatility inefficiently high?
- Chile intervened in 2008 and 2011. Justification: Copper Price too high, exchange rate too low.
- In a previous paper (Hevia and Nicolini (2013)) we studied a model of a SOE economy that exports commodities.
- The model can reproduce those volatilities and those correlations.
- Price stability is optimal for standard isoelastic preferences even if fiscal policy is unresponsive to shocks.

- The theoretical result fails if
 - Financial frictions (HN, work in progress).
 - Incomplete markets (Catao and Chang (2013))
 - Externalities in manufacturing (Hevia, Neumeyer, Nicolini, work in progress).
 - Add sticky wages (This paper)

The Model

- Discrete time, stochastic, cashless economy.
- Monetary policy.
- Fiscal policy: payroll tax on the wage bill paid by firms, τ_t^p .
- Complete markets.

Preferences:

$$E_{\mathbf{0}}\sum_{t=\mathbf{0}}^{\infty}\beta^{t}U(C_{t},L_{t}),$$

$$L_t = 1 - \int_0^1 n_{ht} dh.$$

$$N_t = \left[\int_0^1 n_{ht} \frac{\theta^w - 1}{\theta^w} dh \right]^{\frac{\theta^w}{\theta^w - 1}}, \ \theta^w > 1.$$

• The demand for n_{ht} is

$$n_{ht} = \left(\frac{w_{ht}}{W_t}\right)^{-\theta^w} N_t,$$

• Wages are set as in Calvo (1983), the probability of being able to revise the wage $1 - \alpha^w$.

Final good firms

$$Y_t^h = \left[\int_0^1 y_{it}^{\frac{\theta^p - 1}{\theta^p}} di \right]^{\frac{\theta^p}{\theta^p - 1}}, \theta^p > 1$$

• Cost minimization

$$y_{it} = Y_t^h \left(\frac{P_{it}^h}{P_t^h}\right)^{-\theta^p}$$

• Prices are set as in Calvo (1983), $1 - \alpha^p$ is the probability to change prices.

Commodities sector

• Commodity z is imported, x is produced

$$X_t = A_t \left(n_t^x \right)^{\rho} E^{1-\rho},$$

• Law of one price

$$P_t^x = S_t P_t^{x*}, \quad P_t^z = S_t P_t^{z*}.$$

• Profit maximization

$$\rho S_t P_t^{x*} A_t (n_t^x)^{\rho - 1} = W_t (1 + \tau_t^p).$$

Intermediate good firms

• Technology is Cobb-Douglas, so

$$MC_t = \frac{(P_t^x)^{\eta_1} (P_t^z)^{\eta_2} W_t^{\eta_3}}{Z_t}.$$

• Using the solution for factor prices

$$MC_{t} = S_{t} \frac{(P_{t}^{x*})^{\eta_{1}+\eta_{3}} (P_{t}^{z*})^{\eta_{2}} A_{t}^{\eta_{3}} \left(\rho \left(n_{t}^{x}\right)^{\rho-1}\right)^{\eta_{3}}}{Z_{t}}.$$

• Note the exponent on P_t^{x*} .

Fiscal and monetary policies

- A flexible pair S_t, τ_t^p can jointly stabilize P_t and W_t .
- Domestic prices are proportional to marginal cost so $P_t = P$ implies

$$MC = S_t \frac{(P_t^{x*})^{1-\eta_2} (P_t^{z*})^{\eta_2} (\rho A_t (n_t^x)^{\rho-1})^{\eta_3}}{Z_t},$$

so the S_t moves to absorb shocks.

• Delivers the negative correlation between S_t and P_t^{x*} .

• Solve for the nominal exchange rate, and use in the wage condition

$$\rho^{1-\eta_3} MC\left(\frac{P_t^{x*}}{P_t^{z*}}\right)^{\eta_2} Z_t \left[A_t \left(n_t^x\right)^{(\rho-1)}\right]^{(1-\eta_3)} = W_t (1+\tau_t^p)$$

- So, to stabilize wages, the payroll tax must move.
- If fiscal policy cannot be jointly used with monetary policy, there is a trade off.
- The numerical analysis follows.

Numerical analysis.

- We completely abstract from implementation. Policy can set a nominal variable.
- We first consider a "fear of floating" regime, so

 $d\ln S_t = -vd\ln MC_t^*.$

• v = 1, implies pure inflation targeting, while v = 0 implies a peg.

- We use the quadratic approximation methods of Schmitt-Grohe and Uribe (2004).
- We estimated an autoregressive process for P_t^{x*} and shut down all other shocks.
- We set $\alpha^p = 0.5$, $\alpha^w = 0.85$. (Christiano, Eichenbaum and Rebelo (2011)).
- Most of the other parameter values are from Neumeyer-Perri (used in Hevia and Nicolini (2013)).

Parameter	Description	Value
β	Discount factor (utility)	0.987
σ	Risk aversion (utility)	2
S	Parameter leisure (utility)	1
ψ	Exponent leisure (utility)	2
ϕ	Ela. of subst. h and f (utility)	2
$\overline{\omega}$	Share foreign good (utility)	0.2
ρ	Share of labor in commodities	0.1
η_1	Share home commodity intermediates	0.1
η_2	Share foreign commodity intermediates	0.4
η_3	Share of labor intermediates	0.6
α^p	Calvo parameter intermediates	0.5
α^w	Calvo parameter wages	0.85
θ^p	Ela. subst. intermediate varieties	6
θ^w	Ela. subst. labor types	6
γ	Elasticity foreign demand home goods	1.5
K^*	Parameter foreign demand home goods	0.1
ν	Policy parameter	Varies across experiments
ρ^x	Coefficient on lagged value home commodity price	0.95
η^{x}	Standard deviation shock to commodity price	0.135

Table X. Baseline parameters

Exchange Rate Rule: Welfare gain over peg (v=0) for α^{w} =0.85 and α^{p} =0.5

An alternative policy rule.

- The policy trade off implied by the previous rule may reflect the one implied by dirty floating regimes.
- In the theory section we showed how a payroll tax can be used together with the nominal exchange rate to stabilize both prices and wages.
- Absent τ_t^p , S_t can be used to stabilize either of them, but not both.
- A more natural trade off is stabilizing prices versus stabilizing nominal wages.

• Thus, let

$$w_t^h \equiv \frac{W_t}{P_t^h}$$

• Then, we can define a policy where

$$d\ln W_t = \upsilon d\ln w_t^h.$$

• Thus, if v = 0, nominal wages are fully stabilized, while v = 1 implies full price stability.

Wage Rule: Welfare gain over policyv=0 for α^w =0.85 and α^p =0.5

Wage Rule: Welfare gain over policyv=0 for α^{w} =0.85 and α^{p} =0.85

Conclusions: Presence of frictions on both prices and wages

- does not justify stabilizing the nominal exchange rate.
- Potential gains of optimizing the trade off between price and wage stability are low and not robust.