
 

 

 

 

 

Determinacy and Learnability in Monetary Policy Analysis: Additional Results 

 

 

Bennett T. McCallum 

 

Carnegie Mellon University 

and  

National Bureau of Economic Research 

 

 

 

Preliminary  

November 8, 2007 

 

 

 

This paper is being prepared for the 2007 Annual Conference of the Central Bank of Chile, to be 
held in Santiago on November 15-16, 2007.  I am indebted to Riccardo DiCecio and George 
Evans for helpful discussions on the topic of this paper.



 1

1. Introduction 
 
 It is almost unnecessary to begin by emphasizing that recent research in monetary policy 

analysis has featured a great deal of work concerning conditions for determinacy—i.e., existence 

of a unique dynamically stable rational expectations equilibrium—under various specifications 

of policy behavior.1  Indeed, there are a number of papers in which determinacy is the only 

criterion for a desirable monetary policy regime that is explicitly mentioned.2 

 By contrast, I have argued in a recent publications (McCallum, 2003a, 2007) that least-

squares (LS) learnability is a compelling necessary condition for a rational expectations (RE) 

equilibrium to be considered plausible, since individuals must somehow learn about the exact 

nature of an economy from data generated by that economy itself, while the LS learning process 

is biased toward a finding of learnability.  A similar position has also been expressed by Bullard 

(2006, p. 2004).  From such a position it follows that in conditions in which there is more than 

one dynamically stable RE solution—i.e., indeterminacy—there may still be only one RE 

solution that is economically relevant, if the others are not LS learnable.  In this sense, LS 

learnability is arguably a more important criterion than determinacy.   

 Substantively, my 2007 paper demonstrates that, in a very wide class of linear RE models, 

determinacy implies LS learnability (but not the converse) when individuals have knowledge of 

current conditions available for use in the learning process.  This strong result does not pertain, 

however, if individuals have available, in the learning process, only information regarding 

previous values of endogenous variables.3  One task of the present paper, accordingly, is to 

investigate the situation that obtains when only lagged information is available.  In addition, the 

                                                 
1 Prominent examples include Benhabib, et. al. (2001), Clarida, Gali, and Gertler (1999), Rotemberg and Woodford 
(1997), Sims (1994), and Woodford (2003).  Discussion in a leading textbook is provided by Walsh (2003). 
2 See, for example, Carlstrom and Fuerst (2005). 
3 Another limitation of the analysis of McCallum (2007) is that it considers only solutions of a form that excludes 
“resonant frequency sunspot” solutions.  That limitation, which is maintained here, is discussed briefly in Section 6. 
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paper will explore results that pertain when a further criterion of model plausibility, provisionally 

termed “well-formulated,” characterizes the model’s structure.  In particular, it is shown that 

models that are well formulated, in the defined sense, invariably possess the property of E-

stability and hence LS learnability if current-period information is available in the learning 

process, even if determinacy does not prevail.  The situation in the case of lagged information is 

less favorable—i.e., learnability is assured only in special cases.      

2. Model and Determinacy 

 It will be useful to begin with a summary of the formulation and results developed in 

McCallum (2007).  Throughout we will work with a model of the form 

(1) yt = A Etyt+1 + C yt-1 + D ut, 

where yt is a m×1 vector of endogenous variables, A and C are m×m matrices of real numbers, D 

is m×n, and ut is a n×1 vector of exogenous variables generated by a dynamically stable process 

(2) ut = R ut-1 + εt,  

with εt a white noise vector.  It will not be assumed, even initially, that A is invertible.  This 

specification is useful in part because it is the one utilized in Section 10.3 of Evans and 

Honkapohja (2001), for which E-stability conditions are reported on their p. 238.4  Furthermore, 

the specification is very broad; in particular, any model satisfying the formulations of King and 

Watson (1998) or Klein (2001), can be written in this form—which will accommodate any 

number of lags, expectational leads, and lags of leads.  (See Appendix A.) 

   Following McCallum (1983, 1998), we consider solutions to (1)(2) of the form 

(3) yt = Ω yt-1 + Γ ut. 

in which Ω is required to be real.  Then we have that Etyt+1 = Ω(Ωyt-1 + Γut) + ΓRut and 

                                                 
4Constant terms can be included in the equations of (1) by including an exogenous variable in ut that is a random 
walk whose innovation has variance zero.  In this case there is a borderline departure from process stability.  
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straightforward undetermined-coefficient reasoning shows that Ω and Γ must satisfy 

(4) AΩ2 − Ω + C = 0 

(5) Γ = AΩΓ + AΓR + D. 

For any given Ω, (5) yields a unique Γ generically,5 but there are many m×m matrices that solve 

(4) for Ω.  Accordingly, the following analysis centers around (4).  Since we do not assume that 

A is invertible, we write 

(6) 
A
0





 
0
I





2 Ω
 Ω 

 = 
 I
 I





   
C

  0
− 




 
 I
Ω 

 
 

, 

in which the first row reproduces the matrix quadratic (4).  Let the 2m×2m matrices on the left 

and right sides of (6) be denoted A  and C , respectively.  Then instead of focusing on the 

eigenvalues of 1A− C , which does not exist when A is singular, we instead solve for the 

(generalized) eigenvalues of the matrix pencil [ C  − λ A ], alternatively termed the (generalized) 

eigenvalues of C  with respect to A  (e.g., Uhlig (1999)).  Thus instead of diagonalizing 1A− C , 

as in Blanchard and Khan (1980), we use the Schur generalized decomposition, which serves the 

same purpose.  Specifically, the Schur generalized decomposition theorem establishes that there 

exist unitary matrices Q and Z such that Q C Z = T and Q A Z = S with T and S triangular.6  Then 

eigenvalues of the matrix pencil ( C  −λ A ) are defined as tii/sii. Some of these eigenvalues may 

be “infinite,” in the sense that some sii may equal zero.  This will be the case, indeed, whenever 

A and therefore A  are of less than full rank since then S is also singular.  All of the foregoing is 

true for any ordering of the eigenvalues and associated columns of Z (and rows of Q).  For the 

                                                 
5 Generically, I − R’⊗[(I − AΩ)-1A] will be invertible, permitting solution of (5) for vec(Γ).  Invertibility of (I − AΩ) 
is discussed below in Section 4. 
6 Provided only that there exists some λ for which det[ C  − λ A ] ≠ 0. See Klein (2000) or Golub and Van Loan 
(1996, p. 377).  Note that in McCallum (2007) the matrices A  and A are denoted A and A11, repectively. 
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present, let us focus on the arrangement that places the tii/sii in order of decreasing modulus.7  

 To begin the analysis, premultiply (6) by Q.   Since Q A  = SH and Q C  = TH, where H ≡ 

Z-1, the resulting equation can be written as  

(7) 11

21

S
S



 22

0
S





11

21

H
H


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H
H
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


2 Ω
 Ω 

   = 11

21

T
T



 22

0
T





11

21

H
H





12

22

H
H



 I

 Ω
 
 

. 

The first row of (7) reduces to 

(8) S11(H11Ω + H12)Ω = T11(H11Ω + H12). 

Then if H11 is invertible the latter can be used to solve for Ω as 

(9) Ω = −H11
-1

 H12 = −Η11
−1(−Η11Ζ12Ζ22

−1) = Ζ12Ζ22
−1, 

where the second equality comes from the upper right-hand submatrix of the identity  

HZ = I, provided that H11 is invertible, which we assume without significant loss of generality.8 9 

 As mentioned above, there are many solutions Ω to (4).  These correspond to different 

arrangements of the eigenvalues, which result in different groupings of the columns of Z and 

therefore different compositions of the submatrices Z12 and Z22.  Here, with the eigenvalues tii/sii 

arranged in order of decreasing modulus, the diagonal elements of S22 will all be non-zero 

provided that S has at least m non-zero eigenvalues, which we assume to be the case.10  Clearly, 

for any solution under consideration to be dynamically stable, the eigenvalues of Ω must be 

smaller than 1.0 in modulus.  In McCallum (2007) it is shown that  

(10) Ω = Z22S22
-1T22Z22

-1 

                                                 
7 The discussion proceeds as if none of the tii/sii equals 1.0 exactly.  If one does, the model can be adjusted, by 
multiplying some relevant coefficient by (e.g.) 0.9999.  
8 This invertibility condition, also required by King and Watson (1998) and Klein (2000), obtains except for 
degenerate special cases of (1) that can be solved by simpler methods than considered here. Note that the 
invertibility of H11 implies the invertibility of Z22, given that Z and H are unitary.   
9 Note that it is not being claimed that all solutions are of the form (9). 
10 From its structure it is obvious that A  has at least m nonzero eigenvalues so, since Q and Z are nonsingular, S 
must have rank of at least m.  This necessary condition is not sufficient for S to have at least m nonzero eigenvalues, 
however; hence the assumption.   
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so Ω has the same eigenvalues as S22
-1T22.  The latter is triangular, moreover, so the relevant 

eigenvalues are the m smallest of the 2m ratios tii/sii (given the decreasing-modulus ordering).  

For dynamic stability, the modulus of each of these ratios must then be less than 1.  [In many 

cases, some of the m smallest moduli will equal zero.] 

Let us henceforth refer to the solution under the decreasing-modulus ordering as the 

MOD solution.  Now suppose that the MOD solution is stable.  For it to be the only stable 

solution, there must be no other arrangement of the tii/sii that would result in a Ω matrix with all 

eigenvalues smaller in modulus than 1.0.  Thus each of the tii/sii for i = 1,…, m must have 

modulus greater than 1.0, some perhaps infinite.  Is there some m×m matrix whose eigenvalues 

relate cleanly to these ratios?  Yes, it is the matrix  F ≡ (I − AΩ)-1A, which appears frequently in 

the analysis of Binder and Pesaran (1995, 1997).11  Regarding this F matrix, it is shown that, for 

any ordering such that H11 is invertible, including the MOD ordering, we have the equality 

(11) H11 F H11
-1 = T11

-1S11, 

which implies that F has the same eigenvalues as T11
-1S11.  In other words, it is the case that the 

eigenvalues of F are the same, for any given arrangement of the system’s eigenvalues, as the 

inverses of the values of tii/sii for i = 1, …, m.  Under the MOD ordering these are the inverses of 

the first (largest) m of the eigenvalues of the system’s matrix pencil.  Accordingly, for solution 

(9) to be the only stable solution, all the eigenvalues of the corresponding F must be smaller than 

1.0 in modulus.  This result, stated in different ways, is well known from Binder and Pesaran 

(1995), King and Watson (1998), and Klein (2000), and is an important generalization of one 

result of Blanchard and Khan (1980) for a model with nonsingular A. 

                                                 
11 There is no general proof of invertibility of [I − AΩ], but if AΩ were by chance to have some eigenvalue exactly 
equal to 1.0, that condition could be eliminated by making some small adjustment to elements of A or C.  Also, see 
Section 5 below. 
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 Thus we have established notation for models of form (1)(2) and have reported results 

showing that the existence of a unique stable solution requires that all eigenvalues of the defined 

Ω matrix and the corresponding F must be less than 1.0 in modulus.  It will be convenient to 

express that condition as follows: all λΩ < 1 and all λF < 1. 

3. E-Stability in Two Cases 

 We now turn to conditions for learnability under two different information assumptions.  

First we will review the main results from my JEDC paper, which assumes that agents have full 

information on current values of endogenous variables during the learning process, and then we 

will go on to the second assumption, namely, that only lagged values of endogenous variables 

are known during the learning process.  The manner in which learning takes place in the Evans-

Honkapohja (E&H) analysis is as follows.  Agents are assumed to know the structure of the 

economy as specified in equations (1) and (2), in the sense that they know what variables are 

included, but do not know the numerical values of the parameters.  What they need to know, to 

form expectations, is values of the parameters of the solution equations (3).  In each period t, 

they form forecasts on the basis of least squares regression of the variables in yt-1 on previous 

values of yt-2 and any exogenous observables.   Given those regression estimates, however, 

expectations of yt+1 may be calculated assuming knowledge of yt or, alternatively, assuming that 

yt-1 is the most recent observation possessed by agents and thus usable in the forecasting process.  

In the former case, the conditions for E-stability reported by E&H (2001, p. 238) are that the 

following three matrices must have all eigenvalues with real parts less than 1.0: 

(12a) F ≡ (I − AΩ)-1A 

(12b) [(I − AΩ)-1C]’ ⊗ F 

(12c) R’ ⊗ F. 
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In the second case, however, the analogous condition (E&H, 2001, p. 245) is that the following 

matrices must have all eigenvalues with real parts less than 1.0: 

(13a) A(I + Ω) 

(13b) Ω’⊗A + I ⊗AΩ 

(13c) R’⊗A + I ⊗AΩ. 

 Except in the case that Ω = 0, which will obtain when C = 0, these conditions are not equivalent to 

those in (12). 

 It is important to note that use of the first information assumption is not inconsistent with 

a model specification in which supply and demand decisions in period t are based on 

expectations formed in the past, such as Et-1yt+j or Et-2yt+j.  It might also be mentioned 

parenthetically that conditions (12) and (13) literally pertain to the E-stability of the model (1)(2) 

under the two information assumptions, not its learnability.  Under quite broad conditions, 

however, E-stability is necessary and sufficient for LS learnability.  This near-equivalence is 

referred to by E&H as the “E-stability principle” (E&H, 1999, p. 472; 2001, p. 41).  Since E-

stability is technically easier to verify, applied analysis typically focuses on it, rather than on 

direct exploration of learnability.   

 Given the foregoing discussion, it is a simple matter to verify that if a model of form 

(1)(2) is determinate, then it satisfies conditions (12).  First, determinacy requires that all 

eigenvalues of F must have modulus less than 1.0, so their real parts must all be less than 1.0, 

thereby satisfying (12a).  Second, from equation (4) it can be seen that (I − AΩ)-1C = Ω.  

Therefore, matrix (12b) can be written as Ω’ ⊗ F.  Furthermore, it is a standard result (Magnus 

and Neudecker, 1988, p. 28) that the eigenvalues of a Kronecker product are the products of the 

eigenvalues of the relevant matrices (e.g., the eigenvalues of Ω’ ⊗ F are the products λΩλF).  
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Therefore, condition (12b) holds.  Finally, since λF < 1, condition (12c) holds provided that all 

λR ≤ 1, which we have assumed by specifying that (2) is dynamically stable. 

 Determinacy does not imply learnability, however, under the second information 

assumption.  This point, which is developed by E&H (2001, pp. 174-181), can be illustrated by 

means of a bivariate example.12  Let the yt vector in (1) include two variables, y1t and y2t, related 

by the dynamic model that follows: 

(14) 1t

2t

y
y

 
 
 

  = 
0.01

0.99
−




  
  0.01

0.01

− 

t 1t 1

t 2t 1

E y
E y

+

+

 
 
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 + 
0.02
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


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



1t 1

2t 1

y
y

−

−

 
 
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 + 
1
0





 
0
1





1t

2t

 u
 u

 
 
 

. 

Then for the MOD solution we have  

(15) AΩ =  
0.01

0.99
−




  
  0.01

0.01

− 

0.0218   1.1133
0.095   0.774

 
 − − 

  = 
0.0012
0.0225

−



  
0.0189

 1.1099
− 




, 

with eigenvalues of Ω being −0.148 and −0.604, while  F = 
0.1604

9.040

−

  
 0.00831
  0.0893





, which has 

(complex) eigenvalues 0.1249 ± 0.2717 i.  Inspection of these shows that this solution is 

determinate, and that conditions (12a) and (12b), relevant for E-stability in the case in which 

current information is available during learning, are satisfied.  Let us assume R = 0, i.e., white 

noise disturbances, for simplicity.  Then the determinate RE solution is E-stable and learnable 

under the first information assumption. 

 But for the case with only lagged information during learning, we need to consider the 

eigenvalues of the matrices shown in expressions (13).  For (13a), the matrix A(I + Ω) is 

0.0112
1.0125
−




 
  0.0089
      1.0999

− 



 whose eigenvalues are −0.0030 and 1.0918.  The last of these violates the 

                                                 
12 Its specification is close numerically to the qualitative version of the E&H example that is used in McCallum 
(2007, pp. 1386-1388).  
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condition for (13a), however, so under the lagged-information assumption the relevant E-

stability condition is not satisfied and the determinate RE equilibrium is not LS learnable. 

 This result exemplifies the fact that determinacy is not generally sufficient for learnability 

of RE solutions, although it is sufficient under the first information assumption.  Of equal 

importance, in my opinion, is the fact that determinacy is not necessary for learnability.  In 

particular, the MOD solution can be learnable, and be the only learnable solution, in cases in 

which indeterminacy prevails.  One such example is given in my JEDC paper on p. 1386.  In 

such cases, the position that learnability is necessary for a solution to be plausible would suggest 

that there may be no problem implied by the absence of determinacy.13  

4. Well-Formulated Models 

 In an unpublished working paper (McCallum, 2003b), I have suggested that there is a 

distinct and neglected property that dynamic models should possess to be considered “well-

formulated” and plausible for the purpose of economic analysis.  To begin the discussion, 

consider first the single-variable case of specification (1),  

(16) yt = aEtyt+1 + cyt-1 + ut, 

with ut = (1−ρ)η + ρut-1 + wt with 1ρ <  and wt white noise.  Thus ut is an exogenous forcing 

variable with an unconditional mean of η (assumed nonzero) and units have been chosen so that 

there is no constant term.  Applying the unconditional expectation operator to (16) yields 

(17) E yt = aEyt+1 + cEyt-1 + η. 

In this case yt will be covariance stationary, and we have 

(18) E yt = η/ [1− (a + c)]. 

But from the latter, it is clear that as a + c approaches 1.0 from above, the unconditional mean of 

                                                 
13 Disregarding, that is, “sunspot” solutions not of form (3). 
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yt approaches −∞ (assuming without loss of generality that η > 0), whereas if  

a + c approaches 1.0 from below, the unconditional mean approaches +∞.  Thus there is an 

infinite discontinuity at a + c = 1.0.  This implies that a tiny change in a + c could alter the 

average (i.e., steady state) value Eyt from an arbitrarily large positive number to an arbitrarily 

large negative number.  Such a property seems highly implausible and therefore unacceptable for 

a well-formulated model.14  The substantive problem is not eliminated, obviously, by adoption of 

the zero-measure exclusion a + c ≠ 1. 

In light of the foregoing observation, it is my contention that, to be considered well 

formulated (WF), the model at hand needs to include a restriction on its admissible parameter 

values; a restriction that rules out a + c = 1, and yet admits a large interval of values that includes 

(a, c) = (0, 0).  In the case at hand, the appropriate restriction is a + c < 1.  Of course, a + c > 1 

would serve just as well mathematically to avoid the infinite discontinuity, but it seems clear that 

a + c < 1 is vastly more appropriate from an economic perspective since it includes the values (0, 

0).15  Since we want this condition to apply to a + c sums between zero and that value that 

pertains to the model at hand, our requirement for WF is that a and c satisfy 1 − ε(a + c) > 0 for 

all 0  ≤  ε ≤  1.  [It should be clear, in addition, that the foregoing argument could be easily 

modified to apply to yt processes that are trend stationary, rather than strictly (covariance) 

stationary.]  It is shown in McCallum (2003b) that under this requirement, plus a second one to 

be discussed shortly, the univariate model (16) is invariably E-stable.16   

 Next, for the bivariate case of model (1), extension of the foregoing WF property requires 

                                                 
14 The model could be formulated with the exogenous variable also written in terms of percent or fractional 
deviations from the reference level η, e.g., tû = ut − η.  But that would not alter the relationship between Eyt and η, 
which can be extremely different for tiny changes in a + c.   
15 In models of the linear form (16), one would expect coefficients a and c typically to represent elasticities and often 
to be numerically small relative to 1.   
16 That paper’s analysis of multivariate systems is, however, unsatisfactory. 
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that A and C are such that det[I − ε(A + C)] is positive for all 0  ≤  ε ≤  1; otherwise the steady-

state values of the variables may possess infinite discontinuities.  But there are other 

requirements as well.  Let acij temporarily denote the ijth element of A + C.  Then the model 

with 1 1ty Ey= , 2 2ty Ey= , η1 = Eu1t, and η2 = Eu2t implies 

(19) 1 11 12 1 1

2 21 22 2 2

y ac   ac y
y ac   ac y

η       
= +       η       

 

so that Ey = [I − (A+C)]-1η can be written as 

(20) 1 22 12 1

2 21 11 2

y 1 ac      ac1
y ac      1 ac

− η     
=     − η∆     

 

where ∆ = det[I − (A + C)] = (1−ac11)(1−ac22) − ac12ac21.  Then the counterpart of the univariate 

requirement that 1 − (a+c) > 0 includes the condition ∆ > 0.  We must rule out, however, the case 

in which ∆ > 0 results from 1−ac11 and 1−ac22 both being negative.17   The condition on ∆ should  

be extended, therefore, to also require 1−ac11 > 0 and 1−ac22 > 0.  And, furthermore, it should be 

the case that 1−ac22 is larger in absolute magnitude than ac12, with a similar requirement for y2.  

Otherwise, (20) could imply that the sign of yi and ηi would be different.  But under the 

conditions just stated, that unattractive anomaly would not occur.    

 How are these WF requirements extended to pertain to cases with more than two 

variables?  One would naturally require that [I − (A+C)] must be a P-matrix, which has all its 

principal minors positive, and implies that [I − (A+C)]-1 is also a P-matrix .18  However, it 

transpires that that condition is necessary but not sufficient to establish the argument with respect 

to learnability that will be of concern below.  Accordingly, suppose that we follow the 

suggestion above, that we require that the off-diagonal elements of [I − (A+C)]-1  do not 
                                                 
17 This is clear for the case in which A + C is a diagonal matrix. 
18 On the topic of P-matrices, see Horn and Johnson (1991) and Gale and Nikaido (1965). 
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outweigh those on the diagonal.  That possibility can be ruled out by requiring that [I − (A+C)] is 

(positive) dominant-diagonal (PDD).  This condition is somewhat stronger than is literally 

required by our objective of ruling out specifications in which leading implications of the model 

are hyper-sensitive to parameter values, but the PDD requirement is sufficient for our purpose 

and is one that has an important tradition stemming from the literature on multimarket stability 

analysis.  

 As a brief but relevantdigression, one example of a matrix that is a P-matrix and yet is not 

positive dominant-diagonal is as follows: 

(21) 
  0.08  0.92   0.90
  0.92     0.07  0.03

0.72     0.30   0.04

− 
 − 
 − 

. 

Clearly, the entries in any row show immediately that this matrix is not positive dominant 

diagonal (PDD).  But its determinant is 0.3087 and the three second-order minors are 0.0118, 

0.651, and 0.852. Since the diagonal elements are also all positive, the matrix is a P-matrix.  For 

future reference, we note that its eigenvalues are −0.0067 + 1.2319i, −0.0067 − 1.2319i, and 

0.2034.  Thus the example illustrates the fact that, although a P-matrix cannot have a negative 

real eigenvalue, it can have a complex eigenvalue pair with negative real parts.19  

  Returning now to the main line of argument, there is a second type of discontinuity that 

should also be eliminated for a model to be viewed as WF, namely, infinite discontinuities in its 

impulse response functions.  In model (1)(2) with solution (3), the impulse response to the shock 

vector ut (3) involves the matrix Γ, which is given by  

(22) Γ = AΩΓ + AΓR + D. 

  Thus (I − AΩ)Γ = AΓR + D so using F = (I − AΩ)-1A, equation (22) can be written as 

                                                 
19 See Horn and Johnson (1991, p. 123). 



 13

(23) Γ = FΓR + (I −AΩ)-1D. 

Then using the well-known identity that, for any conformable matrix product ABC, it is true that 

vec ABC = (C ' A)⊗ vec B,20 we have 

(24) vec Γ = (R ' F)⊗ vec Γ + vec [(I − AΩ)-1D] 

implying 

(25)  vec Γ = [I − (R ' F)⊗ ]-1 vec [(I − AΩ)-1D]. 

Accordingly, our second WF requirement is for [I − (R ' F)⊗ ] and (I − AΩ) to be well behaved 

in the same manner as I − (A + C), i.e., that they are PDD matrices  

5. E-Stability in WF Models 

 In this section, I begin by showing that if a model of form (1) is well-formulated, in the 

sense specified above, then the solution provided by the MOD ordering is, in all cases, E-stable 

and therefore LS learnable under the first information assumption.  The WF property stipulates 

that the matrices (I − AΩ) and [I − (R ' F)⊗ ] are well behaved in the sense of being PDD 

matrices.  But this implies that their eigenvalues all have positive real parts—see Horn and 

Johnson (1985, p. 349).  Thus we see from the second of these expressions that the E&H 

criterion (12c) is met.21  But, furthermore, one of the eigenvalues of R will be 1.0, since we will 

include among the system’s disturbances a random walk with zero variance, in order to be able 

to include constant terms in the specification.  Then, with 1.0 as one of the eigenvalues of R, it 

will be the case that M of the eigenvalues of (R ' F)⊗ will be the eigenvalues of F.  Then use of 

the property in footnote 21 shows that criterion (12a) is met.  Then how about the remaining 

condition (12b)?  Here we recognize that, by rearrangement of (4), (I − AΩ)-1C =  Ω.  

                                                 
20 See, for example, E&H (2001, p. 117) or Magnus and Neudecker (1988, p. 28). 
21 Here, and often in what follows, I use the fact that the eigenvalues of a matrix of form (I − B) satisfy λI−B = 1 − λB.     
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Accordingly, (12b) becomes F′Ω ⊗ .  But then note that with the MOD ordering it is the case 

that all λΩ < 1/λF so all λΩλF < 1.   But λΩλF= λΩλF ≥ Re(λΩλF) so (12b) is 

invariably satisfied.  Accordingly, we see that, with current information available during the 

learning process, the MOD solution to all well-formulated models of form (1)(2) is E-stable and 

thus LS learnable.  This result does not require or imply determinacy; there can be a multiplicity 

of (dynamically) stable solutions.  Also, it should be said explicitly, WF is not a necessary 

condition for either E-stability or determinacy.  The setup in equations (14)-(15), for example, is 

not a well formulated model.   

 Given the importance of the matrices Ω, AΩ, and F, it is interesting that they are related 

to A and C by the following identity, 

(26) (I − AΩ)(I − F)(I − Ω) = I − (A + C), 

which is mentioned by B&P (1995, fn. 34).22  From this equation we see that that non-singularity 

of I − (A + C) implies that the three matrices (I − AΩ), (I − F), and (I − Ω) are all nonsingular.  

Accordingly, the WF requirement that det[I − ε(A + C)] is positive for all 0  ≤  ε ≤  1 also implies 

that the real eigenvalues of Ω, AΩ, and F are all less than 1.0 in value.  Unfortunately, this does 

not imply that there is not some complex eigenvalue of F or AΩ with real part greater than 1.0, 

which is what is needed to satisfy the E&H conditions (12) for learnability.   

 Next we consider learnability for WF models under the second information assumption, 

for which the relevant conditions are that all eigenvalues of the matrices in (13a)-(13c) have real 

parts less than 1.0.  First consider (13a), which implies that I − A(I + Ω) must have all 

eigenvalues with real parts that are positive.  Using the definition of F, we can write  

(27) 1(I A )(I F) (I A )[I (I A ) A] (I A ) A I A(I ).−− Ω − = − Ω − − Ω = − Ω − = − + Ω  

                                                 
22 It can be verified by writing out F in left side of (26), multiplying, cancelling, and inserting C for Ω − AΩ2. 
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Now, our discussion above indicates that I − AΩ and I − F will both have eigenvalues with all 

real parts positive under the WF assumption, so (27) might seem to suggest that this property 

would carry over to I − A(I + Ω).  Unfortunately, however, this property seems not to be implied, 

although it would be if all the relevant eigenvalues were real. 

 Indeed, I have not been able to find any general results pertaining to conditions (13), but 

we can consider a couple of special cases that are of some interest.  First, consider the case in 

which C = 0, so there are no predetermined variables in the solution, which implies that Ω = 0.      

Then we have F = (I − AΩ)-1A = A and thus (13a) becomes the same as (12a).  Furthermore, 

(13b) is irrelevant with Ω = 0 and (13c) becomes (R ' A)⊗ , which is the same as in (12c).  So in 

this case, the two information assumptions yield the same E-stability conditions and the WF 

restrictions imply that E-stability obtains in the case at hand.  Second, suppose that C ≠ 0, but 

that the exogenous variables are white noise, i.e., R = 0.  Then (13c) becomes (I A )⊗ Ω and the 

result based on (I − AΩ)-1 shows that this condition will be satisfied if the WF conditions are 

relevant.  But conditions pertaining to (13a) and (13b) are not necessarily satisfied.  Of course, 

one can examine specific cases numerically.     

6. General Issues 

 A number of possible objections to the foregoing argument need to be addressed.  

Probably the most prominent among researchers in the area would be the fact that our analysis 

has been concerned only with solutions of form (3), which excludes sunspot solutions of the 

“resonant frequency” type.  It is my position, however, that the learning process pertaining to 

solutions of this type is much less plausible than for solutions of form (3).  In particular, the 

solutions are not of the standard vector-autoregression (VAR) form.  Therefore, an agent who 

experimented with many different specifications of VAR models, using the economy’s generated 
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time series data, would still not be led to such a solution.  Indeed, it seems to me that arguments 

suggesting that that type of learning could exist in actual economies are utterly implausible.  Of 

course, literally speaking, RE itself is implausible—as early critics emphasized.  Nevertheless 

RE is rightly regarded by mainstream researchers as the appropriate assumption for economic 

analysis, especially policy analysis.  That is the case because RE is fundamentally the 

assumption that agents optimize with respect to their expectational behavior, just as they do 

(according to neoclassical economic analysis) with respect to other basic economic activities 

such as selection of consumption bundles, selection of quantities produced and inputs utilized, 

etc.—for a necessary condition for optimization is that individuals eliminate any systematically 

erroneous component of their expectational behavior.  Also, RE is doubly attractive (to 

researchers) from a policy perspective, for it assures that a researcher does not propose policy 

rules that rely upon policy behavior that is designed to exploit consistent patterns of suboptimal 

expectational behavior by individuals.   

 Another issue is the possible use of learning behavior not as a device for assessing the 

plausibility of rational expectations, but as a replacement for the latter.  This type of approach is 

discussed by E&H (2001, Ch. 14) and has been prominent in the work of Orphanides and 

Williams (2005), among others.  Use of decreasing-gain learning (E&H, 2001, pp. 338-341) 

provides a sensible alternative to the constant-gain learning implicit in the LS learning/E-stability 

literature.  I do not believe, however, that this approach solves the “startup” problem, i.e., the 

issue of how the economy will behave in the first several periods following the adoption of a 

new policy rule or the occurrence of some other structural change.  I doubt that economies move 

promptly to new RE equilibria following such a change, and I would doubt that they move 

promptly to a modelled learning path.  In both cases, I share the opinion voiced by Lucas (1980), 
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to the effect that after a structural change (including policy regime changes), reliable analysis 

should pertain to the economy’s behavior after it has had time to settle into a new dynamic 

stochastic equilibrium. 

7. Conclusion 

 Let us now conclude with a very brief review of the points developed above.  First, the 

paper reviews a previous result to the effect that, under the information assumption that agents 

possess knowledge of current endogenous variables in the learning process, determinacy of a RE 

equilibrium is sufficient but not necessary for least-squares learnability of that equilibrium.  Thus, 

since learnability is an attractive necessary condition for plausibility of any equilibrium, there 

may exist a single plausible RE solution even in cases of indeterminacy.  The paper proposes and 

outlines a distinct criterion that models should possess, termed “well formulated,” that rules out 

infinite discontinuities in the model’s implied steady-state values of endogenous variables and in 

its impulse response functions.  The paper then demonstrates that under the first information 

assumption, the “natural” decreasing-modulus solution is, in all well-formulated models, 

learnable—even in the absence of determinacy.  Under the second information assumption, the 

situation is less favorable in the sense that learnability can be guaranteed only under special 

assumptions.  
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Appendix A 

To demonstrate that a very wide variety of linear RE models can be written in form (1)(2), 

consider the formulation of King and Watson (1998) or Klein (2001), as exposited by McCallum 

(1998), as follows: 

(A-1) 
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
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Here vt is an AR(1) vector of exogenous variables (including shocks) with stable AR matrix R 

while xt and kt are m1×1 and m2×1 vectors of non-predetermined and predetermined endogenous 

variables, respectively.  We assume without significant loss of generality that B11 is invertible23 

and that G2 = 0.24  Then we define   yt = [xt’ kt’ xt-1’ kt-1’]’ and write the system in form (1) with 

ut = vt and the matrices given as follows: 
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. 

This representation is important because it is well known that the system (A-1) permits, via use 

of auxiliary variables, any finite number of lags, expectational leads, and lags of expectational 

leads for the basic endogenous variables.  Also, any higher-order AR process for the exogenous 

variables can be written in AR(1) form.25  Thus we have shown that the Evans and Honkapohja 

(2001) formulation in their Section 10.3 is in fact rather general, although it does not pertain to 

asymmetric information models.
                                                 
23 For the system (A-1) to be cogent, each of the m1 non-predetermined variables must appear in at least one of the 
m1 equations of the first matrix row.  Then the diagonal elements of B11 will all be non-zero and to avoid 
inconsistencies the rows of B11 must be linearly independent.  This implies invertibility. 
24 If it is desired to include a direct effect of vt on kt+1, this can be accomplished by definition of an auxiliary variable 
(equal to vt-1) in xt (in which case vt remains in the information set for period t). Also, auxiliary variables can be used 
to include expectations of future values of exogenous variables. 
25 Binder and Pesaran (1995) show that virtually any linear model can be put in form (1), but in doing so admit a 
more general specification than (2) for the process generating the exogenous variables. 
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