## International reserves management and the current account

by Joshua Aizenman\*

#### UCSC and the NBER

The paper assesses the costs and benefits of active international reserve management (IRM), shedding light on the question of how intense should IRM be for an emerging market. In principle, an active IRM strategy could lower real exchange rate volatility induced by terms of trade shocks; provide self insurance against sudden stops; reduce the speed of adjustment of the current account; and even allow for higher growth if it fosters exports ("mercantilist" motive). The message of the report is mixed – management of reserves is not a panacea. The mercantilist case for hoarding international reserves, as an ingredient of an export led growth strategy, is dubious. Done properly, IRM augments macro economic management in turbulent times, mitigating the impact of external adverse shocks and allowing for a smoother current account adjustment. These benefits are especially important for commodity exporting countries, and countries with limited financial development.

Joshua Aizenman
UCSC Economics and the NBER
1156 High St.
Santa Cruz
CA 95064, USA
jaizen@ucsc.edu

<sup>\*</sup> Prepared for the Tenth Annual Conference of the Central Bank of Chile "Current Account and External Financing" (organized by Kevin Cowan, Sebastian Edwards and Rodrigo Valdés) Santiago, Chile, November 2006. I would like to thank Daniel Riera-Crichton for his excellent research assistance. Any errors are mine.

2

"Several factors, apart from the exchange rate regime, influence the comfort level in regard to reserves. Illustratively, they would include vulnerability to the real sector shocks, strength of the fiscal and financial sectors, current account balance, the changing composition of capital flows, a medium-term view of growth prospects encompassing business cycles, etc. In a sense, official reserves have to reflect the balancing and comforting factors relative to external assets and liabilities in the context of a rational balance sheet approach."

Dr. YV Reddy, Governor, Reserve Bank of India / Mumbai Sep 20, 2006

"...following the Asian crisis of the late 1990s it was likely that countries might choose to build up large foreign exchange reserves in order to be able to act as a "do it yourself" lender of last resort in US dollars."

A speech by Mervyn King, Governor of The Bank of England, New Delhi, 20 February 2006

This paper assesses the costs and benefits of active international reserve management (IRM). The first part outlines and appraises various channels where IRM may enhance economic performance, focusing on two important channels: i) IRM lowers real exchange rate volatility induced by terms of trade shocks; ii) IRM provides self insurance against sudden stops and fiscal shocks, reducing the downside risk associated with adverse shocks. There is weaker evidence regarding other channels, including iii) A mercantilist motive, where IRM is alleged to lead to higher growth induced by fostering export; and iv) A greater capacity to smooth overtime adjustment to shocks, thereby reducing the speed of adjustment of the current account.

Our analysis of international reserve management supplements the insights of earlier literature, which focused on using international reserves as a buffer stock, as part of the management of an adjustable-peg or managed-floating exchange-rate regime.<sup>1</sup> While valid, the buffer stock approach fitted better a world with limited financial integration, where trade openness determined countries' vulnerabilities to external shocks. In the absence of reserves, balance of payments deficits would have to be

(1983), and Flood and Marion (2002) for a recent review.

<sup>&</sup>lt;sup>1</sup> Accordingly, optimal reserves balance the macroeconomic adjustment costs incurred in the absence of reserves with the opportunity cost of holding reserves (see Frenkel and Joyanovic, 1981). The buffer stock model predicts that average reserves depend negatively on adjustment costs, on the opportunity cost of reserves, and on exchange rate flexibility; and positively on GDP and on reserve volatility driven frequently by the underlying volatility of international trade. Overall, the literature of the 1980s supported these predictions; see Frenkel (1983), Edwards

corrected via a reduction in aggregate expenditures, imposing adjustment costs. As greater trade openness increases the exposure to trade shocks, minimizing adjustment costs requires higher reserve holdings. The rapid financial integration of developing countries, and the financial crises of the 1990s focused attention on the growing exposure to sudden stops and on reversals in flows of capital.<sup>2</sup> In such a world, financial markets may force an adjustment well before flows of commercial trade would adjust, shifting the focus to exposure to financial shocks, and to costs associated with disintermediations triggered by adverse liquidity shocks.

Section 1 evaluates empirically the impact of international reserves on real exchange rate volatility in the presence of terms of trade shocks. The evidence suggests that international reserves play a role in the mitigation of terms of trade (TOT) shocks in Developing countries, but not in the OECD. Economic structure matters greatly – exports of natural resources double both the impact of terms of trade shocks on the real exchange rate, and that of the mitigation associated with IRM on the real exchange rate. These results are consistent with the notion that the limited development of capital markets in developing countries hampers their ability to mitigate the volatility associated with shocks. Section 2 models such a mechanism, explaining possible effects of IRM in the presence of costly financial intermediation of long term investment. Section 3 overviews the debate about international reserves management and mercantilist motives, outlining the empirical and the theoretical limitations of the mercantilist approach. Section 4 evaluates the impact of international reserves on current account persistence. The results support the notion that a higher build up of reserves allows countries to be better buffered against shocks, thereby reducing the speed of adjustment of the current account. This outcome is consistent with the importance of current account adjustments in allowing for smoother consumption, in the presence of limited financial integration and sudden stops. Section 5 concludes with a discussion of the limitations of international reserves management.

<sup>&</sup>lt;sup>2</sup> See Calvo (1998), Calvo et. al. (2003) and Edwards (2004), and the references therein for assessment of sudden stops in developing countries.

### 1. Real exchange rate volatility, terms of trade and international reserves.

In this section we focus on some of the challenges facing a developing country with limited development of its internal capital market, a growing integration with the global financial system, and a large exposure of the current account to terms of trade effects. This description applies especially to commodity exporting countries, subject to large terms of trade shocks. While favorable terms of trade shocks tend to induce real appreciation and capital inflows, the downturns associated with adverse shocks impose daunting challenges. To put this topic in a broader context, note that the literature of the 1990s identified large adverse effects of exogenous volatility on the GDP and on economic growth in developing countries.<sup>3</sup> Fundamentally, this issue hinges on the nature of non-linearties affecting the economy, where strong enough concavity may generate first order adverse effects of volatility on the GDP and on growth. An important channel that may explain such negative level and growth effects of volatility are imperfect capital markets.

A recent contribution illustrating these considerations is Aghion, Bacchetta, Ranciere and Rogoff (2006), who found that real exchange rate volatility reduces growth for countries with relatively low levels of financial development. These studies suggest that factors mitigating real exchange rate volatility may be associated with superior economic performance. The large hoarding of international reserves by developing countries in recent years raises the question to what extent have these reserves affected the volatility of the REER. For most countries, terms of trade shocks are the most important source of exogenous volatility, frequently leading to real exchange rate volatility, potentially magnifying business cycle volatility. This issue is pertinent for developing countries, as they are exposed to TOT volatility, the standard deviation of which is 3 times the volatility of industrial countries. Shallow domestic financial systems of relatively small size, and the lack of sectoral diversification in most developing countries limit their ability to mitigate TOT shocks by internal adjustment. Sovereign

<sup>&</sup>lt;sup>3</sup> See Ramey and Ramey (1995), Aizenman and Marion (1991) and the references in Aizenman and Pinto for the association between macro volatility and growth. See IDB (1995) and Calderón and Schmidt-Hebbel (2003) for the impact of terms of trade shocks and of other foreign shocks on growth in Latin America and in developing countries.

risk and the lack of proper financial instruments inhibit the ability to hedge against these shocks by relying on the global financial system [see Caballero (2003) and Caballero and Panageas (2003)]. Developing countries may be left with self insurance as a last resort option for dealing with TOT shocks.

In Aizenman and Riera-Crichton (2006) we confirm this possibility. We start by applying a rudimentary panel regression methodology, and show that the main result is robust to adding controls and to a more sophisticated estimation method. Specifically, the benchmark regression is<sup>4</sup>

(1) 
$$\ln(REER_{it}) = a_{1,i} + \alpha_1(TO*\ln(TOT))_{it} + \alpha_2(TO*\ln(TOT)*RES)_{it} + \varepsilon_{it}$$

where the independent variable is the log of the real effective exchange rate (REER), defined so that a higher REER indicates real appreciation. The term  $a_{1,i}$  represents country fixed effects, TOT is the terms of trade,  $TO = \ln[1 + (\frac{IM + EXP}{2GDP})]$  is the trade openness measure, and RES =  $\ln[1 + \frac{International Reserves}{GDP}]$  is a proxy for the International reserves/GDP.

The specification of regression (1) follows the observation that  $TO*\widehat{TOT}$  is a first order approximation of the income effect associated with terms of trade improvement rate of  $\widehat{TOT}$ , where the income effect is defined as the GDP rate of change induced by a TOT shock. Henceforth I refer to  $TO*\widehat{TOT}$  as the effective terms of trade shock. By design, (1) implies that the elasticity of the real exchange rate with respect to effective terms of trade change is  $^5$ 

<sup>5</sup> Throughout our discussion we presume that trade openness and International reserves/GDP are characterized by low volatility relative to *TOT* volatility.

-

<sup>&</sup>lt;sup>4</sup> We rejected the unit root hypothesis for the REER. We applied a Levin-Lin-Chu panel unit root test. The test assumes that each individual unit in the panel shares the same AR(1) coefficient, but allows for individual effects, time effects and possibly a time trend. We found high persistence: the autoregressive coefficient of about 0.84, but well below 1.

(2) 
$$\frac{\partial \ln(REER)}{TO * \partial \ln(TOT)} = \alpha_1 + \alpha_2 * RES$$

Hence, regression (1) provides information about the degree to which hoarding international reserves may impact REER dynamics induced by terms of trade shocks. Table 1 reports the regression results for 1970-2004. Column (1) presents the baseline regression pooling all countries, subject to data availability. The elasticity of the REER with respect to the effective terms of trade shock is well above one: a one percent improvement of the effective terms of trade induces a REER appreciation of about 1.8 percent. International reserves hoarding lessens the elasticity of the REER with respect to the TOT by more than twice the International reserves/GDP (i.e., column (1) implies that  $\partial \ln(REER)/[TO*\partial \ln(TOT)] \cong 1.8[1-2*RES]$ ).

Aggregation matters -- columns (2) and (3) show that this result applies to developing, but not to Industrial countries. This is consistent with the notion that limited development of the capital market in developing countries hampers their ability to mitigate the volatility associated with shocks. Economic structure matters greatly – exports of natural resources magnify the impact of the effective terms of trade shocks and the mitigation associated with international reserves by a factor exceeding 2. Interestingly, the international reserve effect is insignificant for that group, yet we will show later that it's significant for the lagged TOT shock. In contrast, these interactions are insignificant for manufacturing intense countries. The last two columns focus specifically on Latin America and Asia; TOT shocks induce large effects in both blocks. International reserves induce a powerful mitigation of the TOT shock in Asian countries, but not in LATAM.

Table 2 verifies the robustness of prior results, redoing the base regression of the case where we evaluate the adjustment to the one year lagged terms of trade shock on the contemporaneous REER:

(1') 
$$\ln(REER_{it}) = a_{1,i} + \alpha_1(TO*\ln(TOT))_{it-1} + \alpha_2(TO*\ln(TOT)*RES)_{it-1} + \varepsilon_{it}$$

The signs are identical to Table 1, the main difference being that shocks are apparently absorbed faster in LATAM and Asia, where most of the coefficients on the lagged shocks are insignificant for these blocks.

Table 3 reports country specific results for several Latin American countries. The last two columns of the Individual country table represent the total effect of terms of trade changes (amplified by trade openness) into the real exchange rate; taking into account the mitigation offered by international reserves:

(3) Total Effect 1990-99 = 
$$\frac{\partial \ln(REER)}{\partial [TO*\ln(TOT)]} = [\alpha_1 + (\alpha_2 * RES_{1990-99})]$$
,  
(4) Total Effect 2000-04 =  $\frac{\partial \ln(REER)}{\partial [TO*\ln(TOT)]} = [\alpha_1 + (\alpha_2 * RES_{2000-04})]$ 

(4) Total Effect 2000-04 = 
$$\frac{\partial \ln(REER)}{\partial [TO*\ln(TOT)]} = [\alpha_1 + (\alpha_2 * RES_{2000-04})]$$

Overall, the results suggest that reserves play a role in the mitigation of TOT shocks only in Developing countries. While this role widely differ across countries, the mitigation role of international reserves is important, especially in countries abundant with natural resources, like Argentina, Chile, Ecuador and Mexico.

Appendix A outlines a case study of Chile. Applying OLS and a VAR analysis, we find that an improvement in Chile's terms of trade is associated with a drop of the lending and deposit rates, and an improvement of Chile's external risk evaluation. We turn now to an elaborate model of costly financial intermediation, explaining possible self insurance aspects of ex-ante hoarding of international reserves.

### 2. The model -- financial intermediation, self insurance and the real exchange rate

A growing literature has identified financial intermediation, in the presence of collateral constraints, as a mechanism explaining the hazard associated with credit cycles induces by shocks. The prominent role of bank financing in developing countries suggests that capital flights, induced by adverse terms of trade shocks or contagion, impose adverse liquidity shocks. This section outlines a model describing conditions under which ex-ante hoarding of international reserves may provide a self insurance mechanism that would mitigate the real effects of liquidity shocks, ultimately reducing the adverse effects of terms of trade volatility on the GDP. For simplicity, we focus on

an ex-ante/ex post model dealing with the determination of the GDP level and the real exchange rate during one investment cycle. Applying the logic of endogenous growth, one may extend the model to deal with the impact of terms of trade shocks on growth.

As our focus is on developing countries, we assume that all financial intermediation is done by banks, relying on debt contracts. Specifically, we consider the case where investment in a long-term project should be undertaken prior to the realization of liquidity shocks. Hence, shocks may force costly liquidation of earlier investments, thereby reducing output. We solve the optimal demand for deposits and international reserves by a bank that finances investment in long-term projects. The bank's financing is done using callable deposits, exposing the bank to liquidity risk. Macro liquidity shocks, stemming from sudden stops and capital flights, cannot be diversified away. In these circumstances, hoarding reserves saves liquidation costs, potentially leading to large welfare gains; gains that hold even if all agents are risk neutral. In this framework, deposits and reserves tend to be complements – higher volatility of liquidity shocks will increase both the demand for reserves and deposits. This is another example of hoarding international reserves as a self-insurance against non-diversifiable liquidity shocks.<sup>6</sup>

We model the financial intermediation and the real exchange rate by combining Diamond and Dybvig's (1995) insight with Aghion, Bacchetta and Banerjee's (2003) modeling of market imperfections in a collateral dependent small open economy. We construct a minimal model to explain the self insurance offered by international reserves, in mitigating the output effects of liquidity shocks with endogenous real exchange rate determination. Investment in a long term project should be undertaken prior to the realization of liquidity shocks. Hence, the liquidity shock may force costly liquidation of the earlier investment, reducing second period output. We simplify further by assuming that there is no separation between the bank and the entrepreneur – the entrepreneur is the bank owner, using it to finance the investment.

\_

<sup>&</sup>lt;sup>6</sup> See Ben-Bassat and Gottlieb (1992), Garcia, Pablo, and Claudio Soto (2004) Aizenman and Lee (2005), Jeanne and Ranciere (2005), and Rodrik (2006) for studies dealing with various aspects of self insurance and international reserves.

<sup>&</sup>lt;sup>7</sup> The model extends the one sector framework outlined in Aizenman and Lee (2005).

We consider a small open economy, where a traded good is produced with capital and a country specific non-traded factor. In addition, the traded sector includes exports of commodities, generating revenue which is determined by the realization of terms of trade shocks [= the relative price of the exported commodities to other traded goods]. The traded good is the numeraire. The relative price of the non-traded factor is denoted by p, and is referred to as the real exchange rate There is a continuum of lenders and borrowers and their number is normalized to 1.

We focus now of the evolution of the economy throughout one investment cycle, where gestation lags imply that capital should be installed well before hiring specific non-traded input. To simplify, the supply of the specific factor is inelastic, at a level Z. The lenders in the economy cannot invest directly, but lend their saving at the international interest rate. Depositors are entitled to a real return of  $r_f$  on the loan that remains deposited for the duration of investment. The safe return reflects a risk free investment opportunity, either in the form of a foreign bond, or as storage technology. The borrowers are entrepreneurs who have investment opportunity, but are credit constrained. The actual investment should be undertaken prior to the realization of liquidity shocks. The production function is a Cobb Douglas CRS technology:

(5) 
$$y_2 = \frac{1}{a} \overline{K}_1^{\beta} z^{1-\beta},$$

where  $\overline{K}_1$  is the non-liquidated capital invested at period 1, z is the level of countryspecific input, hired at a relative price of  $p_1$ . Premature liquidation of capital is costly, and is associated with a proportionate adjustment cost of  $\theta$ . Specifically, reducing the capital stock by one dollar yields a net liquidity of  $1/(1+\theta)$ .

The time line associated with financial intermediation is summarized in Figure 1. At the beginning of period 1, the entrepreneur with initial wealth  $H_1$ , borrows  $\mu H_1$ . The

<sup>8</sup> Collateral constraints can be shown to arise due to capital market imperfections in the presence of moral hazard and costly monitoring [see Holmstrom-Tirole (1996) and Aghion-Banerjee-Piketty (1999)].

combined liquidity of  $(1 + \mu)H_1$  finances planned investment  $K_1$ , and setting aside liquid reserves  $R_1$ :

(6) 
$$(1+\mu)H_1 = K_1 + R_1$$
.

Next, a liquidity shock  $\delta$  realizes. A positive shock is inconsequential, because banks can accommodate positive liquidity shocks by purchasing a risk free bond, or investing in the risk free low yield storage technology. Hence, we focus our attention on adverse liquidity shocks, reducing desirable deposits form  $\mu H_1$  to  $\mu H_1(1+l\delta)$ ,  $\delta < 0, l > 0$ . Our model focuses on the impact of adverse liquidity shocks on optimal investment and liquidity, refraining from modeling the reasons for the shock. Such a shock may reflect external developments, like a higher foreign interest rate, contagion, or a reaction to a signal revealing the future TOT. For example, suppose that the public learns of a signal  $\delta$ , determining the second period foreign currency earnings from commodity exports. A negative TOT shock may induce anticipation of an economic slowdown, triggering capital flights, and reducing deposits from  $\mu H_1$  to  $\mu H_1(1+l\delta)$ . Independently of the exact source of the adverse liquidity shock, gestation lags associated with tangible investment and costly liquidation, expose the bank to the downside risk associated with abrupt adjustment.

The bank uses reserves to meet the liquid shock and to purchase the non-traded input. In case of need, the liquidly shock may be met by costly liquidation of capital. Consequently, the ultimate capital is:

(7) 
$$\overline{K}_{1} = \begin{cases} K_{1} - (1+\theta)MAX\left\{(-\delta)l\mu H_{1} + p_{1}z - R_{1}, 0\right\} & if \quad \delta < 0 \\ K_{1} & if \quad \delta \geq 0 \end{cases}$$

We assume that the liquidity constraint is binding, and that the marginal productivity of the non traded input exceeds the return on liquid reserves. The producer's surplus is

$$\Pi = \begin{cases} \frac{1}{a} K_1^{\beta} \left[ \frac{(1+\mu)H_1 - K_1}{p_1} \right]^{1-\beta} - (1+r_f)\mu H_1 & \text{if } \delta \ge 0 \\ \frac{1}{a} \overline{K_1^{\beta}} \left[ \frac{\{1+\mu(1+l\delta)\}H_1 - K_1 + (K_1 - \overline{K_1})/(1+\theta)}{p_1} \right]^{1-\beta} - (1+r_f)\mu H_1(1+l\delta) & \text{if } \delta < 0 \end{cases}$$

where  $p_1$  may depend on  $\delta$ .

To gain further insight, it is useful to focus on the simplest discrete example, where with probability half an adverse liquidity shock of  $\delta = -\varepsilon$  ( $0 \le \varepsilon < 1$ ) would take place, and with probability half there would be no liquidity interruption. The value of  $\varepsilon$  corresponds to the volatility of the liquidity shock,  $\delta$ . The asymmetric nature of tangible investment implies that only negative liquidity shocks may require real adjustment. In these circumstances, the expected profits are:

$$E[\Pi] = 0.5 \left\{ \frac{1}{a} K_1^{\beta} \left[ \frac{(1+\mu)H_1 - K_1}{p_1} \right]^{1-\beta} \right\} + 0.5 \left\{ \frac{1}{a} \overline{K_1^{\beta}} \left[ \frac{\{1+\mu(1-l\varepsilon)\}H_1 - K_1 + (K_1 - \overline{K_1})/(1+\theta)}{p_1} \right]^{1-\beta} \right\} - (1+r_f)\mu H_1$$

where  $K_1 \ge \overline{K}_1$ 

Applying the above, the equilibrium is characterized by the following:

### Claim:

I. If no liquidation would take place in the bad state ( $K_1 = \overline{K}_1$ ), optimal planned capital ( $K_1$ ) is the solution to

(10a) 
$$\frac{\beta}{K_1} - \frac{1-\beta}{(1+\mu)H_1 - K_1} + \left[ \frac{\beta}{K_1} - \frac{1-\beta}{[1+\mu(1-\varepsilon l)]H_1 - K_1} \right] = 0$$

If liquidation would occur in the bad state  $(K_1 > \overline{K}_1)$ , the optimal planned capital  $(K_1)$  is determined by

(10b)

$$\left[\frac{K_{1}}{\overline{K}_{1}}\right]^{\beta}\left[\frac{\beta}{K_{1}}-\frac{1-\beta}{(1+\mu)H_{1}-K_{1}}\right]-\theta\left[\frac{\beta^{2}}{\overline{K}_{1}}+\frac{(1-\beta)^{2}}{[1+\mu(1-\varepsilon l)]H_{1}(1+\theta)-\theta K_{1}-\overline{K}_{1}}\right]=0;$$

where

(11) 
$$\overline{K}_1 = \beta \left[ (1 + \mu (1 - \varepsilon l) H_1 (1 + \theta) - \theta K_1 \right].$$

II. The threshold volatility associated with partial liquidation in bad times, denoted by  $\tilde{\varepsilon}$ , is

(12) 
$$\widetilde{\varepsilon} = (1 + \frac{1}{\mu}) \frac{2\theta}{1 + \theta} \frac{1 - \beta}{l(1 - \theta\beta)}.$$

Hence, small enough leverage and a large enough adjustment cost implies  $\tilde{\varepsilon} > 1$  -- the liquidation option would not be exercised. In these circumstances, the optimal investment and the ex-ante hoarding of international reserves are:

(13) 
$$K_{1} = \beta(1+\mu)H_{1} - 0.5\beta l\varepsilon\mu H_{1};$$

$$R_{1} = (1-\beta)(1+\mu)H_{1} + 0.5\beta l\varepsilon\mu H_{1}.$$

The adjustment to the adverse liquidity shock is facilitated by real exchange rate depreciation:

$$(14) \qquad p_{1|\delta=-\varepsilon} = \frac{(1-\beta)(1+\mu)H_1 - \varepsilon(1-0.5)\beta l\mu H_1}{Z}; \quad p_{1|\delta=0} = \frac{(1-\beta)(1+\mu)H_1 + 0.5\varepsilon\beta l\mu H_1}{Z} \,.$$

III. If  $\tilde{\varepsilon} < 1$ , the partial liquidation option would be exercised in bad times only if the volatility exceeds the threshold,  $\tilde{\varepsilon} < \varepsilon < 1$ . For volatility below the threshold,  $\varepsilon < \tilde{\varepsilon} < 1$ , no liquidation would take place, and the equilibrium is characterized by (13)-(14).

### **Proof:**

- The characterization of the planned investment and of the ex-ante hoarding of reserves, (13), follows by solving  $K_1$  from (10a).
- The optimal stock of capital following partial liquidation, (11), is obtained by maximizing the profits in bad times with respect to  $\overline{K}_1$  [the second line of (8)], noting that  $K_1$  has been preset at the beginning of the planning horizon.
- The volatility threshold inducing liquidation in bad times,  $\widetilde{\varepsilon}$ , is obtained by noting that at  $\varepsilon = \widetilde{\varepsilon}$ ,  $K_1 = \overline{K_1}$  -- at the lowest volatility associated with liquidation in bad times, the liquidation is zero. Solving (11) for the case where  $K_1 = \overline{K_1}$ , we infer that  $\overline{K_1}|_{\varepsilon = \widetilde{\varepsilon}} = \frac{\beta(1+\theta)}{1+\beta\theta}[1+\mu(1-\widetilde{\varepsilon}l)]H_1$ . The actual level of  $\widetilde{\varepsilon}$  is solved from (10b), after substituting both  $K_1$  and  $\overline{K_1}$  with  $\frac{\beta(1+\theta)}{1+\beta\theta}[1+\mu(1-\widetilde{\varepsilon}l)]H_1$ .

### **Discussion:**

- Smaller leverage and larger adjustment costs imply a higher threshold of volatility associated with liquidation [see (12)]. In the no-liquidation range ( $\varepsilon > \tilde{\varepsilon}$ ), (13) implies that investment drops by half of the anticipated liquidity shock. This drop is financing an equal increase in ex-ante hoarding of international reserves. This hoarding will mitigate the effects of adverse liquidity shocks in bad times. The adverse liquidity shock would induce a real depreciation of  $\frac{\varepsilon \beta l \mu H_1}{Z}$  (see 14). The extra liquidity induced by hoarding reserves, and the real deprecation in bad times allow the economy to adjust fully without the need to liquidate tangible capital. Yet, this comes at the cost of a drop in planned investment and output.
- If  $\tilde{\varepsilon}$  < 1, we have a mixed regime: for large enough volatility above the threshold, the regime is characterized by a partial liquidation of capital in bad times. For volatility below the threshold, the liquidation option would not be exercised. Hence, high enough volatility induces a regime switch from the non liquidation to the partial liquidation of capital.

An example of the two regimes is provided in Figure 2, tracing the optimal planned investment  $K_1$  as a function of volatility. Recalling that  $R_1 = (1 + \mu)H_1 - K_1$ , the patterns of reserves as a function of volatility, are the mirror image of the patterns of the planned investment:  $dR_1/d\varepsilon = -dK_1/d\varepsilon$ . Panel A (B) corresponds to a relatively high (low) adjustment cost,  $\theta = 0.2$  ( $\theta = 0.02$ ). For relatively low volatility, liquidation would not be exercised, and higher volatility would reduce the planned investment, increasing the level of reserves. These reserves will be used to meet adverse liquidity shocks, saving the need to engage in a costly ex-post liquidation of productive investment. High enough volatility implies that the liquidation option would supplement the defensive hoarding of reserves. Note that liquidation mitigates the adverse impact of higher volatility on the planned investment, as can be seen by comparing the slopes of the two lines below and above the volatility threshold,  $\tilde{\varepsilon}$ . This mitigation, however, comes at a deadweight loss associated with adjustment costs.

Interestingly, at the regime switch to the partial liquidation regime, we observe a discrete drop of the planned investment, and a matching discrete jump in the ex-ante hoarding of reserves. This follows from the observation that the switch to the partial liquidation regime *increases* the marginal valuation of liquid reserves. The intuition for this is straightforward – in the partial liquidation regime, an extra unit of liquid reserves saves the need to liquidate  $1+\theta$  capital, saving the deadweight loss of  $\theta$ . This marginal benefit of liquidity is absent in the 'no liquidation' regime. Consequently, at the regime switch, there is discontinuity where the ex-ante demand for liquidity jumps, inducing a drop in planned investment. This drop increases with the adjustment costs, as is vividly illustrated by the contrast between the two panels of Figure 1. This point can be confirmed by comparing (11) and (13a) at the threshold volatility associated with regime change. Denoting the no liquidation (liquidation) regime by NL (LQ), respectively, it can be verified that at  $\varepsilon = \tilde{\varepsilon}$ 

(15) 
$$K_{1|NL} - \overline{K}_{1|LQ} = \theta^2 \frac{\beta(1-\beta)}{(1+\theta)(1-\beta\theta)} (1+\mu)H_1$$

A key variable is the adjustment cost parameter,  $\theta$ , measuring the flexibility of capital market adjustment. Greater flexibility of the adjustment reduces the role of

international reserves, and of the overall impact of volatility on investment and on the real exchange rate.

Hoarding reserves mitigates the volatility of the real exchange rate and of the adverse effects of liquidity shocks on the GDP. To fully appreciate this observation, it's useful to evaluate the expected output in the absence of the precautionary adjustment of international reserves. Using the parameters specified in Figure 2a, the planned capital is  $K_1 = 1$ . The actual capital in the presence of liquidity shock and the absence of the IR precautionary adjustment would have been  $\overline{K}_1 = 1 - \mu \epsilon l H_1 (1 + \theta)$ . The solid line in Figure 3 plots the expected output in this regime as a fraction of the output had the liquidity shock been zero. The bold line is the expected normalized output for the case where reserves are adjusted to prevent the need to liquidate capital, as is the case in equation (13). The figure vividly illustrates the first order gain associated with the precautionary adjustment of international reserves. It is easy to verify that the precautionary adjustment of reserves also reduces the volatility and the REER.

The model suggests that adverse liquidity shocks triggered by terms of trade deterioration are accommodated by higher reserves and real depreciation, adjustments that limit the needed liquidation of capital. While our framework dealt with one investment cycle, it can be extended into a dynamic set up, where the next cycle resembles a similar sequence, subject to updating the entrepreneurs' initial wealth by the profits of the previous investment cycle and by any outside income. In the extended setup, terms of trade improvements (deterioration) would tend to lead to a further real exchange rate appreciation (depredation). This would be the case in circumstances where the entrepreneurs' outside income includes proceeds from the exported commodity, implying that higher wealth would increase the future demand for non-traded input. Alternatively, this would be the case if the non traded input has other uses, the demand of which rises with the wealth of the economy.

### 3. International reserves management and mercantilist motives

The discussion in the previous section viewed international reserve management in the context of reducing the costs of economic volatility, reflecting the desire for self-

insurance against exposure to future sudden stops. This view faces a well-known contender in a modern incarnation of mercantilism: international reserves accumulation triggered by concerns about export competitiveness. This explanation has been advanced by Dooley, Folkerts-Landau and Garber (2003), especially in the context of China. This issue is of more than academic importance: the precautionary approach links reserves accumulation directly to exposure to sudden stops, capital flight and volatility, whereas the mercantilist approach views reserves accumulation as a residual of an industrial policy, a policy that may impose negative externalities on other trading partners. Dooley, Folkerts-Landau and Garber have interpreted reserves accumulation as a by-product of promoting exports, which are needed to create better jobs, thereby absorbing abundant labor in traditional sectors, mostly in agriculture. Under this strategy, reserves accumulation may facilitate export growth by preventing or slowing appreciation –

"we argued that a sensible development policy might involve creating a distortion in the real exchange rate in order to bias domestic investment toward export industries. Sensible here means that the resulting capital stock will be superior to that generated by a badly distorted domestic financial system and other relative price distortions typical of emerging market countries." [Dooley, Folkerts-Landau and Garber (2005)].

To put this discussion in a boarder context, the mercantilist explanation for hoarding international reserves presumes that a monetary policy affecting the level of the exchange rate has permanent real effects. While the view that monetary instability has long run adverse real consequences is well supported by empirical studies, there is no comparable body of evidence that validates the long run real impact of setting the level of the nominal exchange rate. Indeed, anecdotal evidence suggests that the neo-classical adjustment mechanism works "even" in China – economic growth leads to real appreciation independently of the exchange rate regime.

The growing importance of foreign direct investment, and the observation that a large hoarding of international reserves has occasionally occurred in countries experiencing a large foreign direct investment inflow, put to the fore an extended version of the "Revived Bretton Woods system," where international reserves are viewed as a collateral reducing the risk associated with FDI:

"Delivering goods and services up front is a crude form of collateral. But there is no credible alternative. Market participants individually could pledge financial assets in the center country, but the only way that the aggregate of the periphery can acquire assets in the US is to run a current account surplus. In an important sense, the goods and services already delivered to the US support the stock of US claims on the periphery; it is the collateral that powers the entire development strategy. The nature of the social collateral is so obvious it is hard to see. If the center cannot seize goods or assets after a default, it has to import the goods and services before the default and create a net liability. If the periphery then defaults on its half of the implicit contract, the center can simply default on its gross liability and keep the collateral. The periphery's current account surplus provides the collateral to support the financial intermediation that is at the heart of Asian development strategies. The interest paid on the net position is nothing more than the usual risk free interest paid on collateral." [Dooley, Folkerts-Landau and Garber (2005)].

The wide reaching implications of Dooley, Folkerts-Landau and Garber (2005) has propagated spirited debate that goes well beyond the scope of our paper. Some view the modern mercantilist approach as a valid interpretation for most East Asian countries, arguing that they follow similar development strategies. This interpretation is intellectually intriguing, yet it remains debatable. Observers have pointed out that high export growth is not the new kid on the block -- it is the story of East- Asia during the last fifty years. Yet, the large increase in hoarding reserves has happened mostly after 1997. Indeed, one may argue that the experience of Japan and Korea suggests that during the phase of their rapid growth, the policy tool of choice was selective favorable financing targeted sectors, and not hoarding international reserves. In both countries large hoarding of international reserves happened after the end of the high growth phase.

Aizenman and Lee (2005) test the importance of precautionary and mercantilist motives in accounting for the hoarding of international reserves by developing countries. While variables associated with the mercantilist motive (like lagged export growth and deviation from Purchasing Power Parity) are statistically significant, their economic importance in accounting for reserve hoarding is close to zero and is dwarfed by other variables. Overall, the empirical results in Aizenman and Lee (2005) are in line with the

<sup>9</sup> See Caballero, Farhi and Gourinchas (2006), Eichengreen (2006a), and the overview in Glick and Spiegel (2005).

<sup>&</sup>lt;sup>10</sup> Interestingly, during the period of rapid growth, both Korea and Japan were closed to FDI. Hence, the view that FDI is the key for successful development in East Asia remains debatable.

precautionary demand. The effects of financial crises have been localized, increasing reserve hoarding in the aftermath of crises mostly in countries located in the affected region, but not in other regions. A more liberal capital account regime is found to increase the amount of international reserves, in line with the precautionary view. These results, however, do not imply that the hoarding of reserves by countries is optimal or efficient. Making inferences regarding efficiency would require having a detailed model and much more information, including an assessment of the probability and output costs of sudden stops, and the opportunity cost of reserves.

Aizenman and Lee (2006) proposes a new interpretation of the association between mercantilism, economic growth and hoarding reserves by looking at the development strategies of East Asian countries during the second half of the 20<sup>th</sup> Century. The history of the region suggests the prevalence of export promotion by preferential financing, which effectively subsidized investment in targeted sectors. This was achieved in several ways, including direct subsidies funded by state banks; or by means of financial repression where favored sectors enjoyed preferential access to cheaper external borrowing; or via "moral suasion" where private banks were encouraged to provide favorable financing. We refer to this policy as *financial mercantilism*, and contrast it with *monetary mercantilism*, a policy that hinges on hoarding international reserves.

The history of Japan and Korea suggests the (near) absence of monetary mercantilism during the phase of fast growth. Evidence suggests that financial mercantilism had been vigorously applied during the phase of rapid growth. In both countries, the switch to large hoarding of international reserves happened at times of collapsing growth. Thus, if monetary mercantilism played any significant role in these countries, it was adopted in periods of disappointing growth. The legacy of financial mercantilism led to deteriorating balance sheets of affected banks. Circumstances where floundering growth leads to the switch from financial mercantilism to large hoarding of reserves are associated with growing fragility of the banking system -- financial fragility is more sustainable in times of rapid growth, but it may induce banking crises when

growth flounders.<sup>11</sup> In these situations, precautionary motives may lead countries to hoard international reserves in order to mitigate the possible transmission of banking crisis to currency crisis. With limited data, such a response may be observationally equivalent to the one predicted by monetary mercantilism. Having good data about international reserves but spotty data on non performing loans, it is hard to disentangle the precautionary hoarding from the monetary mercantilism. Moreover, monetary mercantilism and precautionary hoarding may be mutually complementary: the competitiveness benefit may reduce the effective cost of hoarding reserves and induce governments to prefer reserve-hoarding over alternative precautionary means.

China's hoarding of reserves picked up sharply after the Asian crisis. Unlike Korea and Japan, China is accumulating reserves without having gone through a sharp slow-down in economic growth. We conjecture that the recent history of Japan and Korea provided evidence encouraging China to adopt a dual strategy of financial mercantilism and rapid hoarding of international reserves. Arguably, as much as China is growing even faster than Korea and Japan in their early years and is going through its take-off process in the era of a highly integrated global financial market, China faces much greater downside risk of social and political instability associated with a crisis than the risk that confronted Korea or Japan. This greater downside risk of recession and financial crisis may explain both the Chinese eagerness to push financial mercantilism, and to buffer the downside risk of the growing financial fragility with aggressive reserve hoarding. Given the sheer size of China and its reserve hoarding, however, other countries in the region may be tempted to engage in competitive hoarding in order to mitigate the competitiveness loss in third markets.

\_

<sup>&</sup>lt;sup>11</sup> The research triggered by Kaminsky and Reinhart (1999) points out that greater financial fragility increases the odds of currency crisis. Hutchison & Noy (2005) report that "... the onsets of 31% of banking crises were accompanied by currency turmoil. Furthermore, there is a statistically significant correlation between lagged banking crises and contemporaneous currency crises but not vice versa." This observation is consistent with the insight of models of financial fragility, exemplified by Chang and Velasco (1999).

<sup>&</sup>lt;sup>12</sup> In the case of China, the ratio of banks' non performing loans/international reserves is estimated to be in the range of about 20% (according to the Bank of China) to more than 90% (see Jim Peterson's report at the *International Herald Tribune*, 9-11-2006). These numbers indicate a large uncertainty associated with estimating the economy-wide burden of financial weakness, which itself would add to the demand for precautionary hoarding.

Furthermore, monetary mercantilism is associated with negative externalities akin to competitive devaluation. Hoarding international reserves motivated by short-run competitiveness concerns of one country may trigger other countries into adopting a similar policy, to preempt any competitive advantage gained by the first country. These circumstances may lead to competitive hoarding of reserves, which in turn would dissipate any competitiveness gains. We provide a simple framework illustrating the welfare losses associated with competitive hoarding. These losses may provide a novel argument in favor of regional funds, viewed as a mechanism to cope with regional negative externalities. The greater importance of manufacturing in East Asia relative to Latin America, and the deeper financial repression in some East Asian countries suggests that the case for Asian fund is stronger than that for a similar regional fund among Latin American countries.<sup>13</sup>

### 4. Current account persistence and international reserves

The purpose of this section is to ascertain the degree to which higher international reserves/GDP ratios have been associated with greater capacity to smooth adjustment to shocks overtime, allowing more persistent current account patterns. In contrast, a low level of reserves may require a rigid and fast adjustment of the current account to shocks, where deviations from a balanced current account position are hard to sustain. We evaluate this possibility by applying the methodology of Taylor (2002), where the speed of adjustment of the current account (CU) back towards its equilibrium or steady state level, was captured by the value of  $\beta$  in the regression<sup>14</sup>

(16) 
$$\Delta \left(\frac{CU}{GDP}\right)_{t} = \beta \left(\frac{CU}{GDP}\right)_{t-1} + \varepsilon_{t}.$$

\_

<sup>&</sup>lt;sup>13</sup> The presumption is that the real exchange rate has greater consequences on the competitiveness of manufacturing exporters than on countries specializing in exporting commodities and raw materials [for further discussion on regional funds see Eichengreen (2006b)].

<sup>&</sup>lt;sup>14</sup> See Taylor (2002) for a discussion linking the above estimation to intertemporal long run budget constraints.

Noting the AR reinterpretation of (16),  $\left(\frac{CU}{GDP}\right)_t \cong (1+\beta) \left(\frac{CU}{GDP}\right)_{t-1} + \varepsilon_t$ ,  $\beta$  close to

minus one implies no persistence of the current account pattern, as would be the case if the adjustment to a shock is contemporaneous. In contrast,  $|\beta|$  closer to zero implies greater persistence of the current account, allowing a more protracted adjustment to shocks.

We start by fitting the following regression:

$$(17) \quad \Delta \left(\frac{CU}{GDP}\right)_{it} = Country \textit{Effects}_i + Time \textit{Effects}_t + \beta_{\textit{sample}} \left(\frac{CU}{GDP}\right)_{it-1} + e_{it} \; ,$$
 where  $\left(\frac{CU}{GDP}\right) = Ln(1 + \left(\frac{CurrentAccount}{DomesticGDP}\right))$ , and both the current account balance and

the domestic economy GDP are measured in current US\$. Table 4 shows the coefficient of adjustment and thus a measure of persistence for the current account balance for 1970-2004, subject to data availability, and subsets of the data such as Developing countries, Developed OECD countries, Manufacture exporters, Natural Resource Exporters, Latin American and Asian emerging economies. Table 4 also reviews sub samples based on 1980-1992 and 1993-2004, Indebtedness and Income as classifications given by the World Bank. Note that developing countries are characterized by a faster current account adjustment than the OECD, LATAM adjust faster than Asian emerging economies, and exporter of natural resource countries adjust faster than the exporters of manufacturing.

# Cross-section study of the factors affecting the persistence of the current account balance

We turn now to a cross country study testing the impact of international reserves on the speed of adjustment. On average, we expect that a higher build up of reserves allows countries to be better buffered against shocks, thereby reducing the speed of adjustment of the current account, resulting in a positive association between international reserves and  $\beta$ . We apply a two step derivation of the relationship between reserves (and other government assets) and current account persistence. In the first step we derive a measure of current account persistence.

We ran a time series regression for each available country in the form of:

(18) 
$$\Delta \left(\frac{CU}{GDP}\right)_{t} = \beta \left(\frac{CU}{GDP}\right)_{t-1} + \varepsilon_{t}$$

This way we obtain one  $\beta$  coefficient per country. The countries, the number of observations used in the autoregressive estimation of their  $\beta$  and the fitted values are listed in Tables B1-B4, in Appendix B. Table 5 provides the estimates for several LATAM countries.

The persistence proxy used in the next step is just the value for the pure autoregressive process of the current account deflated by GDP:

(19) 
$$\left(\frac{CU}{GDP}\right)_t = \alpha \left(\frac{CU}{GDP}\right)_{t-1} + \varepsilon_t \text{ where } \alpha = \beta + 1.$$

In the second step we look at the cross section relationship between our measure of persistence represented by  $\alpha$  and a series of structural parameters for these economies, and a measure of the stock of reserves deflated by the GDP. <sup>15</sup>

In the univariate regressions, we find that higher reserves, higher GDP growth and a lower share of commodities are associated with a significant increase in the persistency of the current account for non OECD countries [see Table 6]. International reserves turned out insignificant for a sample inclusive of the OECD countries. In the multivariate regressions we find that for developing countries higher persistence is positively associated with a higher IR/GDP, lower inflation, greater flexibility of the exchange rate [measured by the volatility of the nominal exchange rate], and a higher share of manufacturing [see Table 7].

The results reported above are consistent with the consumption smoothing role of current account adjustments. To illustrate, consider a benchmark neo-classical economy where consumption is determined the permanent income hypothesis (linear marginal

<sup>&</sup>lt;sup>15</sup> Out of 134 countries, there are 10 countries with negative alphas that would represent extreme volatility in the current account. These countries are generally small economies with very sensitive external sectors. In order to reduce noise in future regressions we purge these countries from the data. See the countries in Italics, Table B4, Appendix B.

utility of consumption); the output follows an AR(1) process  $Y_t - \overline{Y} = \rho(Y_{t-1} - \overline{Y}) + \overline{Y}\varepsilon_t$  ( $|\rho| < 1$ , output reverting to the long run mean  $\overline{Y}$  at a rate determined by  $1 - \rho$ ); and where agents can borrow and lend at the real interest r, which also equals their subjective rate of time preference. It can be shown that, around the long run equilibrium, r

(20) 
$$\left(\frac{CU}{Y}\right)_t \simeq \rho \left(\frac{CU}{Y}\right)_{t-1} + \frac{1-\rho}{1+r-\rho} \varepsilon_t.$$

Hence,  $\alpha \simeq \rho$ . Suppose that we modify the above assumptions, adding the possibility of sudden stops. Specifically, assume that the probability of a sudden stop, terminating the ability to borrow externally, is  $\Phi$ ; where  $\Phi = \Phi(IR/Y)$ ;  $\Phi' < 0$ . In these circumstances,

(21) 
$$\alpha \simeq \rho(1-\Phi)$$
.

This suggests that a negative association between sudden stops and hoarding reserves may account for the impact of international reserves on the persistency of current account adjustment.

### 5. On the limitations of international reserves management

We close the paper with a discussion of the limitations of international reserves management. While useful, IRM is not a panacea, and is subject to serious limitations outlined below.

Hence,  $CU_t = rB_t + Y_t - C_t = \frac{1-\rho}{1+r-\rho} \{Y_t - \overline{Y}\}$ . Hence, in the vicinity of the long run equilibrium

$$\frac{CU_{t}}{Y_{t}} = \frac{1-\rho}{1+r-\rho} \frac{\rho(Y_{t-1}-\overline{Y})+\overline{Y}\varepsilon_{t}}{Y_{t}} = \rho \frac{CU_{t-1}}{Y_{t}} \frac{Y_{t-1}}{Y_{t}} + \frac{1-\rho}{1+r-\rho} \frac{\overline{Y}}{Y_{t}}\varepsilon_{t} \simeq \rho \frac{CU_{t-1}}{Y_{t+1}} + \frac{1-\rho}{1+r-\rho}\varepsilon_{t}.$$

<sup>&</sup>lt;sup>16</sup> This follows the observation that in such an economy,  $C_t = rB_t + \overline{Y} + \frac{r}{1+r-\rho} \{Y_t - \overline{Y}\}$ .

 Moral hazard: as with any insurance, there is no way to avoid various layers of moral hazard.

24

- Macro moral hazard: any deep pot of resources may be the target of opportunistic raiding by policy makers in regimes characterized by political instability and limited monitoring. Central bank independence helps and is desirable, but not sufficient to overcome this obstacle [see Aizenman and Marion (2004) for empirical results on the adverse effects of political instability on hoarding international reserves].
- Micro moral hazard: large stockpiles of reserves may subsidize risk taking, especially if it is viewed as a signal of a low probability of exchange rate changes [see Levy Yeyati (2005), advocating a combined scheme of decentralized reserves in the form of liquid asset requirements on individual banks to limit moral hazard, and an ex-ante suspension-of-convertibility clause to reduce self-insurance costs while limiting bank losses in the event of a run].
- Fiscal costs: these costs include a direct opportunity cost (the marginal product of investment or the cost of external borrowing), and any marginal costs of sterilization [see Calvo (1991) for an early discussion on the quasi costs of sterilization]. Hauner (2005) estimated these costs for 100 countries during 1990–2004, concluding that while most countries made money on their reserves during 1990–2001, most have been losing money during 2002–04. One should keep in mind, however, the difficulties in tracing the full benefits of hoarding reserves:

"While assessing the fiscal cost of holding reserves, it would be worthwhile to set off the benefits that the country may have in holding reserves. In any country risk analysis by the rating agencies and other institutions, the level of reserves generally has high weights. Moreover, it is essential to keep in view some hidden benefits which could accrue to a country holding reserves, which may, inter alia, include: maintaining confidence in monetary and exchange rate policies; enhancing the capacity to intervene in foreign exchange markets; limiting external vulnerability so as to absorb shocks during times of crisis; providing confidence to the markets that external obligations can always be met; and reducing volatility in foreign exchange markets. It is true that beyond a point, when the credit rating reaches

appropriate investment grade, addition to reserves may not lead to further improvement in the credit rating. It is necessary to recognize that, as in the case of costs, there are difficulties in computing the benefits too."

Dr. YV Reddy, Governor, Reserve Bank of India / Mumbai Sep 20, 2006

• Coordination issues: while our focus was on IRM as self insurance, IRM management may be part of a fiscal scheme dealing with augmenting social security and future pensions. This is especially relevant for countries exporting commodities, like Chile, Norway, etc. This suggests the need to delegate the management of these funds to two different agencies. One, like the central bank, should deal with IRM as part of prudent macroeconomoic management throughout the business cycle. The second fund fits more the treasury, or the social security administration, as it deals with long term intergenerational transfer. For further discussion, see Davis et. al. (2001).

To conclude, this paper outlined several motives for hoarding international reserves in the era of growing financial integration. The message of the report is mixed –management of reserves is not a panacea. The mercantilist case for hoarding international reserves, as an ingredient of an export led growth strategy, is dubious. Done properly, international reserve management reduces the downside risk in turbulent times. These benefits are especially important for commodity exporting countries; and countries with limited financial development.

## Appendix A

# Financial Transmission of Terms of Trade Shocks in Natural Resource Economies – The case of Chile

### Meta Data and Definitions

- -The frequency of the data is quarterly
- -Sources: IFS, DataStream, CEIC, WEO, ICRG
- -Gap Variables are obtained by detrending the variables. The trend is calculated using the Hodrick/Prescott filter with lambda set to 1600 (recommended value for quarterly data).
- -Log differences are use as proxy for percentage growth

### **Monetary Aggregates:**

- -MB equals Monetary Base
- -M1 equals currency in circulation plus demand deposits in checking accounts of the nonfinancial private sector net of float, demand deposits other than those in checking accounts and demand savings deposits.
- -M2 encompasses M1 plus time deposits of the private sector, plus time saving deposits, plus mutual funds (FM) quotas in up to one-year instruments (non financial private sector) and plus deposits of Saving and Credit Cooperatives (CAC), less FM investments in M2 and less CAC investments in M2.
- -M3 corresponds to M2 plus foreign exchange deposits of the private sector, plus instruments of the Central Bank, plus Treasury bonds, plus credit bills, plus other Mutual Funds (FM) quotas, plus AFP voluntary saving quotas, less FM investments in M3 and less AFP investments in M3.
- -Private Credit: We define private credit as M3-M1
- **-Reserves**: Comprise special drawing rights, reserves of IMF members held by IMF, and holdings of foreign exchange under the control of monetary authorities

### **Interest Rates**:

- **-Deposit Rates**: rates offered to resident customers for demand, time, or savings deposits.
- **-Lending Rates**: bank rate that usually meets the short- and medium-term financing needs of the private sector. This rate is normally differentiated according to creditworthiness of borrowers and objectives of financing.
- **-Domestic Spread (DS)**: We define the Domestic Spread (DS) as the difference between the Lending Rate and the Deposit Rate.

**Terms of Trade**: As usual, TOT is calculated as the ratio of export to import price indexes.

### **Real Output:**

- -Real Aggregate Demand
- -Real GDP

### **External Perception of Country Specific Risks:**

- **-Economic Risk**: A means of assessing a country's current economic strengths and weaknesses. In general, where strengths outweigh weaknesses, a country will show low risk and where weaknesses outweigh strengths, the economic risk will be high. To ensure comparability between countries, risk components are based on accepted ratios between the measured data within the national economic/financial structure, and then the ratios are compared, not the data. Risk points are assessed for each of the component factors of GDP per head of population, real annual GDP growth, annual inflation rate, budget balance as a percentage of GDP, and current account balance as a percentage of GDP. Risk ratings range from a high of 50 (least risk) to a low of 0 (highest risk), though lowest de facto ratings are generally near 15.
- -Financial Risk Rating: A means of assessing a country's ability to pay its way by financing its official, commercial and trade debt obligations. To ensure comparability between countries, risk components are based on accepted ratios between the measured data within the national economic/financial structure, and then the ratios are compared, not the data. Risk points are assessed for each of the component factors of foreign debt as a percentage of GDP, foreign debt service as a percentage of exports of goods and services (XGS), current account as a percentage of XGS, net liquidity as months of import cover, and exchange rate stability. Risk ratings range from a high of 50 (least risk) to a low of 0 (highest risk), though lowest de facto ratings are generally near 20.

# **Econometric Analysis**

### Single OLS Equation: Effects of TOT into Financial Variables

The OLS indicates that an improvement in the TOT is associated with:

- A drop of the financial spread = [lending rates deposit rates]
- Improvement in Chile's financial and economic risk assessment.
- A positive gap between both the Real Output and the Real Demand and their long run trend.
- Higher growth rate of M1.
- Lower growth rate of private credit (M3-M1).

|              | REAL<br>GDP | REAL<br>DEMAND | МВ      | <b>M</b> 1 | M2      | М3      | RESERVES | DOMESTIC<br>SPREAD     | DEPOSIT<br>RATE | LENDING<br>RATE | ECON<br>RISK | FINANCIAL<br>RISK | PRIVATE<br>CREDIT      |
|--------------|-------------|----------------|---------|------------|---------|---------|----------|------------------------|-----------------|-----------------|--------------|-------------------|------------------------|
| тот          | 0.012       | 0.042***       | 0.012   | 0.09       | -0.041  | -0.167  | -0.054   | -15.732**              | -22.39          | -24.001         | 0.258        | 0.353**           | -0.256**               |
|              | [0.056]     | [0.014]        | [0.133] | [0.127]    | [0.086] | [0.104] | [0.223]  | [7.802]                | [26.380]        | [28.146]        | [0.166]      | [0.171]           | [0.121]                |
| TOT L1       | 0.06        | 0.034**        | 0.054   | 0.255*     | 0.016   | -0.141  | 0.024    | <mark>-17.945**</mark> | -13.047         | -16.99          | 0.258        | 0.197             | <mark>-0.396***</mark> |
|              | [0.075]     | [0.013]        | [0.129] | [0.141]    | [0.085] | [0.108] | [0.254]  | [7.331]                | [23.559]        | [25.365]        | [0.189]      | [0.179]           | [0.118]                |
| TOT L2       | 0.135       | 0.015          | 0.094   | 0.268*     | 0.086   | -0.095  | 0.041    | <mark>-16.473**</mark> | 7.781           | 7.639           | 0.124        | 0.041             | <mark>-0.363***</mark> |
|              | [0.081]     | [0.012]        | [0.134] | [0.157]    | [0.091] | [0.117] | [0.287]  | [7.477]                | [27.996]        | [29.899]        | [0.194]      | [0.146]           | [0.115]                |
| TOT L3       | 0.151*      | 0.001          | 0.173   | -0.137     | 0.123   | 0.038   | -0.209   | -0.523                 | 45.655          | 52.223          | 0.055        | -0.191            | 0.175                  |
|              | [0.082]     | [0.015]        | [0.140] | [0.190]    | [0.098] | [0.142] | [0.303]  | [10.676]               | [46.595]        | [47.505]        | [0.219]      | [0.203]           | [0.179]                |
| TOT L4       | 0.196**     | 0.003          | 0.183   | 0.123      | 0.144   | -0.016  | -0.037   | -9.387                 | 33.737          | 38.591          | 0.013        | -0.081            | -0.138                 |
|              | [0.077]     | [0.012]        | [0.150] | [0.192]    | [0.096] | [0.130] | [0.299]  | [9.490]                | [39.113]        | [41.211]        | [0.227]      | [0.164]           | [0.170]                |
| Observations | 80          | 81             | 81      | 81         | 81      | 81      | 81       | 81                     | 81              | 81              | 81           | 81                | 81                     |

Table A1: Single OLS Equation; Effects of TOT into Financial Variables

TOT, MB, M1, M2, M3, Econ Risk, and Financial Risk variables are represented in log differences proxy for the growth rates. Real GDP and Real Demand represent the deviations from their long run trend.

TOT, MB, M1, M2, M3, Reserves, Econ Risk, and Financial Risk

### Vector Autorregrission (VAR) Analysis

 $\Pi_t = A + \sum_{i=0} B_i \Pi_{t-i} + E$  Where  $\Pi_t = \{ \text{Real Demand Gap, Lending Rate, Deposit Rate International Risk (proxy for foreign spread), Money Supply (M1), Domestic Credit (M3-M1), TOT <math>\}$ 

|                | REAL<br>DEMAND<br>GAP | Lending<br>Rate | Deposit<br>Rate | M1      | PRIVATE<br>CREDIT | ECON<br>RISK | тот       |
|----------------|-----------------------|-----------------|-----------------|---------|-------------------|--------------|-----------|
| TOT(-1)        | 2.206**               | -0.775**        | -0.761**        | 0.37*   | -0.386*           | 0.76**       | 1.39***   |
|                | -1.005                | -0.359          | -0.375          | -0.213  | -0.215            | -0.336       | -0.09     |
| TOT(-2)        | -3.7***               | 0.106           | 0.083           | 0.131   | -0.091            | -0.487       | -0.819*** |
|                | -1.126                | -0.402          | -0.42           | -0.239  | -0.24             | -0.377       | -0.101    |
| С              | -0.112*               | 0.003           | 0.016           | -0.011  | 0.005             | -0.014       | 0.009     |
|                | 0.061                 | 0.022           | 0.023           | 0.013   | 0.013             | 0.021        | 0.005     |
| R-squared      | 0.966                 | 0.816           | 0.845           | 0.454   | 0.377             | 0.29         | 0.858     |
| Adj. R-squared | 0.958                 | 0.776           | 0.811           | 0.334   | 0.241             | 0.134        | 0.828     |
| Sum sq. resids | 1.085                 | 0.138           | 0.151           | 0.049   | 0.049             | 0.121        | 0.009     |
| S.E. equation  | 0.13                  | 0.046           | 0.049           | 0.028   | 0.028             | 0.044        | 0.012     |
| F-statistic    | 129.526               | 20.304          | 24.984          | 3.797   | 2.772             | 1.864        | 27.73     |
| Log likelihood | 57.273                | 138.707         | 135.245         | 179.779 | 179.279           | 143.795      | 248.153   |
| AIC            | -1.07                 | -3.132          | -3.044          | -4.172  | -4.159            | -3.261       | -5.903    |
| Schwarz SC     | -0.62                 | -2.682          | -2.594          | -3.722  | -3.709            | -2.811       | -5.453    |

Table A2: VAR analysis on the effects of terms of trade shocks

Table 2 Reports the effects of terms of trade shocks (measured as changes in the TOT growth rates) on the different key macro variables of the Chilean economy given by a second order vector autoregressive equation (the remaining coefficients are not reported here).

We chose two lags for our VAR following the Schwarz and the Hannan-Quinn criterions

| Lag | LogL     | LR      | FPE       | AIC      | SC       | HQ       |
|-----|----------|---------|-----------|----------|----------|----------|
| 0   | 911.528  | 0       | 5.70E-20  | -24.447  | -24.229  | -24.36   |
| 1   | 1176.146 | 472.022 | 1.69E-22  | -30.274  | -28.531  | -29.579  |
| 2   | 1293.722 | 187.486 | 2.74E-23  | -32.128  | -28.858* | -30.823* |
| 3   | 1342.764 | 68.924  | 2.99E-23  | -32.129  | -27.334  | -30.216  |
| 4   | 1421.307 | 95.525* | 1.61E-23  | -32.927  | -26.607  | -30.406  |
| 5   | 1482.338 | 62.681  | 1.60E-23  | -33.252  | -25.406  | -30.122  |
| 6   | 1556.53  | 62.161  | 1.38e-23* | -33.933  | -24.561  | -30.195  |
| 7   | 1634.354 | 50.48   | 1.52E-23  | -34.712* | -23.815  | -30.365  |

Table A3: VAR lag order selection criteria

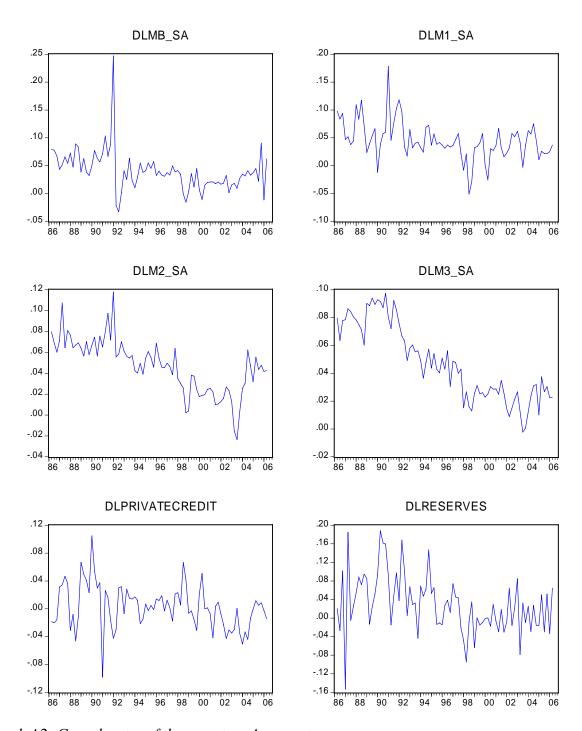
The VAR analysis shows properties similar to the ones uncovered by the OLS approach; a positive shock to the growth rate of TOT is associated with:

- A drop in the same order of magnitude of both the lending and the deposit rate. The negative impact is slightly bigger in the lending rate which may help explain the negative coefficient of the domestic spread in the single OLS equation.
- Improvement in Chile's external risk evaluation.
- Higher growth rate of M1, and lower growth rate of private credit (M3-M1).
- Higher real aggregate demand. The initial positive effect is then quickly reversed after the first lag.

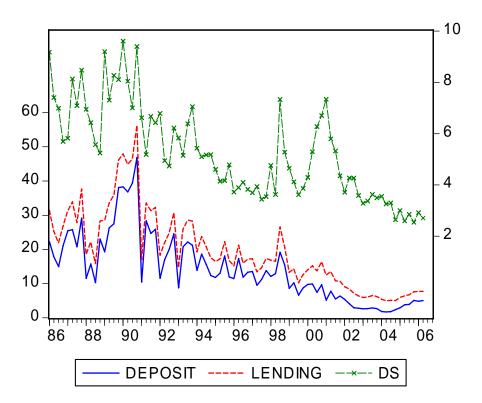
Table A4 reports the variance decomposition of the previous VAR. The analysis shows that changes in the growth rate of TOT absorb a significant variance from variables like the real aggregate demand, deposits and lending rates, money supply growth and private credit. For this decomposition we assume TOT to be the most exogenous measure so we place this variable last in the Cholesky order.

Variance Decomposition of Real Demand:

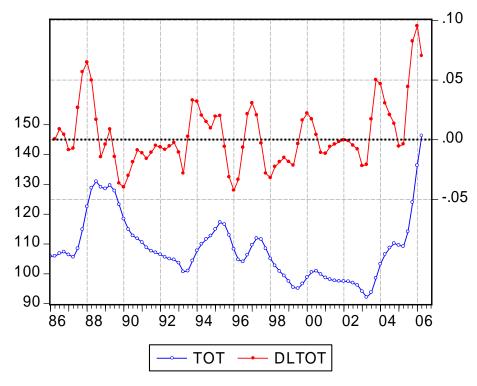
| Variance Decomposition of Real Demand:  Period | Real Demand               | Deposit                     | Lending                   | M1                          | Priv Credit               | Econ Risk                 | тот                         |
|------------------------------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|
| 1                                              | 100                       | Берозіі                     | Lenang                    |                             | THI OICUI                 | LOON WOR                  | 101                         |
| 2                                              | 97.35                     | 0.3                         | 1.12                      | 0.01                        | 0.05                      | 0.39                      | 0.78                        |
| 3                                              | 95.63                     | 0.17                        | 2.28                      | 0.3                         | 0.03                      | 0.43                      | 1.16                        |
| 4                                              | 93.73                     | 0.15                        | 3.98                      | 0.83                        | 0.03                      | 0.46                      | 0.83                        |
| 5                                              | 90.81                     | 0.2                         | 5.88                      | 1.45                        | 0.08                      | 0.57                      | 1.01                        |
| 6                                              | 86                        | 0.23                        | 7.86                      | 1.91                        | 0.31                      | 0.7                       | 2.99                        |
| 7                                              | 79.93                     | 0.21                        | 9.63                      | 2.06                        | 0.78                      | 0.81                      | 6.59                        |
| 8                                              | 74.23                     | 0.37                        | 11.05                     | 1.96                        | 1.41                      | 0.87                      | 10.11                       |
| 9                                              | 70.06                     | 0.94                        | 12.1                      | 1.87                        | 1.95                      | 0.92                      | 12.16                       |
| 10 Variance Decomposition of Deposit Rates:    | <mark>67.46</mark>        | <mark>1.88</mark>           | <mark>12.78</mark>        | <mark>1.98</mark>           | <mark>2.22</mark>         | <mark>0.99</mark>         | <mark>12.67</mark>          |
| 1                                              | 4.95                      | 95.05                       |                           |                             |                           |                           |                             |
| 2                                              | 4.65                      | 88.99                       | 1.05                      | 0.73                        | 1.56                      | 0.32                      | 2.71                        |
| 3                                              | 4.62                      | 81.44                       | 1.53                      | 1.02                        | 3.6                       | 0.57                      | 7.21                        |
| <u>4</u>                                       | 4.52                      | 76.36                       | 1.45                      | 2.64                        | 4.57                      | 0.48                      | 9.98                        |
| <mark>5</mark>                                 | <mark>4.81</mark>         | <mark>72.4</mark>           | <mark>2.57</mark>         | <mark>3.46</mark>           | <mark>5.12</mark>         | <mark>0.44</mark>         | <mark>11.2</mark>           |
| 6                                              | 5.37                      | 69.96                       | 4.08                      | 3.9                         | 5.8                       | 0.4                       | 10.49                       |
| 7                                              | 5.86                      | 67.68                       | 5.71                      | 4.2                         | 6.59                      | 0.4                       | 9.56                        |
| 8<br>9                                         | 6.05<br>5.95              | 65.27<br>63.1               | 7.32<br>8.56              | 4.4<br>4.71                 | 7.72<br>8.96              | 0.46<br>0.55              | 8.77<br>8.18                |
| 10                                             | 5.95<br>5.71              | 61.14                       | 9.51                      | 5.12                        | 10.1                      | 0.62                      | 7.8                         |
| Variance Decomposition of Lending Rates:       | V.1 1                     | <b>∪</b> 1.1¬               | 0.01                      | 0.12                        |                           | 3.02                      | 0                           |
| 1                                              | 5.09                      | 91.93                       | 2.98                      |                             |                           |                           |                             |
| 2                                              | 4.59                      | 87.58                       | 2.49                      | 0.79                        | 1.77                      | 0.54                      | 2.23                        |
| 3                                              | 4.51                      | 79.18                       | 3.73                      | 0.89                        | 3.92                      | 1.2                       | 6.57                        |
| 4                                              | 4.47                      | 74.26                       | 3.58                      | 2.32                        | 5.25                      | 1.04                      | 9.09                        |
| <mark>5</mark><br>6                            | <mark>4.87</mark><br>5.66 | <mark>69.93</mark><br>67.01 | <mark>4.83</mark><br>6.48 | <mark>3.22</mark><br>3.72   | <mark>5.89</mark><br>6.62 | <mark>0.96</mark><br>0.88 | 10.28<br>9.63               |
| 7                                              | 6.43                      | 64.41                       | 8.17                      | 4.09                        | 7.37                      | 0.84                      | 9.03<br>8.7                 |
| 8                                              | 6.86                      | 61.76                       | 9.83                      | 4.34                        | 8.41                      | 0.88                      | 7.92                        |
| 9                                              | 6.91                      | 59.46                       | 11.13                     | 4.68                        | 9.54                      | 0.94                      | 7.34                        |
| 10                                             | 6.7                       | 57.46                       | 12.14                     | 5.13                        | 10.59                     | 1.01                      | 6.98                        |
| Variance Decomposition of M1:                  |                           |                             |                           |                             |                           |                           |                             |
| 1                                              | 9.8                       | 48.04                       | 1.27                      | 40.88                       |                           |                           |                             |
| 2                                              | 8.38                      | 41.49                       | 3.98                      | 39.24                       | 0.13                      | 4.96                      | 1.82                        |
| 3<br>4                                         | 7.42<br>7.41              | 37.18<br>35.8               | 3.49<br>4.13              | 37.09<br>35.5               | 0.18<br>0.36              | 8.67<br>8.3               | 5.96<br>8.49                |
| 5                                              | 7.41                      | 35.64                       | 4.13                      | 33.96                       | 1.54                      | 8.26                      | 9.23                        |
| 6                                              | 7.2                       | 35.21                       | 4.01                      | 33.74                       | 2.48                      | 8.26                      | 9.1                         |
| 7                                              | 7.12                      | 34.57                       | 3.95                      | 33.63                       | 3.06                      | 8.12                      | 9.55                        |
| 8                                              | 7.04                      | 33.99                       | 3.89                      | 33.54                       | 3.18                      | 7.98                      | 10.38                       |
| <mark>9</mark>                                 | <mark>6.96</mark>         | 33.81                       | <mark>3.93</mark>         | <mark>33.42</mark>          | <mark>3.19</mark>         | <mark>7.9</mark>          | 10.79                       |
| 10                                             | 6.97                      | 34                          | 4.1                       | 33.18                       | 3.2                       | 7.83                      | 10.72                       |
| Variance Decomposition of Private Credit:      | 0.4                       | 56.17                       | 1.60                      | 24.22                       | 0.50                      |                           |                             |
| 1<br>2                                         | 9.4<br>8.67               | 53.24                       | 1.62<br>3.19              | 24.23<br>21.11              | 8.58<br>9.28              | 2.53                      | 1.99                        |
| 3                                              | 7.75                      | 47.48                       | 3.13                      | 19.09                       | 9.23                      | 6.53                      | 6.8                         |
| 4                                              | 7.42                      | 45.79                       | 2.98                      | 19.08                       | 9.21                      | 6.24                      | 9.29                        |
| 5                                              | 7.26                      | 44.71                       | 3.05                      | 19.38                       | 8.99                      | 6.42                      | 10.19                       |
| 6                                              | 7.4                       | 44.49                       | 3.65                      | 19.17                       | 8.86                      | 6.38                      | 10.05                       |
| 7                                              | 7.6                       | 44.4                        | 4.12                      | 18.76                       | 8.69                      | 6.25                      | 10.18                       |
| 8                                              | 7.63                      | 44.01                       | 4.54                      | 18.41                       | 8.75                      | 6.18                      | 10.47                       |
| 9<br>10                                        | <mark>7.56</mark><br>7.55 | <mark>43.72</mark><br>43.46 | <mark>4.76</mark><br>4.84 | <mark>18.22</mark><br>18.18 | <mark>9.05</mark><br>9.33 | <mark>6.19</mark><br>6.2  | <mark>10.51</mark><br>10.45 |
| Variance Decomposition of Econ risk:           | 7.55                      | -√J.7U                      | -7.∪-7                    | 10.10                       | 5.55                      | 0.2                       | 10.40                       |
| 1                                              | 0.43                      | 0.86                        | 2.38                      | 5.76                        | 0.87                      | 89.7                      |                             |
| 2                                              | 0.46                      | 1.39                        | 2.2                       | 6.02                        | 3.8                       | 82.74                     | 3.39                        |
| 3                                              | 0.84                      | 4.47                        | 2.01                      | 10.12                       | 3.62                      | 75.13                     | 3.82                        |
| 4                                              | 0.91                      | 5.32                        | 2.08                      | 10.34                       | 3.65                      | 73.93                     | 3.78                        |
| 5                                              | 0.91                      | 5.48<br>5.48                | 2.07                      | 10.32                       | 3.68                      | 73.76                     | 3.78                        |
| 6<br>7                                         | 0.91<br>0.93              | 5.48<br>5.48                | 2.07<br>2.07              | 10.34<br>10.39              | 3.74<br>3.8               | 73.68<br>73.56            | 3.78<br>3.78                |
| 8                                              | 0.95                      | 5.48<br>5.48                | 2.07                      | 10.39                       | 3.84                      | 73.36<br>73.45            | 3.76                        |
| 9                                              | 0.99                      | 5.46                        | 2.07                      | 10.44                       | 3.86                      | 73.45                     | 3.77                        |
| 10                                             | 1.02                      | 5.52                        | 2.11                      | 10.47                       | 3.88                      | 73.25                     | 3.76                        |
| . •                                            |                           |                             |                           |                             | 00                        |                           | •                           |


Table A4: VAR variance decomposition

### Response to Cholesky One S.D. Innovations ± 2 S.E.

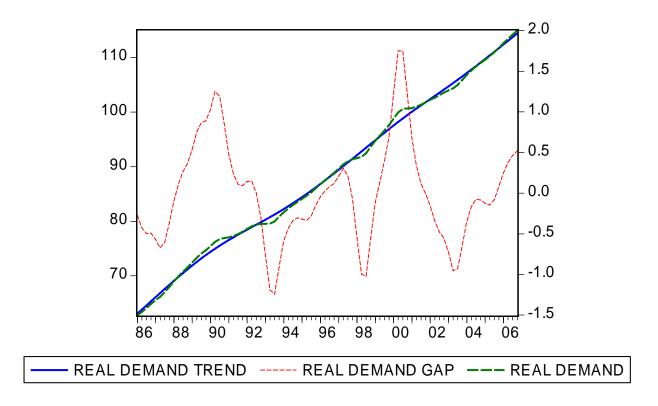


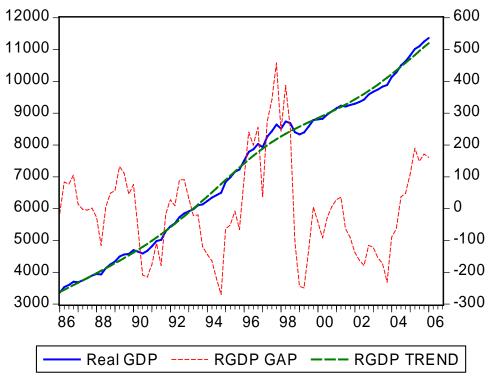

Graph A1: Impulse Responses to one Standard Deviation innovation in the TOT growth rates


# **Graphical Appendix**

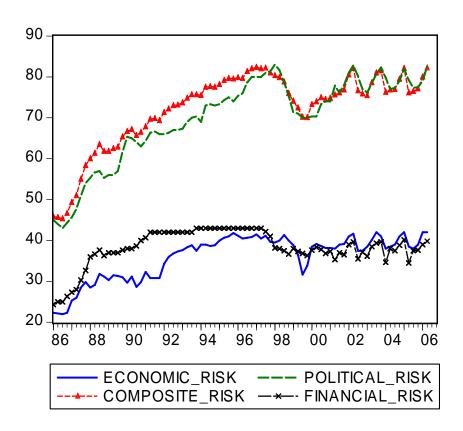


Graph A2: Growth rates of the monetary Aggregates





Graph A3: Interests rates and domestic spread




Left scale is the index number for TOT (Export Price Index/ Import Price Index. Seasonally adjusted); right scale is the Growth rate of TOT (proxied by DLTOT).

Graph A4: Terms of Trade





Graph A5: Real Aggregate Demand and Real Aggregate Output



Graph A6: External Measures of Country Risk

## **Appendix B:** Data definitions and tables

#### "Manufactures":

Average of annual observations of the percentage of economic activity dedicated to the production of manufactures (measured as percentage of the GDP), following the definition given by the United Nations, Manufactures comprises pf the tabulation category D and divisions 15-37 in the International Standard Industrial Classification of All Economic Activities, Revision 3. It is defined as the physical or chemical transformation of materials or components into new products, whether the work is performed by power-driven machines or by hand, whether it is done in a factory or in the worker's home, and whether the products are sold as wholesale or retail. Included are assembly of component parts of manufactured products and recycling of waste materials.

#### "Commodities":

Average of annual observations of the percentage of economic activity dedicated to the production of agricultural products, mining, hunting, and utilities.

#### "Reserves":

Average of annual observations of the Stock of Reserves over GDP taken during the sample period. The sample period depends on data availability.

# "NE Volatility":

Nominal exchange rate volatility is the average annual volatility. Each annual observation corresponds to the percent standard deviation of the monthly nominal rate of the domestic

currency against the U.S. dollar, 
$$\sqrt{\sum \left(\frac{x-\bar{x}}{\bar{x}}\right)^2} / (n-1)$$
).

#### "Financial Integration":

Average of annual observations of Edward's measure of financial integration (see <u>Capital</u> Mobility and Economic Performance: Are Emerging Countries Different?)

#### "Inflation"

Average of annual CPI inflation observations

#### "Terms of Trade":

Average of annual observations of the terms of trade defined as the ratio of the export price index to the corresponding import price index, measured relative to the base year 2000.

**Table B1: Indebtedness Ranking** 

Zambia

| 1 = Severely Indebted | 2 = Moderately Indebted | 3 = Less Indebted    |
|-----------------------|-------------------------|----------------------|
| Angola                | Benin                   | Albania              |
| Argentina             | Bolivia                 | Algeria              |
| Belize                | Burkina Faso            | Armenia              |
| Brazil                | Cambodia                | Azerbaijan           |
| Bulgaria              | Cameroon                | Bangladesh           |
| Burundi               | Cape Verde              | Barbados             |
| Central African Rep.  | Chile                   | Belarus              |
| Chad                  | Colombia                | Bosnia & Herzegovina |
| Comoros               | El Salvador             | Botswana             |
| Congo, Republic of    | Ethiopia                | China                |
| Côte d'Ivoire         | Honduras                | Costa Rica           |
| Croatia               | Hungary                 | Czech Republic       |
| Dominica              | Jamaica                 | Djibouti .           |
| Ecuador               | Kenya                   | Dominican Republic   |
| Eritrea               | Lithuania               | Egypt .              |
| Estonia               | Madagascar              | Equatorial Guinea    |
| Gabon                 | Malaysia                | Fiji                 |
| Gambia, The           | Mauritania              | ,<br>Georgia         |
| Grenada               | Mauritius               | Ghana                |
| Guinea                | Moldova                 | Guatemala            |
| Guinea-Bissau         | Mongolia                | Haiti                |
| Guyana                | Niger                   | India                |
| Indonesia             | Nigeria                 | Iran, I.R. of        |
| Jordan                | Pakistan                | Lesotho              |
| Kazakhstan            | Papua New Guinea        | Macedonia, FYR       |
| Kyrgyz Republic       | Paraguay                | Maldives             |
| Lao People's Dem.Rep  | Philippines             | Mali                 |
| Latvia                | Poland                  | Mexico               |
| Liberia               | Russia                  | Morocco              |
| Malawi                | Slovak Republic         | Mozambique           |
| Myanmar               | Solomon Islands         | Namibia              |
| Panama                | Sri Lanka               | Nicaragua            |
| Peru                  | St. Lucia               | Oman                 |
| Rwanda                | St. Vincent & Grens.    | Romania              |
| Samoa                 | Tunisia                 | Senegal              |
| São Tomé & Príncipe   | Turkmenistan            | South Africa         |
| Seychelles            | Uganda                  | Swaziland            |
| Sierra Leone          | Venezuela, Rep. Bol.    | Tanzania             |
| Somalia               | , <b>.</b>              | Thailand             |
| St. Kitts and Nevis   |                         | Tonga                |
| Sudan                 |                         | Trinidad and Tobago  |
| Syrian Arab Republic  |                         | Ukraine              |
| Tajikistan            |                         | Vanuatu              |
| Togo                  |                         | Vietnam              |
| Turkey                |                         | Yemen, Republic of   |
| Uruguay               |                         | - , - ,              |
| Zambio                |                         |                      |

**Table B2: Income Level** 

| 1=Low Income         | 2=Lower-Middle Income | 3=Upper-Middle Income | 4=High Income        |
|----------------------|-----------------------|-----------------------|----------------------|
| Afghanistan, I.S. of | Albania               | Antigua and Barbuda   | Aruba                |
| Bangladesh           | Algeria               | Argentina             | Australia            |
| Benin                | Angola                | Barbados              | Austria              |
| Burkina Faso         | Armenia               | Belize                | Bahamas, The         |
| Burundi              | Azerbaijan            | Botswana              | Bahrain, Kingdom of  |
| Cambodia             | Belarus               | Chile                 | Belgium              |
| Cameroon             | Bolivia               | Costa Rica            | Canada               |
| Central African Rep. | Bosnia & Herzegovina  | Croatia               | Hong Kong            |
| Chad                 | Brazil                | Czech Republic        | Macao                |
| Comoros              | Bulgaria              | Dominica              | Cyprus               |
| Congo, Republic of   | Cape Verde            | Equatorial Guinea     | Denmark              |
| Côte d'Ivoire        | China                 | Estonia               | Faroe Islands        |
| Eritrea              | Colombia              | Gabon                 | Finland              |
| Ethiopia             | Djibouti              | Grenada               | France               |
| Gambia, The          | Dominican Republic    | Hungary               | Germany              |
| Ghana                | Ecuador               | Latvia                | Iceland              |
| Guinea               | Egypt                 | Libya                 | Ireland              |
| Guinea-Bissau        | El Salvador           | Lithuania             | Israel               |
| Haiti                | Fiji                  | Malaysia              | Italy                |
| India                | Georgia               | Mauritius             | Japan                |
| Kenya                | Guatemala             | Mexico                | Kuwait               |
| Korea                | Guyana                | Oman                  | Luxembourg           |
| Kyrgyz Republic      | Honduras              | Panama                | Malta                |
| Lao People's Dem.Rep | Indonesia             | Poland                | Netherlands          |
| Lesotho              | Iran, I.R. of         | Russia                | Netherlands Antilles |
| Liberia              | Iraq                  | Seychelles            | New Zealand          |
| Madagascar           | Jamaica               | Slovak Republic       | Norway               |
| Malawi               | Jordan                | South Africa          | Portugal             |
| Mali                 | Kazakhstan            | St. Kitts and Nevis   | Saudi Arabia         |
| Mauritania           | Macedonia, FYR        | St. Lucia             | Singapore            |
| Moldova              | Maldives              | St. Vincent & Grens.  | Slovenia             |
| Mongolia             | Morocco               | Trinidad and Tobago   | Spain                |
| Mozambique           | Namibia               | Turkey                | Sweden               |
| Myanmar              | Paraguay              | Uruguay               | Switzerland          |
| Nepal                | Peru                  | Venezuela, Rep. Bol.  | United Kingdom       |
| Nicaragua            | Philippines           |                       | United States        |
| Niger                | Romania               |                       |                      |
| Nigeria              | Samoa                 |                       |                      |
| Pakistan             | Sri Lanka             |                       |                      |
| Papua New Guinea     | Suriname              |                       |                      |
| Rwanda               | Swaziland             |                       |                      |
| São Tomé & Príncipe  | Syrian Arab Republic  |                       |                      |
| Senegal              | Thailand              |                       |                      |
| Sierra Leone         | Tonga                 |                       |                      |
| Solomon Islands      | Tunisia               |                       |                      |
| Somalia              | Turkmenistan          |                       |                      |
| Sudan                | Ukraine               |                       |                      |
| Tajikistan           | Vanuatu               |                       |                      |
| Tanzania             | West Bank and Gaza    |                       |                      |
| Togo                 |                       |                       |                      |
| Uganda               |                       |                       |                      |
| Vietnam              |                       |                       |                      |
| Yemen, Republic of   |                       |                       |                      |
| Zambia               |                       |                       |                      |

Table B3: Data Availability for each country

| country                   | start        | end          | country              | start        | end          | country              | start        | end          |
|---------------------------|--------------|--------------|----------------------|--------------|--------------|----------------------|--------------|--------------|
| Afghanistan, I.S. of      | 1979         | 1981         | Gambia, The          | 1978         | 1997         | Nigeria              | 1977         | 2004         |
| Albania                   | 1984         | 2003         | Georgia              | 1997         | 2004         | Norway               | 1970         | 2004         |
| Algeria                   | 1970         | 1997         | Germany              | 1971         | 2004         | Oman                 | 1974         | 2003         |
| Angola                    | 1985         | 2004         | Ghana                | 1975         | 2004         | Pakistan             | 1970         | 2004         |
| Antigua and Barbuda       | 1977         | 2002         | Grenada              | 1977         | 2002         | Panama               | 1977         | 2004         |
| Argentina                 | 1970         | 2004         | Guatemala            | 1970         | 2004         | Papua New Guinea     | 1976         | 2001         |
| Armenia                   | 1993         | 2004         | Guinea               | 1986         | 2004         | Paraguay             | 1970         | 2004         |
| Aruba                     | 1991         | 2002         | Guinea-Bissau        | 1982         | 1997         | Peru                 | 1970         | 2004         |
| Australia                 | 1970         | 2004         | Guinea-Bissau        | 2001         | 2003         | Philippines          | 1970         | 2004         |
| Austria                   | 1970         | 2004         | Guyana               | 1977         | 1985         | Poland               | 1985         | 2004         |
| Bahamas, The              | 1976         | 2003         | Guyana               | 1992         | 2004         | Portugal             | 1972         | 2004         |
| Bahrain, Kingdom of       | 1980         | 2003         | Haiti                | 1971         | 2003         | Romania              | 1987         | 2004         |
| Bangladesh                | 1976<br>1970 | 2004<br>2003 | Honduras             | 1974<br>1982 | 2004<br>2004 | Russia               | 1994<br>1976 | 2004<br>2004 |
| Barbados<br>Belarus       | 1970         | 2003         | Hungary<br>Iceland   | 1962         | 2004         | Rwanda<br>Samoa      | 1976         | 1999         |
| Belgium                   | 2002         | 2004         | India                | 1970         | 2004         | São Tomé & Príncipe  | 1976         | 1990         |
| Belize                    | 1984         | 2004         | Indonesia            | 1970         | 2003         | São Tomé & Príncipe  | 1998         | 2002         |
| Benin                     | 1974         | 2004         | Iran, I.R. of        | 1976         | 1990         | Saudi Arabia         | 1970         | 2002         |
| Bolivia                   | 1970         | 2003         | Iran, I.R. of        | 1993         | 2000         | Senegal              | 1974         | 2004         |
| Bosnia & Herzegovina      | 1998         | 2004         | Iraq                 | 1976         | 1977         | Seychelles           | 1976         | 2003         |
| Botswana                  | 1975         | 2003         | Ireland              | 1970         | 2004         | Sierra Leone         | 1977         | 2004         |
| Brazil                    | 1970         | 2004         | Israel               | 1970         | 2004         | Singapore            | 1970         | 2004         |
| Bulgaria                  | 1980         | 2004         | Italy                | 1970         | 2004         | Slovak Republic      | 1993         | 2000         |
| Burkina Faso              | 1974         | 1994         | Jamaica              | 1970         | 2004         | Slovak Republic      | 2002         | 2003         |
| Burkina Faso              | 2000         | 2001         | Japan                | 1970         | 2004         | Slovenia             | 1992         | 2004         |
| Burundi                   | 1985         | 2003         | Jordan               | 1970         | 2004         | Solomon Islands      | 1975         | 1999         |
| Cambodia                  | 1992         | 2004         | Kazakhstan           | 1995         | 2004         | Somalia              | 1977         | 1989         |
| Cameroon                  | 1977         | 1995         | Kenya                | 1975         | 2004         | South Africa         | 1970         | 2004         |
| Canada                    | 1970         | 2004         | Korea                | 1970         | 2004         | Spain                | 1970         | 2004         |
| Cape Verde                | 1986         | 2003         | Kuwait               | 1975         | 2003         | Sri Lanka            | 1970         | 2004         |
| Central African Rep.      | 1977         | 1994         | Kyrgyz Republic      | 1993         | 2004         | St. Kitts and Nevis  | 1980         | 2002         |
| Chad                      | 1977         | 1994         | Lao People's Dem.Rep | 1984         | 2001         | St. Lucia            | 1979         | 2002         |
| Chile                     | 1970         | 2004         | Latvia               | 1992         | 2004         | St. Vincent & Grens. | 1978         | 2002         |
| China                     | 1982         | 2004         | Lesotho              | 1975         | 2004         | Sudan                | 1977         | 2004         |
| Hong Kong                 | 1998         | 2004         | Liberia              | 1979         | 1987         | Suriname             | 1977         | 2004         |
| Macao                     | 2002         | 2002         | Libya                | 1977         | 1987         | Swaziland            | 1974         | 2004         |
| Colombia                  | 1970         | 2004         | Libya                | 1990         | 2004         | Sweden               | 1970         | 2004         |
| Comoros                   | 1980         | 1995         | Lithuania            | 1993         | 2004         | Switzerland          | 1970         | 2004         |
| Congo, Republic of        | 1978         | 2003         | Luxembourg           | 1995         | 2004         | Syrian Arab Republic | 1970         | 2004         |
| Costa Rica                | 1970         | 2004         | Macedonia, FYR       | 1996         | 2004         | Tajikistan           | 2002         | 2004         |
| Côte d'Ivoire             | 1970         | 2004         | Madagascar           | 1974         | 2003         | Tanzania             | 1988         | 2004         |
| Croatia                   | 1993         | 2004         | Malawi               | 1977         | 2002<br>2003 | Thailand             | 1970         | 2004         |
| Cyprus                    | 1976<br>1993 | 2004<br>2004 | Malaysia<br>Maldiyaa | 1970<br>1980 |              | Togo                 | 1974         | 2003<br>1993 |
| Czech Republic<br>Denmark | 1993         | 2004         | Maldives<br>Mali     | 1975         | 2004<br>2003 | Tonga<br>Tonga       | 1975<br>2001 | 2002         |
| Djibouti                  | 1992         | 1995         | Malta                | 1971         | 2003         | Trinidad and Tobago  | 1970         | 2002         |
| Dominica                  | 1977         | 2002         | Mauritania           | 1975         | 1998         | Tunisia              | 1970         | 2003         |
| Dominican Republic        | 1970         | 2002         | Mauritius            | 1980         | 2004         | Turkey               | 1970         | 2004         |
| Ecuador                   | 1970         | 2004         | Mexico               | 1970         | 2004         | Turkmenistan         | 1996         | 1997         |
| Egypt                     | 1970         | 2004         | Moldova              | 1994         | 2004         | Uganda               | 1980         | 2004         |
| El Salvador               | 1970         | 2004         | Mongolia             | 1993         | 2004         | Ukraine              | 1994         | 2004         |
| Equatorial Guinea         | 1987         | 1996         | Morocco              | 1970         | 2004         | United Kingdom       | 1970         | 2004         |
| Eritrea                   | 1992         | 2000         | Mozambique           | 1980         | 2004         | United States        | 1970         | 2004         |
| Estonia                   | 1992         | 2004         | Namibia              | 1990         | 2004         | Uruguay              | 1970         | 2004         |
| Ethiopia                  | 1981         | 2004         | Nepal                | 1976         | 2004         | Vanuatu              | 1982         | 2003         |
| Euro Area                 | 1998         | 2004         | Netherlands          | 1970         | 2004         | Venezuela, Rep. Bol. | 1970         | 2004         |
| Fiji                      | 1979         | 1999         | Netherlands Antilles | 1980         | 1985         | Vietnam              | 1996         | 2002         |
| Finland                   | 1970         | 2004         | New Zealand          | 1970         | 2004         | Yemen, Republic of   | 1990         | 2004         |
| France                    | 1970         | 2004         | Nicaragua            | 1977         | 2004         | Zambia               | 1978         | 1991         |
| Gabon                     | 1978         | 2003         | Niger                | 1974         | 2003         | Zambia               | 1997         | 2000         |
|                           |              |              |                      |              |              |                      |              |              |

Table B4: Estimated  $\beta$  for each country\*

| Name                           | Beta             | SE                      | ars | squared          | Name                    | Beta   | SE         | ars      | R-squared     |
|--------------------------------|------------------|-------------------------|-----|------------------|-------------------------|--------|------------|----------|---------------|
| Albania                        | -0.864           | [0.170]***              | 19  | 0.4337           | Kazakhstan              | -1.036 | [0.45]*    | 9        | 0.466         |
| Algeria                        | -0.499           | [0.196]**               | 27  | 0.2159           | Kenya                   | -0.597 | [0.18]***  | 29       | 0.3039        |
| Angola                         | -1.018           | [0.192]***              | 19  | 0.5085           | Korea                   | -0.336 | [0.1]***   | 34       | 0.171         |
| Antigua and Barb.              | -0.531           | [0.169]***              | 25  | 0.2654           | Kuwait                  | -0.859 | [0.06]***  | 28       | 0.432         |
| Argentina                      | -0.396           | [0.083]***              | 34  | 0.1896           | Kyrgyz Republic         | -0.669 | [0.245]**  | 11       | 0.335         |
| Aruba                          | -1.216           | [0.270]***              | 11  | 0.6406           | Lesotho                 | -0.369 | [0.159]**  | 29       | 0.185         |
| Australia                      | -0.333           | [0.144]**               | 34  | 0.1534           | Liberia                 | -0.71  | [0.344]*   | 8        | 0.222         |
| Austria                        | -0.342           | [0.196]*                | 34  | 0.1659           | Libya                   | -0.764 | [0.27]***  | 24       | 0.3           |
| Bahamas, The                   | -0.422           | [0.198]**               | 27  | 0.2768           | Luxembourg              | -1.235 | [0.31]***  | 9        | 0.672         |
| Bahrain, Kingdom of            | -0.543           | [0.167]***              | 23  | 0.2777           | Macedonia, FYR          | -1.024 | [0.426]*   | 8        | 0.495         |
| Bangladesh                     | -0.436           | [0.144]***              | 28  | 0.2207           | Madagascar              | -0.397 | [0.170]**  | 29       | 0.218         |
| Barbados                       | -0.236           | [0.071]***              | 33  | 0.184            | Malawi                  | -0.558 | [0.19]***  | 25       | 0.279         |
| Benin                          | -0.87            | [0.095]***              | 29  | 0.4344           | Malaysia                | -0.275 | [0.115]**  | 33       | 0.11          |
| Bolivia                        | -0.716           | [0.234]***              | 34  | 0.3455           | Maldives                | -0.263 | [0.117]**  | 24       | 0.268         |
| Botswana                       | -0.371           | [0.158]**               | 28  | 0.1934           | Mali                    | -0.684 | [0.278]**  | 28       | 0.337         |
| Brazil                         | -0.214           | [0.093]**               | 34  | 0.0841           | Malta                   | -0.249 | [0.106]**  | 33       | 0.107         |
| Bulgaria                       | -0.515           | [0.189]**               | 24  | 0.2707           | Mauritius               | -0.514 | [0.16]***  | 24       | 0.300         |
| Burkina Faso                   | -0.449           | [0.228]*                | 21  | 0.2525           | Mexico                  | -0.413 | [0.15]***  | 34       | 0.204         |
| Burundi                        | -1.153           | [0.215]***              | 18  | 0.5653           | Mongolia                | -0.512 | [0.244]*   | 11       | 0.298         |
| Cambodia                       | -0.845           | [0.141]***              | 12  | 0.4238           | Morocco                 | -0.2   | [0.115]*   | 34       | 0.093         |
| Cameroon                       | -0.837           | [0.358]**               | 18  | 0.3319           | Mozambique              | -0.41  | [0.151]**  | 24       | 0.207         |
| Canada                         | -0.194           | [0.107]*                | 34  | 0.0816           | Nepal                   | -0.312 | [0.121]**  | 28       | 0.160         |
| Cape Verde                     | -0.25            | [0.121]*                | 17  | 0.1713           | New Zealand             | -0.498 | [0.14]***  | 34       | 0.249         |
| Central African Rep.           | -1.015           | [0.237]***              | 17  | 0.5007           | Niger                   | -0.593 | [0.19]***  | 29       | 0.309         |
| Chad                           | -0.52            | [0.193]**               | 17  | 0.2594           | Nigeria                 | -0.615 | [0.16]***  | 27       | 0.283         |
| Chile                          | -0.447           | [0.117]***              | 34  | 0.2108           | Norway                  | -0.118 | [0.090]    | 34       | 0.042         |
| China                          | -0.506           | [0.152]***              | 22  | 0.2379           | Oman                    | -0.676 | [0.15]***  | 29       | 0.345         |
| Hong Kong                      | -0.506           | [0.173]**               | 6   | 0.3946           | Pakistan                | -0.347 | [0.145]**  | 34       | 0.178         |
| Colombia                       | -0.361           | [0.136]**               | 34  | 0.1842           | Panama                  | -0.4   | [0.192]**  | 27       | 0.198         |
| Comoros                        | -0.604           | [0.150]***              | 15  | 0.302            | Papua New Guinea        | -0.276 | [0.122]**  | 25       | 0.123         |
| Congo, Republic of             | -0.629           | [0.137]***              | 25  | 0.3085           | Paraguay Paraguay       | -0.334 | [0.157]**  | 34       | 0.162         |
| Costa Rica                     | -0.329           | [0.103]***              | 34  | 0.1602           | Peru                    | -0.533 | [0.19]***  | 34       | 0.284         |
| Côte d'Ivoire                  | -0.272           | [0.117]**               | 34  | 0.1252           | Philippines             | -0.285 | [0.123]**  | 34       | 0.136         |
| Croatia                        | -0.714           | [0.298]**               | 11  | 0.4914           | Poland                  | -0.717 | [0.123]*** | 19       | 0.354         |
| Cyprus                         | -0.404           | [0.124]***              | 28  | 0.2039           | Portugal                | -0.325 | [0.09]***  | 32       | 0.334         |
| Cypi us<br>Czech Republic      | -0.626           | [0.124]                 | 11  | 0.4961           | Rwanda                  | -0.323 | [0.23]***  | 28       | 0.177         |
| -                              | -0.142           | [0.072]*                | 34  | 0.4901           |                         | -0.402 | [0.212]*   | 21       | 0.400         |
| Denmark<br>Dominica            | -0.142           | [0.308]**               | 25  | 0.3384           | Samoa<br>Saudi Arabia   | -0.402 | [0.101]**  | 34       | 0.210         |
| Dominica<br>Dominican Republic | -0.638           | [0.232]**               | 34  | 0.3384           |                         | -0.223 | [0.101]*** | 28       | 0.104         |
| Dominican Kepublic<br>Ecuador  | -0.477           | [0.232]***              | 34  | 0.1703           | Seychelles Siorra Loona | -0.47  | [0.14]***  | 28<br>27 | 0.309         |
|                                | -0.73<br>-0.917  | [0.185]***              |     |                  | Sierra Leone            |        | [0.232]*** |          |               |
| El Salvador                    |                  | [0.133]**               | 34  | 0.47             | Slovenia                | -0.702 | [0.12]***  | 12       | 0.568         |
| Eritrea<br>Ethionio            | -0.42            |                         | 8   | 0.3374           | Solomon Islands         | -0.601 |            | 24       | 0.321         |
| Ethiopia                       | -0.818           | [0.225]***              | 23  | 0.3456           | Somalia                 | -0.837 | [0.20]***  | 12       | 0.45          |
| Euro Area                      | -0.732           | [0.263]**               | 6   | 0.3507           | South Africa            | -0.434 | [0.165]**  | 34       | 0.245         |
| Fiji<br>-                      | -0.537           | [0.145]***              | 20  | 0.2653           | Spain                   | -0.247 | [0.118]**  | 34       | 0.102         |
| France                         | -0.346<br>-0.435 | [0.132]**<br>[0.140]*** | 34  | 0.1711<br>0.2133 | Sri Lanka               | -0.47  | [0.14]***  | 34       | 0.236<br>0.20 |
| Gabon                          |                  |                         | 25  | 0.0122           | St. Kitts and Nevis     | -0.456 | [0.167]**  | 22       | 0.00          |

| Georgia       | -1.051 | [0.115]*** | 7  | 0.8795 | St. Vincent & Gren.  | -0.56  | [0.14]*** | 24 | 0.3311 |
|---------------|--------|------------|----|--------|----------------------|--------|-----------|----|--------|
| Ghana         | -0.585 | [0.165]*** | 29 | 0.3038 | Sudan                | -0.359 | [0.129]** | 27 | 0.1894 |
| Grenada       | -0.317 | [0.160]*   | 25 | 0.1633 | Suriname             | -0.642 | [0.16]*** | 27 | 0.3163 |
| Guatemala     | -0.627 | [0.165]*** | 34 | 0.3334 | Swaziland            | -0.216 | [0.083]** | 30 | 0.1343 |
| Guinea        | -1.033 | [0.280]*** | 18 | 0.5167 | Syria                | -0.527 | [0.13]*** | 34 | 0.268  |
| Guinea-Bissau | -0.125 | [0.132]    | 17 | 0.034  | Thailand             | -0.198 | [0.05]*** | 34 | 0.0907 |
| Guyana        | -0.297 | [0.096]*** | 20 | 0.1822 | Togo                 | -0.838 | [0.20]*** | 29 | 0.6201 |
| Haiti         | -0.282 | [0.126]**  | 32 | 0.153  | Tonga                | -1.004 | [0.25]*** | 19 | 0.5141 |
| Honduras      | -0.586 | [0.163]*** | 30 | 0.2968 | Trinidad & Tobago    | -0.382 | [0.11]*** | 33 | 0.2019 |
| Hungary       | -0.385 | [0.225]    | 22 | 0.1799 | Tunisia              | -0.407 | [0.14]*** | 34 | 0.1996 |
| Iceland       | -0.722 | [0.153]*** | 34 | 0.3515 | Turkey               | -0.764 | [0.18]*** | 34 | 0.3605 |
| India         | -0.189 | [0.108]*   | 33 | 0.0736 | Uganda               | -0.372 | [0.194]*  | 24 | 0.1863 |
| Indonesia     | -0.358 | [0.126]*** | 34 | 0.1789 | United Kingdom       | -0.237 | [0.101]** | 34 | 0.1315 |
| Iran, I.R. of | -0.992 | [0.214]*** | 21 | 0.5216 | <b>United States</b> | -0.008 | [0.070]   | 34 | 0.0004 |
| Israel        | -0.403 | [0.165]**  | 34 | 0.2148 | Uruguay              | -0.494 | [0.13]*** | 34 | 0.2462 |
| Italy         | -0.425 | [0.171]**  | 34 | 0.2136 | Vanuatu              | -0.887 | [0.14]*** | 21 | 0.4174 |
| Jamaica       | -0.507 | [0.142]*** | 34 | 0.2612 | Venezuela            | -0.656 | [0.13]*** | 34 | 0.3164 |
| Japan         | -0.222 | [0.090]**  | 34 | 0.1013 | Vietnam              | -0.499 | [0.218]*  | 6  | 0.409  |
| Jordan        | -0.586 | [0.158]*** | 34 | 0.2926 | Zambia               | -0.926 | [0.18]*** | 16 | 0.4478 |
|               |        |            |    |        |                      |        |           |    |        |

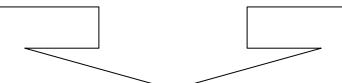
<sup>\*</sup> significant at 10%; \*\* significant at 5%; \*\*\* significant at 1%

#### References


- Aghion P., P. Bacchetta and A. Banerjee (2001) "Financial Development and the Instability of Open Economies," manuscript, MIT.
- Aghion, P., A. Banerjee, and T. Piketty (1999). "Dualism and Macroeconomic Volatility," *Quarterly Journal of Economics*, November, 1357-1397.
- Aghion, P., P. Bacchetta, R. Ranciere and K. Rogoff. (2006), "Exchange Rate Volatility and Productivity Growth: The Role of Financial Development," NBER WP # 12117.
- Aizenman, J and Daniel Riera-Crichton (2006) "Real Exchange Rate and International Reserves in the Era of Growing Financial and Trade Integration," NBER Working paper # 12363.
- Aizenman, J. and J. Lee (2005) "International Reserves: Precautionary versus Mercantilist Views, Theory and Evidence," forthcoming, *Open Economies Review*.
- Aizenman, J. and J. Lee (2006) "Financial versus Monetary Mercantilism Long-run View of Large International Reserves Hoarding," manuscript.
- Barnett, Steven, 2004. "Banking Sector Developments," pp.43-50 in *China's Growth and Integration into the World Economy*, edited by Eswar Prasad. IMF Occasional Paper 232.
- Ben-Bassat Avraham and Daniel Gottlieb. (1992). "Optimal international reserves and sovereign risk." *Journal of International Economics* 33, 345–62.
- Caballero, R. J. 2003. "On the International Financial Architecture: Insuring Emerging Markets." NBER Working Paper 9570. National Bureau of Economic Research, Cambridge, Mass.
- Caballero, R. J., and S. Panageas. 2003. "Hedging Sudden Stops and Precautionary Recessions: A Quantitative Framework." NBER Working Paper 9778. National Bureau of Economic Research, Cambridge, Mass.
- Caballero, R. J., E. Farhi and P-O Gourinchas. 2006. An Equilibrium Model of "Global Imbalances" and Low Interest Rates, NBER WP 11996.
- Calderón César and Klaus Schmidt-Hebbel, 2003, "Macroeconomic policies and performance in Latin America," *Journal of International Money and Finance*, December, 895-923
- Calvo, Guillermo. 1998. "Capital flows and capital-market crises: the simple economics of sudden stops." *Journal of Applied Economics* 1, 7, 7, 35–54.
- \_\_\_\_\_, Alejandro Izquierdo and Luis-Fernando Mejía. 2003, "On the empirics of sudden stops," manuscript, IDB.
- \_\_\_\_\_\_, 1991. "The Perils of Sterilization." *IMF Staff Papers*, vol. 38, pp. 921-926.
- Chang, Roberto and Andres Velasco. 1999. "Liquidity Cerises in Emerging Markets: Theory and Policy," NBER/Macroeconomics Annual, 1999, 11-57.
- Davis, J., R. Ossowski, J. Daniel, and S. Barnett. 2001. Stabilization and Savings Funds for Nonrenewable Resources, Experience and Fiscal Policy Implications; IMF Occasional paper # 205.
- Diamond, D. and P. Dybvig (1983). "Bank Runs, Liquidity and Deposit Insurance," *Journal of Political Economy* 91, pp. 401-419.
- Dooley P. Michael, David Folkerts-Landau, and Peter Garber. 2003. "An essay on the revived Bretton Woods system." Working Paper No. 9971. Cambridge, MA: NBER.
- . 2005. International Financial Stability Deutsche Bank, October, 2005.
- Edwards, Sebastian. 1983. "The demand for international reserves and exchange rate adjustments: the case of LDCs, 1964–1972." *Economica* 50, 269–80.
- 2004. "Thirty years of current account imbalances, current account reversals, and sudden stops." *IMF Staff Papers* 51 (Special Issue), 1–49.
- Eichengreen, Barry. 2006a. "Global Imbalances: The Blind Men and the Elephant," *Issues in Economic Policy No. 1 (Washington: Brookings Institution)*.

- Eichengreen, Barry. 2006b. "Insurance Underwriter or Financial Development Fund: What Role for Reserve Pooling in Latin America? NBER Working Paper # 12451.
- Flood, Robert and Nancy P. Marion. 2002. "Holding international reserves in an era of high capital mobility." In *Brookings Trade Forum 2001*, ed. S. Collins and D. Rodrik. Washington, DC: Brookings Institution Press.
- Garcia, Pablo, and Claudio Soto, "Large Holdings of International Reserves: Are They Worth It?" Central Bank of Chile Working Papers N° 299, December 2004.
- Glick, R. and M. Spiegel. 2005. "The Bretton Woods System: Are We Experiencing a Revival? Symposium Summary," SF FED Economic Letter # 2005-32.
- Hauner, D. (2005). "A Fiscal Price Tag for International Reserves," IMF WP/05/81.
- Hutchison, Michael and Ilan Noy. (2005). "How Bad Are Twins? Output Costs of Currency and Banking Crises." *Journal of Money, Credit and Banking* 37(4): 725-52.
- IDB (Inter-American Development Bank). 1995. Towards a Less Volatile Economy: 1995 Economic and Social Progress in Latin America Report. Washington, D.C.
- Jeanne, Olivier, and Romain Ranciere, "The Optimal Level of International Reserves for Emerging Market Economies: Formulas and Applications," IMF Research Department, May 2005.
- Kaminsky, Graciela L. and Carmen M. Reinhart. 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," *American Economic Review*; 89(3): 473-500.
- Levy Yeyati, E. 2005. "Liquidity Insurance in a Financially Dollarized Economy" forthcoming, *Financial Markets Volatility and Performance in Emerging Markets*, (NBER/Inter-American Seminar on Economics) NBER and University of Chicago Press. Sebastian Edwards and Marcio G. P. Garcia, editors.
- Rodrik, Dani. 2005. "The social cost of foreign exchange reserves," forthcoming, *International Economic Journal*.
- Rodrik, Dani, and Andres Velasco, "Short-Term Capital Flows," Annual World Bank Conference on Development Economics 1999, April 2000.
- Taylor, Alan, 2002, "A century of current account dynamics," *Journal of International Money and Finance*, 21, 6, November 2002, 725-748.

# Figure 1 The time line

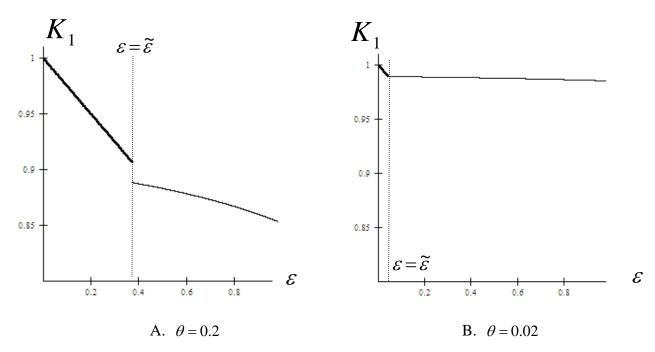

## Beginning of period 1:

Entrepreneurs with initial wealth  $H_1$ , subject to collateral constraint  $\mu$ , use bank financing  $\mu H_1$ . The combined liquidity  $(1 + \mu)H_1$  finances investment  $K_1$  and hoarding reserves,  $R_1$ ,  $(1 + \mu)H_1 = K_1 + R_1$ .



# End of period 1:

Liquidity shock materializes; an adverse shock  $\delta$ ;  $\delta < 0$  induces deposit drop of  $l(-\delta)\mu H_1$ .  $\rightarrow$  Reserves  $R_1$  are used to finance any liquidity shock and to hire non-traded specific input z (at  $p_1$ ). Costly liquidation of capital from  $K_1$  to  $\overline{K_1}$ ;  $\overline{K_1} \leq K_1$  would boost liquidity by  $[K_1 - \overline{K_1}]/(1 + \theta)$ ;  $\theta \geq 0$ .




#### Period 2:

Output materializes,  $y_2 = \frac{1}{a} \overline{K}_1^{\beta} z^{1-\beta}$ ; Non-liquidated deposits are paid return

 $r_f$ . Any non used reserves yield return  $r_f$ .

Figure 2 Volatility and planned investment



The simulation corresponds to the case where  $\beta = 0.5$ ; l = 1; H = 1;  $\mu = 1$ .

Volatility and relative expected output

Optimal IR

Optimal IR

Oscillatory and relative expected output

Optimal IR

Oscillatory and relative expected output

E

The simulation corresponds to the case where  $\theta = 0.2$   $\beta = 0.5$ ; l = 1; H = 1;  $\mu = 1$ . The bold curve corresponds to no liquidation and optimal precautionary demand for reserves, the solid curve corresponds to zero precautionary demand, where all the adjustment is made by liquidation.

Table 1: REER vs. Terms of Trade Shocks and Mitigation through Reserve Accumulation

| Dependent<br>Variable: Log REER | All       | Developing | Industrial | Manufactures | Natural<br>Resources | LATAM     | ASIA      |
|---------------------------------|-----------|------------|------------|--------------|----------------------|-----------|-----------|
| Log Terms of Trade shock        | 1.802***  | 1.836***   | 0.95       | 0.442        | 4.376***             | 1.642**   | 2.269**   |
|                                 | [0.244]   | [0.255]    | [0.594]    | [2.077]      | [0.779]              | [0.802]   | [1.104]   |
| Log TOT*Reserves                | -3.873*** | -3.937***  | -1.603     | 12.269       | -10.676              | -0.537    | -4.672**  |
|                                 | [0.746]   | [0.766]    | [4.607]    | [23.668]     | [7.013]              | [9.164]   | [2.280]   |
| Observations                    | 1863      | 1260       | 603        | 271          | 253                  | 343       | 202       |
| R-Squared                       | 0.4549    | 0.4367     | 0.5947     | 0.4066       | 0.6162               | 0.3903    | 0.2161    |
| Years                           | 1970-2004 | 1970-2004  | 1970-2004  | 1970-2004    | 1970-2004            | 1980-2004 | 1970-2004 |

Robust standard errors in brackets

Table 2: REER vs. Lagged Terms of Trade Shocks and Mitigation through Reserve Accumulation

| Dependent<br>Variable: Log REER | All       | Developing | Industrial | Manufactures | Natural<br>Resources | LATAM     | ASIA      |
|---------------------------------|-----------|------------|------------|--------------|----------------------|-----------|-----------|
| Lagged Log TOT shock            | 1.773***  | 1.806***   | 0.784      | 0.23         | 4.362***             | 1.205     | 1.762     |
|                                 | [0.278]   | [0.289]    | [0.581]    | [1.895]      | [0.759]              | [0.827]   | [1.103]   |
| Lagged Log TOT*RES              | -3.557*** | -3.633***  | 0.988      | 6.282        | -11.528*             | 4.654     | -4.024*   |
|                                 | [0.887]   | [0.910]    | [4.573]    | [21.767]     | [6.473]              | [10.059]  | [2.388]   |
| Observations                    | 1852      | 1263       | 589        | 262          | 252                  | 343       | 201       |
| R-Squared                       | 0.4465    | 0.4302     | 0.5947     | 0.4027       | 0.6165               | 0.3898    | 0.2047    |
| Years                           | 1970-2004 | 1970-2004  | 1970-2004  | 1970-2004    | 1970-2004            | 1980-2004 | 1970-2004 |

Robust standard errors in brackets

**Table 3: Log REER vs. TERMS OF TRADE: Selective Individual Countries** 

| Dependent Variable<br>Log REER | Terms of<br>Trade |            | Terms of<br>Trade * Reserves |              | Obs | R-squared | Total Effect<br>1990-99 | Total Effect<br>2000-04 | Volatility of TOT |
|--------------------------------|-------------------|------------|------------------------------|--------------|-----|-----------|-------------------------|-------------------------|-------------------|
| Argentina                      | 44.994            | [6.597]*** | -793.738                     | [113.969]*** | 25  | 0.5594    | -0.76438                | -27.4739                | 0.0099            |
| Chile                          | 8.436             | [1.561]*** | -50.188                      | [13.080]***  | 23  | 0.6338    | -1.46511                | -0.97332                | 0.0517            |
| Ecuador                        | 7.158             | [1.322]*** | -46.25                       | [21.816]**   | 23  | 0.66      | 3.386239                | 5.400608                | 0.0573            |
| Mexico                         | 3.841             | [2.048]*   | -177.211                     | [71.729]**   | 23  | 0.1901    | -5.69239                | -9.71975                | 0.0360            |

<sup>\*</sup> Significant at 10%; \*\* significant at 5%; \*\*\* significant at 1%

<sup>\*</sup> Significant at 10%; \*\* significant at 5%; \*\*\* significant at 1%

Table 4: Current account Persistence across subgroups
Dependent

Variable D(CU/GDP) Obs. Lag(CU/GDP) SE R-squared ΑII -0.437\*\*\* 4053 All Sample [0.026]0.2548 1970-2004 Developing -0.441\*\*\* [0.027]3346 0.2608 **OECD** -0.260\*\*\* [0.036]707 0.2315 MA -0.250\*\*\* 273 [0.056]0.3655 NR -0.362\*\*\* [0.049]391 0.4182 LATAM -0.432\*\*\* 594 0.3082 [0.088]**ASIA** -0.217\*\*\* 298 [0.063]0.3812 ΑII 1980-1992 -0.544\*\*\* [0.041]1661 0.3316 Developing -0.546\*\*\* [0.042]1394 0.3336 OECD -0.433\*\*\* [0.057]267 0.2228 LATAM -0.523\*\*\* [0.091]234 0.3395 **ASIA** -0.248\*\*\* [0.067]114 0.1626 1993-2004 ΑII -0.563\*\*\* [0.046]1708 0.3421 1445 Developing -0.568\*\*\* [0.047]0.3443 **OECD** -0.347\*\*\* 263 [0.059]0.2224 LATAM -0.507\*\*\* [0.059]216 0.3963 **ASIA** -0.315\*\*\* [0.087]112 0.166 Indebtedness DEBT1 1016 -0.435\*\*\* [0.047]0.2737 DEBT2 -0.512\*\*\* [0.040]930 0.3515 DEBT3 -0.412\*\*\* [0.057]999 0.2449 Income Level INCOME1 -0.413\*\*\* [0.044]1137 0.2679 INCOME2 -0.495\*\*\* [0.056]1105 0.3302 **INCOME3** -0.496\*\*\* [0.057]844 0.2809 INCOME4 -0.315\*\*\* [0.050]961 0.224

Table 5: Estimated  $\beta$  for selective countries\*

| Name               | β      | SE         | Observations | R-squared |
|--------------------|--------|------------|--------------|-----------|
| Argentina          | -0.396 | [0.083]*** | 34           | 0.1896    |
| Brazil             | -0.214 | [0.093]**  | 34           | 0.0841    |
| Chile              | -0.447 | [0.117]*** | 34           | 0.2108    |
| Costa Rica         | -0.329 | [0.103]*** | 34           | 0.1602    |
| Dominican Republic | -0.477 | [0.232]**  | 34           | 0.1703    |
| Ecuador            | -0.73  | [0.185]*** | 34           | 0.3629    |
| El Salvador        | -0.917 | [0.196]*** | 34           | 0.47      |
| Haiti              | -0.282 | [0.126]**  | 32           | 0.153     |
| Honduras           | -0.586 | [0.163]*** | 30           | 0.2968    |
| Mexico             | -0.413 | [0.149]*** | 34           | 0.2041    |
| Uruguay            | -0.494 | [0.128]*** | 34           | 0.2462    |
| Venezuela          | -0.656 | [0.129]*** | 34           | 0.3164    |

<sup>\*</sup> significant at 10%; \*\* significant at 5%; \*\*\* significant at 1%

**Table 6: Univariate Regressions** 

| Dependent Variable :Alpha   | ALL        | Non OECD   |
|-----------------------------|------------|------------|
| RESERVES                    | 0.068      | 0.183      |
|                             | [0.110]    | [0.100]*   |
| NOMINAL EXCHANGE VOLATILITY | -0.056     | 0.058      |
|                             | [0.247]    | [0.240]    |
| FINANCIAL INTEGRATION       | 0.142      | -0.042     |
|                             | [0.110]    | [0.113]    |
| TERMS OF TRADE              | 0.058      | 0.116      |
|                             | [0.083]    | [0.085]    |
| GDP GROWTH                  | 1.701      | 2.119      |
|                             | [0.635]*** | [0.639]*** |
| % SHARE OF COMMODITIES      | -0.415     | -0.311     |
|                             | [0.096]*** | [0.102]*** |
| INLFATION                   | -0.017     | 0.009      |
|                             | [0.044]    | [0.044]    |

Robust standard errors in brackets

**Table 7: Multivariate Regression** 

| Alpha         | ALL        | Non Oecd   |
|---------------|------------|------------|
| Reserves      | 0.058      | 0.192      |
|               | [0.089]    | [0.082]**  |
| Inflation     | -0.101     | -0.072     |
|               | [0.042]**  | [0.043]*   |
| NE Volatility | 0.566      | 0.545      |
|               | [0.303]*   | [0.294]*   |
| TOT           | 0.177      | 0.195      |
|               | [0.088]**  | [0.098]*   |
| Financial Int | 0.298      | 0.076      |
|               | [0.114]**  | [0.127]    |
| Manufactures  | 0.784      | 0.628      |
|               | [0.212]*** | [0.225]*** |
| Observations  | 94         | 80         |
| R-squared     | 0.2084     | 0.1618     |

<sup>\*</sup> significant at 10%; \*\* significant at 5%; \*\*\* significant at 1%