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1 Introduction

For nearly as long as macroeconomic models have existed, economists have proposed ap-

plying optimal control theory to the problem of monetary policy (see Chow (1976) for an

early example). Support for this approach has waxed and waned in the past, reflecting in

part swings in economists’ confidence in macroeconometric models. Recently there has been

renewed interest among academics and at central banks in applying optimal control to mon-

etary policy, as spelled out in Svensson and Woodford (2003) , Svensson (2002), Woodford

(2003), and Gianonni and Woodford (2005). Indeed, as described in Svensson and Tetlow

(2006), analytical and computational advances now make it possible to operationalize this

approach using the Federal Reserve Board’s large-scale nonlinear macroeconomic model.

One potential shortcoming of the optimal control approach is that it ignores uncertainty

about the specification of the model. In principle, one could incorporate various types of

uncertainty to the analysis of optimal policy. However, this is infeasible in practice, given

current methods and computational power. As a result, existing optimal control policy

analysis is done using a single reference model.

Given the prominence accorded to optimal control in the monetary policy literature

and increasingly at central banks, it seems an especially propitious moment to examine the

robustness properties of optimal control and other monetary policies when the reference

model may be misspecified. The literature on monetary policy under uncertainty has tended

to fall into one of two camps. The first, robust control, is closely related to optimal control,

but allows local perturbations to the model structure of a general nature. Robust control

methods of the type analyzed by Hansen and Sargent (2007), are best suited for relatively

modest deviations from the reference model. The second approach, and the one that we

follow in this paper, evaluates the performance of monetary policies across a set of possible

non-nested models that embed substantive differences in structure, that is, moderate-sized

deviations from a reference model.1 This approach has been advocated by McCallum (1998)
1Svensson and Noah Williams (2006) have developed a methodology to compute optimal policy under

model uncertainty using a Markov-switching framework; however, computing optimal policies under model
uncertainty by this method is extremely computationally intensive and its application to real-world problems
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and Taylor (1993), and has been implemented in numerous papers, including Taylor (1999),

Levin, Wieland, and Williams (1999, 2003), Orphanides and Williams (2002), and Brock,

Durlauf, and West (2005). A key finding in this literature is that properly calibrated simple

possible rules that are generalizations of the Taylor Rule (Taylor 1993) can be very robust

across a wide set of models. Moreover, optimal control policies can perform very poorly if

the reference model is badly misspecified, as shown in Levin and Williams (2003).

In this paper, we reexamine the robustness of optimal control policies designed under

the assumption of rational expectations to alternative models of expectations formation

and uncertainty about the natural rates of interest and unemployment. The literature has

tended to focus on issues of misspecification of the dynamics in structural equations. We

abstract from these issues and assume that the basic structure of the central bank’s reference

model is correctly specified. Instead, we take seriously the information problems facing real-

world agents, which may cause expectations to deviate from those implied by the model of

the economy they inhabit (see Taylor (1975) for an early analysis of this issue and Sargent

(2007) for a recent discussion). Evidence that survey measures of expectations are inefficient

and display significant disagreement at each point in time, (see, for example, Mankiw, Reis,

and Wolfers (2004) and Williams (2004)), call into question the assumption of rational

expectations and suggest the need for monetary policies that are robust to deviations from

rational expectations. We therefore assume that agents have imperfect knowledge of the

precise structure of the economy and continuously learn by reestimating their forecasting

models as new data become available. We consider various learning models that yield very

good forecasts in our model economy.

We also allow for exogenous time variation in the natural rates of interest and unem-

ployment that the central bank measures with error. We assume that the central bank has

a good understanding of the process describing the evolution of these natural rates, but

doe snot observe them directly. Instead, the central bank must estimate the natural rates

using available data. We consider both the case where the central bank uses the optimal

is infeasible.
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Kalman filter to estimate the natural rates, and the case where the central bank estimate

of the key gain parameter of the Kalman filter is incorrect. Laubach and Williams (2003)

and Clark and Kozciki (2005) document the imprecision in estimates of the gain parameter

in the Kalman filter, making uncertainty about this key parameter a real-world problem for

central bank estimates of natural rates.

We compare the performance of the optimal control policy to two types of simple mon-

etary policy rules that have been found to be robust to model uncertainty of various types

in the literature. The first is a forward-looking version of a Taylor-type policy rule, of the

type that Levin, et al (2003) found to perform very well in a number of estimated rational

expectations models of the U.S. economy. The second is rule proposed by Orphanides and

Williams (2007) that differs from the first rule in that policy responds to the change in the

measure of economic activity, rather than the level. This type of rule has been shown to be

robust to mismeasurement of natural rates in the economy (Orphanides and Williams, 2002,

2007) and found to perform very well in a counterfactual analysis of monetary policy during

1996–2003 undertaken by Tetlow (2006). Both of these rules are strikingly parsimonious–

they are characterized by only two free parameters.

We find that the optimal control policy constructed assuming rational expectations per-

forms relatively poorly in our estimated model of the U.S. economy when agents do not

possess perfect knowledge of the economy but instead must learn. The performance dete-

riorates further when we additionally allow for natural rate mismeasurement. The optimal

control policy attempts to fine tune the economy very precisely, which works well when

private expectations are perfectly aligned with those implied by rational expectations. But,

when agents learn, expectations can deviate from those implied by rational expectations,

and the finely-tuned optimal control policy can go astray. In particular, by implicitly as-

suming that inflation expectations are always well anchored, the optimal control policy

responds insufficiently strongly to movements in inflation, which results in excessive vari-

ability of inflation.

In contrast, the two simple monetary policy rules that we study perform very well under
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learning and with natural rate mismeasurement. These rules clearly outperform the optimal

control policy when agents learn. The relatively small advantage that the optimal control

policy has over these robust rules when the model is correctly specified implies a small

“insurance” payment to gain the sizable robustness benefits found here.

The remainder of the paper is organized as follows. Section 2 describes the model and

reports the estimation results. Section 3 describes the central bank objective and the three

alternative monetary policies. Section 4 describes the models of expectations formation.

Section 5 discusses the simulation methods. Section 6 reports and analyzes the monetary

policies under the assumption of rational expectations. Section 7 analyzes the performance

of monetary policies with learning. Section 8 considers the robustness of the simple rules

to alternative central bank forecasting models. Section 8 concludes.

2 An Estimated Model of the U.S. Economy

Our analysis is conducted using a simple quarterly model motivated by the recent literature

on micro-founded models incorporating some inertia in inflation and output (see Woodford,

2003, for a fuller discussion). The specification of the model is closely related to that in

Gianonni and Woodford (2005), Smets (2003), and others. The key difference is that instead

of the output gap concept in these models, we employ the unemployment gap concept as the

cyclical measure of real economic activity. The two concepts are closely related in practice

by Okun’s law and the properties of the model are largely invariant to this choice. In

addition, the empirical problem of measuring the natural rate of unemployment—needed to

define the unemployment gap—is essentially similar to the problem of measuring the level

of potential output—needed to define the output gap.

2.1 The Model

The structural model consists of two equations that describe the behavior of the unemploy-

ment rate and the inflation rate. In addition, there are equations describing the time series

properties of the exogenous shocks. To close the model, the short-term interest rate is set

by the central bank, as described in the next section.
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The “IS curve” equation is motivated by the Euler equation for consumption with ad-

justment costs or habit:

ut = φuue
t+1 + (1− φu)ut−1 + αu (iet − πe

t+1 − r∗t ) + vt, (1)

vt = ρvvt−1 + ev,t, ev ∼ N(0, σ2
ev

). (2)

We specify the IS equation in terms of the unemployment rather than output to facilitate the

estimation of the equation using real-time data. This equation relates the unemployment

rate, ut, to the unemployment rate expected in the next period, one lag of the unemploy-

ment rate, and the difference between the expected ex ante real interest rate—equal to the

difference between the nominal short-term interest rate, it, and the expected inflation rate in

the following period, πt+1—and the natural rate of interest, r∗t . The unemployment rate is

subject to a shock, vt, that is assumed to follow an AR(1) process with innovation variance

σ2
ev

. The AR(1) specification for the shocks is based on the evidence of serial correlation in

the residuals of the estimated unemployment equation, as discussed below.

The “Phillips curve” equation is motivated by the New Keynesian Phillips curve with

indexation:

πt = φππe
t+1 + (1− φπ)πt−1 + απ(ut − u∗t ) + eπ,t, eπ ∼ N(0, σ2

eπ
). (3)

It relates inflation, πt, (measured as the annualized percent change in the GNP or GDP

price index, depending on the period) during quarter t to lagged inflation, expected future

inflation, denoted by πe
t+1, and the difference between the unemployment rate, ut, and

and the natural rate of unemployment, u∗t , during the current quarter. The parameter

φπ measures the importance of expected inflation on the determination of inflation, while

(1−φπ) captures the effects of inflation indexation. The “mark-up” shock, eπ,t, is assumed

to be a white noise disturbance with variance σ2
eπ

.

In the model simulations, we abstract from time variation in the natural rates of interest

and unemployment and assume for convenience that these variables are constant. We

further assume that they known by the central bank. See Orphanides and Williams (2007)

for analysis of time-varying natural rates in a model with learning.
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We model the low frequency behavior of the natural rates of unemployment and interest

as exogenous AR(1) processes independent of all other variables:

u∗t = (1− ρu∗)ū∗ + ρr∗u
∗
t−1 + eu∗,t, eu∗ ∼ N(0, σ2

e∗u), (4)

r∗t = (1− ρr∗)r̄∗ + ρu∗r
∗
t−1 + er∗,t, er∗ ∼ N(0, σ2

e∗r ). (5)

We assume these processes are stationary based on the finding using the standard ADF

test that one can reject the null of nonstationarity of both the unemployment rate and real

federal funds rate over 1950–2003 at the 5 percent level. The unconditional mean values

of the natural rates are irrelevant for our analysis and so we set them both to zero in our

analysis.2

2.2 Model Estimation and Calibration

We estimate the IS curve and Phillips curve equations using forecasts from the Survey of

Professional Forecasters (SPF) as proxies for the expectations that appear in the equations.3

We assume that expectations are formed in the previous quarter; that is, we assume that the

expectations affecting inflation and unemployment in period t are those collected in quarter

t− 1. This matches the informational structure in many theoretical models (see Woodford,

2003, and Giannoni and Woodford, 2005). To match the inflation and unemployment

data as best as possible with these forecasts, we use first announced estimates of these

series, obtained from the Real-Time Dataset for Macroeconomists maintained by the Federal

Reserve Bank of Philadelphia. In estimating the inflation equation, we use the Congressional

Budget Office (2001) estimates of the natural rate of unemployment as proxies for the true

values. The data sample used in estimation of the model runs from 1969:4 to 2004:2, where

the starting date is the first sample point in the SPF.
2Because we e ignore the zero lower bound on nominal interest rates as well as any other potential source

of nonlinear behavior in the structural model, the unconditional means of variables are irrelevant. Inclusion
of the zero bound would severely complicate the analysis and is left for future work.

3Specifically, we use the mean forecasts of the unemployment rate and three-month treasury bill rate. We
construct inflation forecasts using the annualized log difference of the GNP or GDP price deflator, which we
construct from the reported forecasts of real and nominal GNP or GDP. The Survey is currently maintained
by the Federal Reserve Bank of Philadelphia. See Croushore (1993) and Croushore and Stark (2001) for
details on the survey methodology.
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The estimation results are reported below, with standard errors indicated in parentheses.

We estimate the IS curve equation using least squares with AR(1) residuals. Unrestricted

estimation of the IS curve equation yields a point estimate for φu of 0.39, with a standard

error of 0.15. This estimate is below the lower bound of 0.5 implied by theory; however, the

null hypothesis of a value of 0.5 is not rejected by the data.4 We therefore impose φu = 0.5

in estimating the remaining parameters of the equation. Note that the estimated equation

also includes a constant term (not shown) that provides an estimate of the natural real

interest rate, which is assumed to constant for the purpose of estimating this equation.

ut = 0.5ue
t+1 + 0.5ut−1 +0.056

(0.022)

(r̃e
t − r∗) + vt, (6)

vt = 0.513
(0.085)

vt−1 + ev,t, σ̂ev = 0.30, (7)

πt = 0.5πe
t+1 + 0.5πt−1 − 0.294

(0.087)

(ue
t − u∗t ) + eπ,t, σ̂eπ = 1.35, (8)

Unrestricted estimation of the Phillips curve equation yields a point estimate for φπ

of 0.51, just barely above the lower bound implied by theory.5 For symmetry with our

treatment of the IS curve, we impose the φπ = 0.5 and estimated the remaining parameters

using OLS. The estimated residuals for this equation show no signs of serial correlation in

the price equation (DW = 2.09), consistent with the assumption of the model.

As discussed in Orphanides and Williams (2002), there is considerable uncertainty re-

garding the magnitude and persistence of low-frequency fluctuations in the natural rates of

unemployment and interest.6 We do not estimate a model of natural rates in this paper;

instead, we calibrate the parameters of the AR(1) processes based on estimates fund else-

where in the literature. To capture the highly persistent movements in natural rates we set

the autocorrelation parameters, ρu∗ and ρr∗ , to 0.99.
4This finding is consistent with the results reported in Giannoni and Woodford (2005), who in a similar

model, find that the corresponding coefficient is constrained to be at its theoretical lower bound.
5For comparison, Giannoni and Woodford (2005) find that the corresponding coefficient is constrained

to be at its theoretical lower bound of 0.5.
6Recent papers that estimate the natural rates of unemployment and interest include Staiger, Stock, and

Watson (1997), Laubach (2001), Laubach and Williams (2003), Clark and Kozicki (2005).
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We consider alternative calibrations of the variances of the innovations to the natural

rate processes, indexed by the parameter s. In particular, we consider three cases. In the

first case, denoted s = 0, the variances are assumed to equal zero; that is, the natural rates

are constant over time. In the second case, denote by s = 1,we calibrate the innovation

variances to be consistent with estimates of time variation in the natural rates in postwar

U.S. data. Specifically, we set the innovation standard deviation of the natural rate of

unemployment to 0.07 and that of the natural rate of interest to 0.085. These values

imply an unconditional standard deviation of the natural rate of unemployment (interest)

of 0.50 (0.60), in the low end of the range of standard deviations of smoothed estimates of

these natural rates suggested by various estimation methods. In the third case, denoted by

s = 2, we double the standard deviations of the innovations to the natural rate processes,

consistent with low end of the range of standard deviations of smoothed estimates of these

natural rates suggested by various estimation methods.

3 Optimal Control Monetary Policy

We evaluate the performance of alternative monetary policies under model uncertainty. The

monetary policy instrument is the nominal short-term interest rate. We assume that the

central bank observes all variables from all previous periods, including private-sector fore-

casts, when making the current period policy decision. We further assume that the central

bank has access to a commitment technology; that is, we study policy under commitment.

The central bank’s objective is to minimize a loss equal to the weighted sum of the

unconditional variances of the inflation rate, the unemployment gap, and the change in the

nominal federal funds rate:

L = V ar(π − π∗) + λV ar(u− u∗) + νV ar(∆(i)), (9)

where V ar(x) denotes the unconditional variance of variable x. We assume an inflation

target of zero percent. As a benchmark for our analysis, we assume λ = 4 and ν = 1. Based

on an Okun’s gap type relationship, the variance of the unemployment gap is about 1/4

that of the output gap, so this choice of λ corresponds to equal weights on inflation and
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output gap variability.

The optimal control policy is that which minimizes the loss subject to the equations

describing the economy. This is constructed, as is typical in the literature and practice,

assuming that the policymaker knows the true parameters of the structural model and

assumes all agents use rational expectations and the central bank’s knows the natural rates

of unemployment and interest. Note that for the optimal control policy, as well as the

simple policy rules described below, we use lagged information in the determination of the

interest rate, reflecting the lag in data releases. The optimal control policy is described

by s set of equations that describe the first-order optimality condition for policy and the

behavior of the Lagrange multipliers associated with the constraints on the optimization

problem implied by the structural equations of the model economy.

Because we are interested in describing the setting of policy in a potentially misspecified

model, it is useful to represent the optimal control policy in an equation that relates the

policy instrument to observable variables, rather than in terms of Lagrange multipliers that

depend on the model. However, there are infinitely many such representations, a subset of

which do not yield a determinate rational expectations equilibrium. We consider several

alternative representations that are closely related to those that have been studied in the

literature.

In the first representation, which we denote “OC,” the optimal control policy is described

by a feedback rule where the setting of policy depends on the observed past values of the

inflation rate, the unemployment gap (the difference between the unemployment rate and

the natural rate of unemployment), and the interest rate gap (the difference between the

ex post real interest rate and the natural rate of interest). We find that this representation

yields a determinate rational expectations equilibrium. We find that including three lags

of these variables is sufficient to mimic the optimal control outcome assuming naturals are

known. In the following, we focus on this three-lag specification. Note that this formulation

implicitly assumes that the central bank uses the structural model with rational expectations

to generate forecasts.
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The second representation of the optimal control policy is a form of a forecast-targeting

policy similar to that proposed by Svensson and Woodford (2003). In principle, this form

of the optimal control policy requires the inclusion of infinitely many leads of the objective

variables. However, Gianonni and Woodford (2005) show that this policy can be well

approximated by including only a few leads of the target variables. As discussed below, we

find that a specification in which the policy instrument depends on the first three leads of

the inflation rate and the unemployment rate and three lags of the policy instrument yields

outcomes under rational expectations nearly identical to those under the optimal control

policy. We denote this representation of the optimal control policy by “OC-FT.”

3.1 Central Bank Estimation of Natural Rates

Given the time variation in the natural rates, the central bank needs to have real-time

estimates of natural rates. We assume that the central bank does not observe the natural

rates and must instead estimate them in real time.

We assume that the central bank uses the Kalman filter to estimate both natural rates.

Given the assumptions of the model, this is the optimal filter. In particular, the real-time

estimate of the natural rate of interest is given by:

û∗t = 0.99 û∗t−1 + λu
{[

πt − (φπ πe
t+1 + (1− φπ) πt−1 + απ ue

t )
]
/(−απ)− 0.99 û∗t−1

}
, (10)

where λu is the Kalman gain associated that depends on the relative variances of the inno-

vations to inflation and the natural rate of unemployment. The term multiplied by λu is the

”surprise” inflation, conditional on the prior estimate of the natural rate of unemployment,

scaled so that it is in unemployment rate units. The corresponding equation for the central

bank estimate of the natural rate of interest is given by:

r̂∗t = 0.99 r̂∗t−1 + λr
{[

ut − (φu ue
t+1 + (1− φu) ut−1 + αu (iet − πe

t+1))
]
/(−αu)− 0.99 r̂∗t−1

}
,

(11)

Note that this specification of the updating rules corresponds to the optimal filters for

our model. It implicitly assumes that the central bank perfectly knows the specification and

slope parameters of the structural model, including the laws of motion of the natural rate of
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unemployment. As a result, our assumptions represent a best case for the central bank with

respect its ability to estimate natural rates. In other work, we examine the implications

of model uncertainty regarding the data generating processes for natural rates (Orphanides

and Williams 2005, 2007). The optimal values of the gains and the associated unconditional

standard deviations of the natural rate mismeasurement are reported in Table 1.

In the following, we allow for some uncertainty regarding the estimation of natural rates.

In particular, as noted above, estimates of the Kalman gain tend to be very imprecise. We

therefore consider the possibility that the central bank uses incorrect estimates of λr and

λu. Specifically, we examine the effects of the central bank using the optimal gain based on

a particular value of s when the true data generating process is given by a different value of

s between 0 and 2. For example the central bank may assume that natural rates are highly

variables (s = 2) in estimating natural rates, when in fact they are constant (s = 0).

4 Expectations Formation

Because we are interested in robustness of monetary policies to uncertainty about how

expectations are formed, we consider several different models of expectations formation.

One model is rational expectations, where private agents are assumed to know all features

of the model including the realized values of natural rates. We assume the model with

rational expectations is the central bank’s reference model that it uses to compute optimal

monetary policies. The remaining models that we study involve real-time perpetual learning

on the part of private agents. The models differ in the particular perceived laws of motion

(PLM) of the economy that agents assume for their forecasting model.

4.1 Perpetual Learning

In the models of learning that we consider, we assume that private agents and, in some cases,

the central bank form expectations using an estimated reduced-form forecasting model.

Specifically, following Orphanides and Williams (2005a), we posit that private agents engage

in perpetual learning, that is they reestimate their forecasting model using a constant-
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gain least squares algorithm that weights recent data more heavily than past data.7 This

approach to modeling learning allows for the possible presence of time variation in the

economy, including the natural rates of interest and unemployment. It also implies that

agents’ estimates are always subject to sampling variation, that is, the estimates do not

eventually converge to fixed values.

We assume agents forecast inflation, the unemployment rate, and the short-term interest

rate using a unrestricted vector autoregression model (VAR) containing lags of these three

variables and a constant. VAR models are well-suited for our purposes. First, variants of

VARs are commonly used in real-world macroeconomic forecasting, making this a reasonable

choice on realism grounds. Second, the rational expectations equilibrium of our model

implies a reduced-form VAR of this form.

We consider three alternative specifications of the VAR used for forecasting, with lag

lengths of one, two, and three quarters. The VAR with three lags nests the reduced-

form of the model under the assumptions of rational expectations. In particular, under

this assumption, the minimum state space reduced-form of the equilibrium implied by the

Phillips and IS curves includes two lags each of the inflation rate and interest rate and three

lags of the unemployment rate. The monetary policy rule may imply additional states for

the economy, depending on the specification of the rule. For the rules that we consider,

the three-lag VAR nests the reduced-form of the rational expectations equilibrium with

constant natural rates.8 We also consider VARs with shorter lag lengths to capture the

possibility that agents do not know the true reduced-form structure of the economy. In

addition, we know from the forecasting literature that parsimonious VARs can perform

better at forecasting in small samples, so agents may optimally choose under-parameterized

VARs to improve forecast accuracy.

At the end of each period, agents update their estimates of their forecasting model using
7See also Sargent (1999), Cogley and Sargent (2001), and Evans and Honkapohja (2001) for related

treatments of learning.
8Time-varying natural rates add additional variables to the reduced-form representation of the economy,

but as shown below a VAR(3) is a very close approximation to the reduced-form of the economy in that
case.
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data through the current period. To fix notation, let Yt denote the 1× 3 vector consisting

of the inflation rate, the unemployment rate, and the interest rate, each measured at time

t: Yt = (πt, ut, it). For a VAR with l lags, let Xt be the (3 · l + 1)× 1 vector of regressors in

the forecast model: Xt = (1, πt−1, ut−1, it−1, . . . , πt−l, ut−l, it−l). Let ct be the (3 · l + 1)× 3

vector of coefficients of the forecasting model. Using data through period t, the coefficients

of the forecasting model can be written in recursive form:

ct = ct−1 + κR−1
t Xt(Yt −X ′

tct−1), (12)

Rt = Rt−1 + κ(XtX
′
t −Rt−1), (13)

where κ is the gain. With these estimates in hand, agents construct multi-period forecasts

needed for their decisons.

For some specifications of the VAR, Rt may not be full rank. For example, if policy

follows the LWW rule and agents form expectations using a VAR(3), then R will be less

than full rank under rational expectations. To avoid this problem, in each period of the

model simulations, we check the rank of Rt. If it is less than full rank, we assume that

agents apply a standard Ridge regression (Hoerl and Kennard, 1970), where Rt is replaced

by Rt + 0.00001 ∗ I(k), and k is the dimension of R.

4.2 Calibrating the Learning Rate

A key parameter in the learning model is the private agent updating parameter, κ. Esti-

mates of this parameter tend to be imprecise and sensitive to model specification, but tend

to lie between 0 and 0.04.9 We take 0.02 to be a reasonable benchmark value for κ, a value

that implies that the mean age of the weighted sample is about the same as for standard

least squares with a sample of 25 years. Given the uncertainty about this parameter, we

report results for values of κ between 0.01 (equivalent in mean sample age to a sample of

about 50 years) to 0.03 (equivalent in mean sample age to a sample of about 16 years).

For comparison, we also report results for the case of κ = 0. In this case, agents do not

update the coefficients of the forecast model. Instead, the coefficient values are fixed at the
9See Orphanides and Williams (2005), Milani (2005), Sheridan (2003), and Branch and Evans (2006).
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initial values that are set as explained in the next section. We discuss below the forecasting

performance of private agent’s forecasts under alternative learning rates.

5 Simulation Method

In the case of rational expectations with constant and known natural rates, we compute

model unconditional moments numerically as described in Levin, Wieland, and Williams

(1999). In all other cases, we compute approximations of the unconditional moments using

stochastic simulations of the model.

5.1 Stochastic Simulations

For the stochastic simulations, we initialize all model variables to their respective steady-

state values, which we assume to be zero. The initial conditions of C and R are set to the

steady-state values implied by the forecasting PLM in the rational expectations equilibrium

with known natural rates.

Each period, innovations are generated from independent Gaussian distributions with

variances reported above. The private agent’s forecasting model is updated each period

and a new set of forecasts computed, as are the central bank’s natural rate estimates. We

simulate the model for 44,000 periods and discard the first 4000 periods to eliminate the

effects of initial conditions. We compute the unconditional moments from the remaining

40,000 periods (10,000 years) of simulated data.

5.2 The Projection Facility

Private agents’ learning process injects a nonlinear structure into the model that may cause

the model display explosive behavior in a simulation. In simulations where the model is

beginning to display signs of explosive behavior, we follow Marcet and Sargent (1989) and

stipulate modifications to the model that curtail the explosive behavior.

One potential source of explosive behavior is that the forecasting model itself may be-

come explosive. We take the view that in practice private forecasters reject explosive models.

Correspondingly, in each period of the simulation, we compute the maximum root of the
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forecasting VAR (excluding the constants). If this root falls below the critical value of 1, the

forecast model is updated as described above; if not, we assume that the forecast model is

not updated and the matrices C and R are held at their respective values from the previous

period.10 This constraint is typically encountered in less than one percent of the simulation

periods; however, in the case of of a high updating rate (κ = 0.03) and large natural rate

variation (s = 2), this constraint can be encountered up to three percent of the time.

This constraint on the forecasting model is insufficient to assure that the model economy

does not exhibit explosive behavior in all simulations. For this reason, we impose a second

condition that eliminates explosive behavior. In particular, the inflation rate, nominal

interest rate, and the unemployment gap are not allowed to exceed in absolute value six

times their respective unconditional standard deviations (computed under the assumption

of rational expectations and known natural rates) from their respective steady-state values.

This constraint on the model is invoked extremely rarely in the simulations. However, in

some instances, the projection facility is invoked a very high percentage of the time. This

occurs because the model gets stuck at the bound of allowable interest rate variability.

When that occurs, we adjust the bound on allowable interest rate variability modestly and

find a simulation where the projection facility is invoked very rarely. This bound has a

relatively small effect on simulation outcomes otherwise, so making this modification has

little effect on our results.

6 Performance of the Optimal Control Policy

We first evaluate the performance of the two representations of the optimal control policy in

the model assuming rational expectations. We then examine the performance when agents

learn.
10We chose this critical value so that the test would have a small effect on model simulation behavior

while eliminating explosive behavior in the forecasting model.
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7 Outcomes under Rational Expectations

The impulse responses to the two inflation and unemployment shocks are nearly identical

for these two policies under rational expectations, as shown in Figure 1. The implied

central bank losses are likewise nearly identical at 6.593. The optimal policy possesses two

key features. First, it generates noticeable secondary cycles associated with a a very high

degree of policy inertia. Second, the response of the nominal interest rate to the inflation

shock is very muted, with the interest rate rising only about 30 basis points in response to a

1.3 percentage point shock to inflation. Under rational expectations, this gradual and mild

policy response is sufficient to bring inflation under control due to the fact that expectations

are the future course of policy is perfectly understood by the public. As we will see, when

these assumptions fail, this approach to policy can have unfortunate consequences.

8 Outcomes under Learning

We now turn to the performance of the different policies when agents learn. We start by

evaluating the forecast performance of the various PLMs. We then turn to policy rule

evaluation.

8.1 Forecast Model Selection

Table 2 shows the root-mean-squared one-step-ahead forecast errors in the model simula-

tions with constant natural rates under the OC policy for different values of the learning

parameters, κ, and the three specifications of the PLM. The first four rows show the re-

sults when the public forms expectations using the three-lag VAR, the second four rows

show the results when the public forecasts using a two-lag VAR, and the final four rows

show the results when the public uses a one-lag VAR. For each case, we report the forecast

performance of the various VARs.

Overall, for inflation and unemployment forecasts, all three VARs do about equally well.

In fact, the under-parameterized VARs with one and two lags tend to do slightly better than

the three-lag VAR, when agents are learning κ > 0. The interest rate forecast are better

16



with the three-lag VAR, reflecting the fact that the interest rate depends on variables not

included in the one- and two-lag VARs.11

We now examine whether each forecast model is self-confirming, by which we mean that

agents residing in an economy where all other agents used model X for forecasting would

also choose model X to forecast. We do this by simulating the model assuming all agents

use a VAR with l lags and then compute the forecast errors of the alternative forecast

models. The off-diagonal blocks in Table 2 reports the results for the case of the optimal

control policy.

Under the OC policy, the VAR(3) is self-confirming in that the RMS forecast errors

are equal or larger for the alternative models. That said, the forecasting performance for

inflation and unemployment of the VAR(2) model is nearly indistinguishable from that of

the VAR(3) model, suggesting agents would on average be close to indifferent between the

two models. Interestingly, the VAR(2) model is close to self-confirming as well. If all agents

use the VAR(2) for forecasting, forecasts of the unemployment rate and inflation from the

VAR(3) and VAR(1) would on average be about as accurate or worse than those form the

VAR(2). The VAR(3) does slightly better at forecasting the interest rate. The VAR(1) does

not appear to be self-confirming. The other models do better at forecasting unemployment

and the interest rate, and only slightly worse at forecasting inflation when all agents use

the VAR(1) for forecasting.

Table 3 reports the forecast accuracy of the three VARs in model simulations with

constant and known natural rates under the OC policy assuming our benchmark value of

s = 1 and assuming that the central bank estimates natural rates using the optimal values

of the Kalman gains. This table reports only the forecast accuracy for the VAR that is

actually used in determining expectations in the model simulations (and corresponds to the

diagonal blocks of Table 2). The results are very similar to those for the case of constant
11The three-lag VAR encompasses the optimal control policy, so under that policy the interest rate forecasts

errors would be zero if it were not for the effects when the projection facility on excessive variability of interest
rates is invoked. We experimented with a version that imposes a much more relaxed restriction on interest
rate fluctuations. With this modification, the interest rate forecast errors were zero and the performance of
the rule was nearly the same as reported in the paper.
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natural rates. One difference is that the forecast errors for the short-term interest rate are

higher than with constant natural rates. The introduction of natural rate mismeasurement

introduces serially correlated monetary policy shocks to the model. These additional shocks

interfere with the ability of private agents’ to forecast future policy actions.

In summary, all three VAR models seem to be reasonable for forecasting; and on this

basis it is hard to dismiss any of them. The one exception is that interest rate forecasts

are generally better in the VAR with three lags, but the forecasting accuracy of the other

variables often suffers slightly in the VAR when agents are leaning. The VAR(3) and VAR(2)

are close to self-confirming; however, the VAR(1) is not. Overall, we view the VAR(1) as

the least plausible model.

8.2 Outcomes with Learning

We now examine the performance of the two representations of the optimal control policy

computed under the assumption of rational expectations in an environment where agents

are learning. We first consider the OC policy, then look at the OC-FT policy.

The behavior of the economy with learning under the OC policy is seen in the impulse

responses to inflation and unemployment shocks, shown in Figure 2. For the simulations

underlying this figure, we assume that private agents use the three-lag VAR with κ = 0.02

in forming expectations and that natural rates vary with s = 1. We assume that the central

bank knows the value of s and uses the optimal Kalman gains. In the model with learning,

the impulse response to a shock depends on the initial conditions. We therefore show the

distribution of IRFs taken over the unconditional joint distribution of the c and R matrices

and the endogenous variables in the model, as described in Orphanides and Williams (2007).

Note that these are not confidence bands per se, but only reflect the effects of differing initial

conditions on the response to a shock.

When agent learns, the OC policy does not effectively contain movements in inflation.

Under rational expectations, the optimal control policy is characterized by a relatively

modest rise in interest rates, but still manages to engineer a reduction of inflation through

a period of below-target inflation starting about a year after the onset of the shock. However,
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with learning, the range of responses of inflation to both shocks is very large, indicating

that this policy is effective at containing inflation only when agents’ expectations formation

is close to that implied by the rational expectations equilibrium.

Macroeconomic performance under the OC policy deteriorates with learning, with the

magnitude in fluctuations in all three objective variables increasing in the updating rate, κ.

Table 4 reports the results from these experiments assuming constant natural rates. The

upper part of the table reports results where agents use a three-lag VAR in forming forecasts.

The first row in this part of the table reports the results where agents do not learn, but

instead hold fixed the coefficients of their forecasting model. Because the three-lag VAR

nests the reduced-form of the rational expectations equilibrium, this case corresponds to

rational expectations.12

The effects of learning under the OC policy are quite large: In the benchmark case of

κ = 0.02, and agents use a three-lag VAR for forecasting, the central bank loss is double

what it would be absent learning. The main problem with the optimal control rule is that

it is designed to stabilize inflation in an a “perfect” world of rational expectations. Under

learning, the modest policy responses to outbreaks of inflation or deflation are insufficient

to keep inflation and inflation expectations under strict control. In effect, this policy is

designed to “fine tune” policy responses, an approach that breaks down when the assumed

structure of the economy turns out to be incorrect.

If agents use under-parameterized VARs for forecasting but do not learn, performance

is somewhat worse than under rational expectations. Evidently, in this model, the optimal

control policy works best if expectations are perfectly aligned with those implied by the

policy. Interestingly, with these VAR forecasting models, the deleterious effects of learning

are generally smaller in the case of the three-lag VAR. The parsimony of these forecasting

models may minimize random fluctuations in the VAR coefficients that tend to plague

larger-scale VARs.
12Note that the simulated moments reported here differ slightly from those computed analytically and

reported in the previous section. These differences reflect the fact that a simulation of 40,000 periods is not
sufficient to match unconditional moments exactly.
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The combination of natural rate mismeasurement and private sector learning causes

macroeconomic performance to deteriorate further under the OC policy. Table 5 reports

the results for the OC policy when private agents use a three-lag VAR for forecasting for the

three values of s. In each case, we assume that central bank knows the value of s and uses

the corresponding optimal Kalman gains. As noted above, natural rate mismeasurement by

the central bank introduces serially correlated monetary policy shocks to the model. These

shocks directly increase aggregate variability and by adding additional noise to private

forecasts have an indirect deleterious effect on macroeconomic performance.

The deterioration in macroeconomic performance due to natural rate mismeasurement

is much more pronounced if the central bank’s Kalman gains are too low. Table 6 reports

the outcomes for the three values of s under different assumptions regarding the central

bank’s estimate of s and thereby the Kalman gains. The costs of over-filtering the data are

smaller than those of under-filtering.

We now turn to the performance of the OC-FT policy with learning. With a forecast-

based representation of optimal policy, we face of choice of how the central bank makes

its forecast that it uses in setting policy. We consider two alternatives. In the first, we

assume that the central bank computes its forecast using the structural model assuming

that private agents do the same. We refer to this as“RE forecasts.” The left half of Table 7

reports the results for this case. The outcomes are nearly the same as for the OC policy.

This finding is not surprising. If the OC- and OC-FT policies yielded identical outcomes

under rational expectations, then if the central bank uses the RE equilibrium of the model

to generate forecasts, the outcomes will be identical regardless of how private agents form

expectations. This equivalence is due to the fact that the leads in the optimal policy equation

can be replaced with the forecasts implied by the reduced-form of the rational expectations

equilibrium. In practice, however, the ”OC” and ”OC-FT” policies yield equilibria under

RE that differ ever so slightly, so the outcomes under learning also differ somewhat.

In this model, forecast-targeting optimal control policies that use private-sector forecasts

perform very poorly even with constant and known natural rates. The results for this case
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are shown in the right-hand portion of Table 7. The outcomes under the FT-OC rule using

private sector forecasts are uniformly very poor under learning.13 Indeed, the results are

generally much worse than if the central bank used the forecasts implied by the structural

model assuming rational expectations. We tried alternative forecast-based specifications of

the optimal control policy and the results were qualitatively the same as those reported

for the OC-FT policy. We also experimented with using alternative VARs to generate the

central bank forecasts and again the results were qualitatively the same. In the following,

we focus on the OC policy in analyzing optimal control policies.

9 Simple Rules

So far, we have documented that macroeconomic outcomes deteriorate significantly when

the public is learning and the central bank follows a policy that would be optimal if expecta-

tions were rational. Of course, this finding alone does not demonstrate that optimal control

policies are inadvisable, unless it can be shown that other policies are more robust to alter-

native models of expectations formation. We therefore consider two alternative monetary

policies that have been recommended in the literature for being robust to various forms of

model uncertainty.

The first rule is a version of the forecast-based policy rule proposed by Levin, Wieland,

and Williams (2003). We refer to this as the “LWW” type of policy rule; according to this

rule, the short-term interest rate is determined as follows:

it = it−1 + θπ(π̄e
t+3 − π∗) + θu(ut−1 − û∗t−1), (14)

where π̄e
t+3 is the forecast of the four-quarter change in the price level and u∗ is the natural

rate of unemployment which we take to be constant and known. Because this policy rule

features characterizes policy in terms of the first-difference of the interest rate, it does not

rely on estimates of the natural rate of interest, as does the standard Taylor Rule (1993).
13Note that in the case of the VAR(3) with κ = 0.03, the projection facility is invoked very often. For

that case, we do not report the results. We modified the conditions for invoking the projection facility and
find simulations that do not invoke the projection facility often. Macroeconomic performance was very poor,
similar to the other results reported in the table.
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The second rule we consider is that proposed by Orphanides and Williams (2007) for

its robustness properties in the face of natural rate uncertainty.

it = it−1 + θπ(π̄e
t+3 − π∗) + θ∆u(ut−1 − ut−2). (15)

A key feature of this policy is the absence of any measures of natural rates in the determi-

nation of policy.

We choose the parameters of these simple rules to minimize the loss under rational expec-

tations and constant natural rates using a hill-climbing routine.14 The resulting optimized

LWW rule is given by:

it = it−1 + 1.05 (π̄e
t+3 − π∗)− 1.39 (ut−1 − û∗t ). (16)

The optimized OW rule is given by:

it = it−1 + 1.74 (π̄e
t+3 − π∗)− 1.19 (ut−1 − ut−2). (17)

In the following, we refer to these specific parameterizations of these two rules simply as the

“LWW” and “OW” rules. Table 8 reports the outcomes under the optimal control policy,

the LWW rule, and the OW rule under rational expectations and constant natural rates.

The outcomes under the OC and “OC-FT” policies are shown for comparison.

Under rational expectations and constant natural rates, the optimal control policies

yield a loss only modestly lower than that under the LWW rule, a result consistent with

the findings in Williams (2003) and Levin and Williams (2003) for other models. The small

differences in outcomes between an OC policy and the LWW rule is illustrated in Figure 3,

which plots the impulse responses to the two shocks for the OC policy, LWW rule, and

the OW rule, under the assumption of rational expectations. The impulse responses under

the LWW rule mimic very closely those of the optimal control policy. The only noticeable

difference is seen in the responses to the inflation shock. The LWW rule prescribes a sharper

initial rise in the nominal short-term interest rate and the unemployment rate than the
14If we allow for time-varying natural rates that are known by all agents, the optimized parameters of the

LWW and OW rules under rational expectations are nearly unchanged. The relative performance of the
different policies is also unaffected.
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optimal control policy. Despite this, the optimal control policy manages to bring inflation

down slightly more quickly owing the expectation of some overshooting of inflation past the

target under the optimal control policy.

The difference between the loss under the optimal control policy and the OW rule is

somewhat larger than for the LWW rule. In response to the inflation shock, the OW

policy acts aggressively to bring inflation back to target, at the cost of larger rise in the

unemployment rate. In response to the unemployment shock, this policy, which fails to

take into account the level of the unemployment rate, brings the unemployment rate back

to target too slowly, causing inflation to fall further below the target.

In contrast to the optimal control policy, the LWW and OW rules perform very well

with agents learn. Table 9 compares the performance of these rules to that of the OC policy

under learning with known constant natural rates. As in the case of the optimal control

policy, the central bank losses are generally larger with the simple rules under learning than

it would be absent learning, and the losses with learning are greatest when agents use the

three-lag VAR for forecasting. The good performance of the LWW rule is seen clearly in

the impulse responses to the shocks shown in Figure 4 for the case of the three-lag VAR

and κ = 0.02; the assumptions are the same as in Figure 2. For both shocks, the range

of responses of inflation is much narrower than for the optimal control policy. Thus, the

LWW rule consistently brings inflation back to target quickly following a shock to inflation

and contains the response of inflation to the unemployment shock. This tighter control of

inflation does not come at a cost of a wider range of unemployment responses. The range

of responses of the unemployment rate to the two shocks is comparable to those under the

optimal control policy. As in the case of the LWW rule, the OW rule effectively contains

the inflation responses to the two shocks, as seen in Figure 5 which shows the distribution

of IRFs under learning for the OW policy rule. Indeed, it does even better at controlling

inflation than the LWW rule, but at a cost of greater variability of the other target variables.

As a result, the LWW performs somewhat better in terms of the central bank loss than the

OW rule for all learning models that we consider.
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With constant natural rates, the LWW rule outperforms the optimal control policy

for learning rates of 0.01 and above, reflecting the much better stabilization of inflation

under the LWW rule. This result holds regardless of the version of the VAR used for

forecasting. The relative performance is seen in Figure 6, which shows the outcomes for

values of κ between 0 and 0.03 for the optimal control policy (the solid line), the LWW rule

(the dashed line), and the OW rule (the dashed-dotted line) when agents forecast using the

three-lag VAR. For very low values of κ, the LWW rule yields slightly higher variability of all

three objective variables than the optimal control policy. But, with higher values of κ, the

LWW rule responds more effectively to inflation and keeps inflation, and thereby inflation

expectations, well contained. It achieves this while allowing somewhat higher variability in

the unemployment rate and the change in the interest rate. The results for the OW rule

are similar and this rule outperforms the optimal control policy for learning rates of slightly

above 0.01 and higher.

The simple rules significantly outperform the OC policy when agents learn and natural

rates are mismeasured. Table 10 reports the results with time-varying natural rates. The

addition of time-varying natural rates does not change the qualitative results regarding the

lack of robustness of optimal control policies relative to the two simple rules that we study.

Rather, it amplifies the effects that we found from introducing learning. Figure 7 shows the

results for various values of κ for the case of s =1. Both the LWW and OW rules outperform

the OC policy for all values learning rates κ above 0.01. Similar results obtain in the case

of s = 2.

Finally, because these simple rules do not rely much or at all on natural rate estimates,

they are robust to misspecification in estimation of natural rates. Table 11 reports the

results for the LWW rule for different values of s allowing for the possibility that the

central bank’s estimate for s and thereby the Kalman gains is incorrect. The results for

the OW rule are shown for comparison. For the OW rule this misspecification is irrelevant

and the results are invariant to the central bank’s estimate of s. For the LWW rule, policy

does respond to the perceived natural rate of unemployment and performance generally
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deteriorates somewhat if the gain is misspecified. Indeed, in the case of s = 2 and the

central bank erroneously believes natural rates are constant, the OW rule outperforms the

LWW for values of κ of 0.02 and above. The performance of the OC policy (reported in

Table 6) is much worse than the two simple rules when the Kalman gains are incorrect,

reflecting the effects of the greater mismeasurement of the natural rates on policy and

thereby the economy.

10 Conclusion

Current techniques for determining optimal control and robust control monetary policies

rely on the assumption that the policymaker possess a very good reference model. This

assumption is not tenable given the large degree of model uncertainty. This paper has

focused on one facet of this uncertainty associated with expectations formation. The main

finding is that optimal control policies are not robust to this form of model uncertainty

in the estimated model that we study. Of course, our finding does not imply that there

does not exist a reference model for which the optimal control policy is robust to the

alternative models of expectations formation that we studied here, but it does provide a

general warning about the potential pitfalls of optimal control policies when the reference

model is misspecified. We also find that mismeaasurement of time-varying natural rates

of interest and unemployment exacerbate the problems associated with learning for the

optimal control policy. In contrast to optimal control policies, we find that simple rules

that have been found to be robust to other types of model uncertainty are also robust to

uncertainty about how expectations are formed and natural rate mismeasurement.

Until feasible methods are developed that allow for the derivation of optimal monetary

policy under a realistic range of model uncertainty including models with learning and nat-

ural rate mismeasurement, the alterative approach of “stress testing” parsimonious policy

rules across a wide set of models provides a practical and productive method of learning

which characteristics of monetary policies are robust and which are fragile.15 Of course,
15Gaspar, Smets and Vestin (2006) analyze optimal monetary policy in a very simple model with learning.

Because the model with learning is nonlinear, they apply dynamic programming techniques that are infeasible
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robustness of any policy cannot be “proved,” because the policy may perform poorly in an

alternative model that has yet be considered. As Carlson and Doyle (2002) warn “They are

robust, yet fragile, that is, robust to what is common or anticipated but potentially fragile

to what is rare or unanticipated.” Recognition of this, of course, implies the need for more

research into the robustness properties of all monetary policy strategies.

for the type of model studied in this paper.
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Table 1
Natural Rate Estimation

Optimal Unconditional
Kalman Gain Standard Deviations

s λr λu r∗ u∗ r∗ − r̂∗ u∗ − û∗

0 0 0 0 0 0 0
1 0.0027 0.0083 0.60 0.50 0.56 0.42
2 0.0086 0.0219 1.21 0.99 1.00 0.68
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Table 2
Forecast Accuracy with Constant Natural Rates (RMSE)
(OC Policy with Optimal Kalman Gains; Constant Natural Rates)

Forecast Model
VAR(3) VAR(2) VAR(1)

κ π u i π u i π u i

True Forecasting Model VAR(3)
0.00 1.35 0.30 0.00 1.35 0.30 0.23 1.37 0.35 0.35
0.01 1.38 0.31 0.01 1.38 0.31 0.24 1.41 0.36 0.36
0.02 1.43 0.33 0.09 1.44 0.34 0.26 1.51 0.40 0.40
0.03 1.48 0.35 0.14 1.50 0.36 0.31 1.58 0.43 0.43

True Forecasting Model VAR(2)
0.00 1.35 0.30 0.00 1.35 0.30 0.23 1.36 0.35 0.43
0.01 1.38 0.31 0.01 1.37 0.31 0.24 1.38 0.36 0.44
0.02 1.41 0.32 0.05 1.39 0.32 0.25 1.44 0.38 0.46
0.03 1.45 0.33 0.09 1.42 0.33 0.26 1.49 0.41 0.48

True Forecasting Model VAR(1)
0.00 1.36 0.31 0.00 1.36 0.31 0.26 1.36 0.33 0.44
0.01 1.38 0.30 0.00 1.37 0.30 0.23 1.36 0.33 0.46
0.02 1.41 0.31 0.02 1.39 0.31 0.23 1.37 0.33 0.47
0.03 1.44 0.32 0.05 1.41 0.31 0.24 1.38 0.33 0.47
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Table 3
Forecast Accuracy with Time-Varying Natural Rates (RMSE)

(OC Policy with Optimal Kalman Gains; s = 1)

Standard Deviation
κ π u i

VAR(3)
0.00 1.36 0.30 0.10
0.01 1.39 0.31 0.07
0.02 1.45 0.34 0.17
0.03 1.50 0.37 0.19

VAR(2)
0.00 1.36 0.30 0.31
0.01 1.38 0.31 0.28
0.02 1.40 0.32 0.28
0.03 1.42 0.33 0.30

VAR(1)
0.00 1.37 0.35 0.78
0.01 1.37 0.33 0.55
0.02 1.38 0.33 0.54
0.03 1.39 0.34 0.54
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Table 4
Performance of OC Policy with Constant and Known Natural Rates

Standard Deviation Loss
κ π u− u∗ ∆i L

VAR(3)
0.00 1.84 0.68 1.20 6.65
0.01 2.14 0.76 1.32 8.63
0.02 2.75 0.92 1.57 13.39
0.03 3.15 1.04 1.79 17.45

VAR(2)
0.00 1.83 0.68 1.22 6.71
0.01 2.06 0.74 1.29 8.14
0.02 2.42 0.86 1.47 10.93
0.03 2.76 0.97 1.66 14.12

VAR(1)
0.00 1.94 0.78 1.43 8.27
0.01 2.15 0.75 1.36 8.75
0.02 2.46 0.84 1.48 11.06
0.03 2.70 0.92 1.59 13.21
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Table 5
Performance of OC Policy with Time-Varying Natural Rates

(VAR(3) Forecasts; Optimal Kalman Gains)

Standard Deviation Loss
κ π u− u∗ ∆i L

s = 0
0.00 1.84 0.68 1.20 6.65
0.01 2.14 0.76 1.32 8.63
0.02 2.75 0.92 1.57 13.39
0.03 3.15 1.04 1.79 17.45
s = 1
0.00 1.85 0.81 1.24 7.56
0.01 2.27 0.88 1.34 10.07
0.02 2.98 1.07 1.66 16.27
0.03 3.38 1.20 1.86 20.61
s = 2
0.00 1.89 0.98 1.28 9.02
0.01 2.44 1.06 1.39 12.39
0.02 3.16 1.26 1.75 19.38
0.03 3.71 1.43 2.08 26.20
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Table 6
Central Bank Loss under OC Policy with Incorrect Kalman Gain

(VAR(3) Forecasts)

Central Bank Estimate of s
κ 0 1 2

True value: s = 0
0.00 6.65 6.93 7.53
0.01 8.63 8.27 9.33
0.02 13.39 13.58 12.33
0.03 17.45 17.35 16.62

True value: s = 1
0.00 7.56 7.56 8.14
0.01 12.95 10.07 9.74
0.02 19.28 16.27 13.33
0.03 22.61 20.61 17.94

True value: s = 2
0.00 10.10 8.98 9.02
0.01 28.51 19.09 12.39
0.02 34.35 27.24 19.38
0.03 37.30 31.74 26.20
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Table 7
Performance under Rational Expectations

Standard Deviation Loss
Policy π u− u∗ ∆i L
OC 1.83 0.67 1.20 6.59
OC-FT 1.83 0.67 1.20 6.59
LWW rule 1.87 0.69 1.23 6.93
OW rule 1.83 0.73 1.39 7.40
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Table 8
Performance of OC-FT Policy under Learning with Constant Natural Rates

CB: RE Forecasts CB: VAR(3) Forecasts
Standard Deviation Loss Standard Deviation Loss

κ π u− u∗ ∆i L π u− u∗ ∆i L
VAR(3)

0.00 1.84 0.68 1.21 6.66 1.84 0.68 1.21 6.66
0.01 2.23 0.76 1.33 9.04 4.33 1.17 2.71 31.54
0.02 2.86 0.92 1.59 14.10 5.43 1.65 4.40 59.67
0.03 3.26 1.04 1.79 18.09 * * * *

VAR(2)
0.00 1.83 0.68 1.23 6.74 1.86 0.70 2.63 12.34
0.01 2.10 0.75 1.30 8.32 3.98 1.01 2.32 25.25
0.02 2.43 0.84 1.45 10.84 5.04 1.32 3.31 43.37
0.03 2.81 0.95 1.63 14.13 5.32 1.53 4.08 54.33

VAR(1)
0.00 1.95 0.79 1.44 8.38 3.57 2.42 10.67 149.88
0.01 2.17 0.75 1.35 8.78 4.74 1.84 4.54 56.65
0.02 2.44 0.82 1.44 10.72 5.28 1.97 4.81 66.53
0.03 2.75 0.92 1.59 13.49 5.55 1.96 4.84 69.65

Notes: The symbol “*” indicates that the projection facility is invoked more than 10 percent
of the simulation periods.

37



Table 9
Performance of Simple Rules under Learning with Constant Natural Rates

OC LWW Rule OW Rule
Loss Standard Deviation Loss Standard Deviation Loss

κ L π u− u∗ ∆i L π u− u∗ ∆i L
VAR(3)

0.00 6.65 1.88 0.69 1.24 6.97 1.84 0.73 1.39 7.43
0.01 8.63 1.93 0.80 1.37 8.17 1.90 0.86 1.56 8.97
0.02 13.39 1.99 0.91 1.58 9.78 1.96 0.97 1.75 10.66
0.03 17.76 2.08 1.04 1.79 11.82 2.05 1.09 1.98 12.87

VAR(2)
0.00 6.71 1.88 0.69 1.24 6.97 1.84 0.73 1.39 7.45
0.01 8.14 1.93 0.79 1.35 8.01 1.89 0.82 1.54 8.63
0.02 10.93 1.97 0.89 1.47 9.21 1.94 0.93 1.69 10.08
0.03 14.12 2.04 0.98 1.65 10.75 2.01 1.03 1.88 11.81

VAR(1)
0.00 8.27 1.89 0.73 1.36 7.56 1.84 0.76 1.41 7.66
0.01 8.75 1.87 0.76 1.28 7.46 1.83 0.80 1.49 8.11
0.02 11.06 1.91 0.85 1.42 8.53 1.89 0.91 1.68 9.72
0.03 13.21 1.96 0.95 1.58 9.95 1.97 1.04 1.87 11.68
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Table 10
Performance of Simple Rules under Learning with TV Natural Rates

(VAR(3) Forecasts; Optimal Kalman Gains)

OC LWW Rule OW Rule
Loss Standard Deviation Loss Standard Deviation Loss

κ L π u− u∗ ∆i L π u− u∗ ∆i L
s=0

0.00 6.65 1.88 0.69 1.24 6.97 1.84 0.73 1.39 7.43
0.01 8.63 1.93 0.80 1.37 8.17 1.90 0.86 1.56 8.97
0.02 13.39 1.99 0.91 1.58 9.78 1.96 0.97 1.75 10.66
0.03 17.45 2.09 1.04 1.78 11.83 2.05 1.09 1.98 12.87

s=1
0.00 7.56 1.90 0.82 1.30 8.02 1.86 0.84 1.40 8.23
0.01 10.07 1.94 0.92 1.41 9.15 1.93 0.95 1.60 10.16
0.02 16.27 1.99 1.02 1.57 10.62 1.99 1.08 1.78 11.84
0.03 20.61 2.08 1.15 1.79 12.80 2.09 1.18 2.03 14.03

s=2
0.00 9.02 1.92 1.01 1.43 9.85 1.95 1.26 1.41 12.15
0.01 12.39 1.95 1.10 1.47 10.85 1.99 1.17 1.65 12.16
0.02 19.38 2.00 1.18 1.62 12.18 2.06 1.28 1.86 14.27
0.03 26.20 2.07 1.27 1.81 13.97 2.13 1.36 2.07 16.21
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Table 11
Central Bank Loss with Incorrect Kalman Gain

(VAR(3) Forecasts)

LWW Rule OW Rule
Central Bank Estimate of s

κ 0 1 2
True value: s = 0

0.00 6.97 7.11 7.46 7.43
0.01 8.17 8.08 8.17 8.97
0.02 9.78 9.62 9.61 10.66
0.03 11.83 11.37 11.23 12.87

True value: s = 1
0.00 8.03 8.02 8.75 8.23
0.01 9.66 9.15 9.00 10.16
0.02 10.98 10.62 10.37 11.84
0.03 13.53 12.80 11.97 14.03

True value: s = 2
0.00 11.12 9.78 9.85 12.15
0.01 13.19 11.56 10.85 12.16
0.02 14.65 13.07 12.18 14.27
0.03 17.18 15.29 13.97 16.21
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Figure 1

Impulse Responses under Rational Expectations
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Notes: The first column of charts plots the impulse responses to a one standard deviation
innovation to the inflation shock, eπ. The second column plots the impulse responses to a
one standard deviation innovation to the unemployment shock, ev.
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Figure 2

OC Policy: Impulse Responses with Learning (κ = 0.02)
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Notes: The left columns shows the responses to an inflation shock; the right column shows
those to an unemployment shock. In each panel, the dotted line plots the impulse responses
under rational expectations. The solid lines show the median responses under learning. The
dashed lines show the 70 percent bands of the responses with learning; the dashed-dotted
lines show the 90 percent bands. For these simulations, we assume agents use the three-lag
VAR to form expectations with κ = 0.02 and that natural rates and known and constant.
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Figure 3

Impulse Responses under Rational Expectations
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Notes: The first column of charts plots the impulse responses to a one standard deviation
innovation to the inflation shock, eπ. The second column plots the impulse responses to a
one standard deviation innovation to the unemployment shock, ev.
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Figure 4

LWW Rule: Impulse Responses with Learning (κ = 0.02)
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Notes: The left columns shows the responses to an inflation shock; the right column shows
those to an unemployment shock. In each panel, the dotted line plots the impulse responses
under rational expectations. The solid lines show the median responses under learning. The
dashed lines show the 70 percent bands of the responses with learning; the dashed-dotted
lines show the 90 percent bands. For these simulations, we assume agents use the three-lag
VAR to form expectations with κ = 0.02 and that natural rates and known and constant.
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Figure 5

OW Rule: Impulse Responses with Learning (κ = 0.02)
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Notes: The left columns shows the responses to an inflation shock; the right column shows
those to an unemployment shock. In each panel, the dotted line plots the impulse responses
under rational expectations. The solid lines show the median responses under learning. The
dashed lines show the 70 percent bands of the responses with learning; the dashed-dotted
lines show the 90 percent bands. For these simulations, we assume agents use the three-lag
VAR to form expectations with κ = 0.02 and that natural rates and known and constant.
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Figure 6

Robustness to Learning: Constant Natural Rates
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Notes: In each panel, each line plots the asymptotic standard deviation or expected loss
that obtain under the specified monetary policy for alternative learning rates, κ, indicated
on the horizontal axis. Natural rates are assumed to be constant and known.
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Figure 7

Robustness to Learning: Time-varying Natural Rates (s=1)
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Notes: In each panel, each line plots the asymptotic standard deviation or expected loss
that obtain under the specified monetary policy for alternative learning rates, κ, indicated
on the horizontal axis.
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