Optimal Foreign Reserves and Central Bank Policy Under Financial Stress*

Luis F. Céspedes (Central Bank of Chile)
Roberto Chang (Rutgers University & NBER)

(*): The views expressed herein are exclusively those of the authors and do not necessarily reflect the position of the Central Bank of Chile.

Introduction and Motivation

Two recent trends:

Unconventional Policy, including FX Intervention

Chile	29-Sep-08	Reserve accumulation program was terminated, U.S. dollar 1-month repo operations announced (sales of U.S. dollar spot and purchases of 1-month U.S. dollar forward contracts through competitive auctions).	Term loan and/or liquidity facilities
	10-Oct-08	Broadening of eligible collateral for money market operations to include CDs; U.S. dollar repo program extended to six months.	Expand list of collaterals
	10-Dec-08	Extension of liquidity measures for all of 2009.	Term loan and/or liquidity facilities
		Enhancement of liquidity facility through credit lines accepting a broader range of collateral for longer tenors.	Expand list of collaterals
	9-Jul-09	Monetary policy rate at lower bound, short-term liquidity facility, suspension of debt emission of long maturities.	Term loan and/or liquidity facilities

Source: Céspedes, Chang and García-Cicco (2011)

Sweden	22-Sep-08	Changed collateral requirements for credit in the Riksbank's funds transfer system (RIX).	Expand list of collaterals
	24-Sep-08	Central banks announce swap facilities with U.S. Federal Reserve.	Swap line with other central bank
	29-Sep-08	Riksbank announces new swap facility in U.S. dollars.	Term loan and/or liquidity facilities
	2-Oct-08	Riksbank lends 60 billion krona over three months.	Term loan and/or liquidity facilities
	6-Oct-08	Increased loans and longer maturity.	Term loan and/or liquidity facilities
	8-Oct-08	Changed collateral requirement for credit in RIX.	Expand list of collaterals

Source: Céspedes, Chang and García-Cicco (2011)

Introduction and Motivation

Two recent trends:

- Unconventional Policy, including FX Intervention
- Reserves Accumulation

From : Bunda (2016)

Reasons for building reserves

Source: IMF survey of reserve managers.

Introduction and Motivation

Two recent trends:

- Unconventional Policy, including FX Intervention
- Reserves Accumulation
 - Both have generated lively, useful debates
 - Debates, while connected, often occur in parallel

Why the Trends May Affect Each Other

- Central bankers hoard reserves to be able to intervene in case of need,
 i.e. a liquidity crunch
- The accumulation of reserves may change private incentives and lead to increase borrowing, making liquidity more scarce if there is a crisis

Key Questions

- What is the relation between reserves accumulation and central bank policy, especially liquidity provision, in a crisis?
- How do they interact and affect equilibrium?
- Does the financial system play a role?
- What are the determinants of optimal reserves?
- What are the costs and benefits of reserves?

Purpose of this Paper

- We build a model of financial intermediation with frictions
- In the model, external constraints can become binding endogenously and result in a credit crunch
- International reserves enable the central bank to provide international liquidity and alleviate financial constraints when they bind
- Reserves accumulation does provide incentives for private borrowing
- The optimal level of reserves is tightly linked to the impact and nature of ex post intervention

Some Lessons

- O Precautionary savings ameliorates but does not eliminate inefficient financial crunches
- Optimal reserves depend on nature and degree of financial frictions and financial development
- And on the specific policies that the central bank can use in the event of a liquidity crunch
- 4 An increase in ex ante uncertainty also justifies a buildup of reserves

Related Literature

- Optimal Reserves: Jeanne-Korinek (2011)
- Crisis response and unconventional central banking: Gertler and Kiyotaki (2011) Céspedes, Chang, and Velasco (2017, CCV from now on)
- Foreign Exchange Intervenion: Chang (2018), Benes, Berg, Portillo and Vavra (2015), Vargas, González, and Rodríguez (2013), Cavallino (2017), Montoro and Ortiz (2017), Gabaix and Maggiori (2015).
- Macroprudential policy: Benigno, Chen, Otrok, Rebucci, and Young (2013), Jeanne and Korinek (2016)

A Basic Model

Basic Model

- t = 0, 1, 2
- Small open economy
- Two goods: tradables (numeraire) and non tradables
- Domestic households and firms borrow from rest of the world via financial intermediaries (banks)
- Financial intermediation subject to frictions and shocks

Initial Period

Firms Buy Capital: $QK = L^f$

Households Roll Over Debt: $L^h = R^*D_0$

Loan Demand: $L_1 = L^f + L^h$

Investment Period

θ random variable

- International lenders will then only accept contracts that satisfy the above constraint. From this perspective, a high realization of θ may reflect an exogenous tightening of international financial conditions.
- This can be seen as a sudden stop.
- For concreteness, we assume that θ can take n values, denoted by $\theta(s)$; s=1,...n; each with probability $\pi_s>0$; and that this is the only source of uncertainty in the model.
- We also impose $\theta(1) = \underline{\theta} > 0$ and $\theta(n) = \overline{\theta} < 1$:

Firms produce: Y = F(K)

Households receive profits, consume

Repayment Period

Households

Households consume only tradables and have preferences

$$u(C_0) + \beta EC_2$$

- t=0: households borrow from banks, so $C_0=L_0^h$
- ullet t=1: they roll over their debt, and hence $L_1^h=R_0^*L_0^h$
- t = 2:

$$C_2 = \Pi^b + \Pi^f - R_1 L_1^h$$

= $\Pi^b + \Pi^f - R_1 R_0^* C_0$

Initial consumption (and debt) are then given by the first order condition:

$$u'(C_0) = \beta R_0^* E R_1$$

==> Note that if $ER_1>R_1^*$, borrowing is inefficiently low

Production and Investment

- ullet t=1: firms buy capital K_2 at price Q_1 by borrowing from banks
- t = 2: they produce tradables via

$$Y_2 = AK_2^{\alpha}$$

Profits are then

$$\Pi^f = AK_2^{\alpha} - R_1Q_1K_2$$

• Demand for capital is then given by:

$$\alpha A K_2^{\alpha-1} = R_1 Q_1$$

Capital

Capital is an aggregate of tradables and nontradables. For now, assume Cobb Douglas:

$$K_2 = \kappa I_H^{\gamma} I_W^{1-\gamma}$$

Price of capital is

$$Q_1 = X_1^{\gamma}$$

where X_1 is the **real exchange rate** (price of nontradables in terms of tradables)

• The optimal input of nontradables is then given by:

$$I_H = \gamma \left(\frac{Q_1}{X_1}\right) K_2$$

• In equilibrium $I_{h1} = N$, so K_2 and Q_1 are pinned down by X_1

Banks

• t = 0: Banks borrow from ROW to lend to households:

$$D_0 = L_0 = C_0$$

• t = 1: Domestic loans are given by

$$L_1 = T + X_1 N + D_1 + R_0^* L_0 - R_0^* D_0$$

= $T + X_1 N + D_1$

• t = 2: Bank profits are

$$\Pi^b = R_1 L_1 - R_1^* D_1$$

Credit Constraint

At t = 1, crucially, banks face the **financial constraint**

$$R_1L_1 - R_1^*D_1 \ge \theta R_1L_1$$

- Similar to CCV and others
- Departure: θ is a **random variable** realized at t=1
- This is the only source of uncertainty (for now, at least)

Laissez Faire Equilibrium

Continuation Equilibrium

The economy from t = 1 on:

- $C_0 = D_0$ and θ are then given
- Version of CCV
- If $R_1 = R_1^*$, bank makes zero profits, and

$$L_1 \in [0, \frac{1}{\theta}(T + X_{1f}N)]$$

where X_{1f} is the **frictionless** exchange rate

• If $R_1 > R_1^*$, the bank borrows as much as it can, and lends

$$L_1 = \frac{1}{1 - (1 - \theta)\phi} (T + X_1 N)$$

where $\phi = R_1/R_1^*$ is the interest rate spread.

If financial constraints do **not** bind, $R_1 = R_1^*$, and all other variables take their frictionless (**f**) values:

$$lpha A K_{2f}^{lpha-1} = R_1^* Q_{1f} = R_1^* X_{1f}^{\gamma}$$

$$\frac{X_{1f} N}{I_{wf}} = \frac{\gamma}{1-\gamma}$$

$$K_{2f} = \kappa N^{\gamma} I_{wf}^{1-\gamma}$$

Hence the collateral constraint will not bind in the continuation if:

$$L_1 = R_0^* C_0 + Q_{1f} K_{2f} \le \frac{1}{\theta} (T + X_{1f} N)$$

i.e. if $\theta \leq \hat{\theta}$, where

$$\hat{\theta} = \frac{T + X_{1f} N}{R_0^* C_0 + Q_{1f} K_{2f}}$$

- Hence, given C_0 , the probability of binding constraints ("crisis") is $\Pr\{\theta > \hat{\theta}\}$
- Note that $\hat{\theta}$ is endogenous and, in particular, falls with C_0

If $\theta > \hat{\theta}$, then $R_1 > R_1^*$ and relative prices adjust to clear markets. In particular, the equilibrium exchange rate solves:

$$R_0^* C_0 + Q_1 K_2 = \frac{1}{1 - (1 - \theta)\phi} (T + X_1 N)$$

where the spread ϕ is given by

$$\phi = R_1/R_1^* = \left(\frac{X_f}{X_1}\right)^{\gamma + (1-\alpha)(1-\gamma)}$$

Initial Debt

Recall that, in any continuation equilibrium

$$R_1 = R_1^* \text{ if } \theta \leq \hat{\theta}$$

= $\rho(C_0, \theta) \text{ if } \theta > \hat{\theta}$

The Euler equation

$$u'(C_0) = \beta R_0^* E R_1$$

becomes

$$u'(C_0) = \beta R_0^* \left[R_1^* F(\hat{\theta}) + \int_{\hat{\theta}}^{\bar{\theta}} \rho(C_0, \theta) F(d\theta) \right]$$

where F is the cdf of θ

- This equation yields C_0
- (Note that $\hat{\theta}$ depends on C_0)

Some Implications

Laissez Faire: Equilibrium Continuation

Determinants of Crises

- The probability of crises is endogenous
- Some determinants are the "obvious" ones: i.e. lower productivity lead to lower $\hat{\theta}$ and higher probability of crises
- Other ones are novel
- Most interesting: an increase in uncertainty (a mean preserving spread in θ) can lead to higher crises probability

Laissez Faire and $E(\theta)$

Uncertainty and Equilibrium

Forex Reserves and Intervention

Reserves Accumulation

- Suppose now that, at t=0, the central bank can borrow tradables in the world market.
- It has access to long term loans: if it borrows F dollars at t=0, it repays $(1+\tau)R_0^*R_1^*F$ dollars at t=2, where $\tau\geq 0$ is a "term premium".
- The central bank can invest F in the world market and earn R_0^* and then R_1^*
- But in period t = 1 it also has the option to use R_0^*F to enact policies aimed at alleviating financial frictions, if these turn out to be binding.
- We assume that the central bank cannot borrow (more) abroad at t=1.

Reserves and Ex Post Policy

- Baseline: at t = 1, the central bank lends its reserves $R_0^* F$ to domestic banks when financial constraints bind.
- In terms of Gertler-Kiyotaki (2011), the central bank provides "liquidity facilities"
- CCV: this is equivalent to other interesting policies, and more effective than providing loans to households or firms, in particular.

Initial Period

Investment Period

Repayment Period

- As in CCV, we assume that central bank loans to domestic banks carry the world interest rate R_1^*
- And that the repayment of these loans can be enforced perfectly
- The banks 'collateral constraint then changes to

$$R_1L_1 - R_1^*(D_1 + M) \ge \theta R_1L_1 - R_1^*R_0^*F$$

loan supply is now constrained by

$$L_1 \leq \frac{1}{1 - (1 - \theta)\phi} (T + X_1 N + R_0^* F)$$

Is It Optimal to Eliminate Crises?

In this model, it is possible to eliminate crises completely: this is the case if $F = \bar{F}$, with

$$R_0^* \bar{F} = \bar{\theta} (R_0^* C_{0f} + Q_{1f} K_{2f}) - (T + X_{1f} N)$$

However, we have:

Proposition: If the term premium $\tau = 0$, F will be large enough to drive the probability of crises to zero. If $\tau > 0$, however, it is not optimal to eliminate crises completely.

Reserves, Crisis Probability, and Utility

The Role of the Central Bank

- Suppose that any domestic bank can borrow, say F', for two periods, at interest cost $(1+\tau)R_0^*R_1^*$, just like the government.
- It can be shown that borrowing F'>0 cannot increase bank profits, and must reduce them if $\tau>0$.
- In other words, the private banking sector has no incentives to accumulate liquidity in this model.

Optimal Reserves: Determinants

The Cost of Reserves

Here the relevant cost is the term premium $\boldsymbol{\tau}$

Optimal Reserves and the Term Premium

US Treasuries 10-year interest rate decomposition: 1997–2014

(Percent) Graph 2

Source: Federal Reserve Bank of New York based on Adrian et al (2013).

From : Bunda (2016)

Reserves and Financial Development

- Consider a fall in the mean value of θ
- This captures differences in financial development
- Correspondingly, one would expect that optimal reserves should be smaller

Evidence: Dominguez (2010)

Reserves and $E(\theta)$

Optimal Reserves and Uncertainty

- ullet A mean preserving spread of heta leads to higher reserves
- This is in line with intuition, and with observed experiences

Uncertainty and Optimal Reserves

Reserves Accumulation and Ex Post Policy

- As in CCV, the central bank uses reserves more effectively if it lends them to banks instead of firms or households in a credit crunch
- But direct lending may be more feasible because of other reasons (e.g. political)
- With direct lending, optimal reserves must be larger

Expected Utility, Reserves, and Ex Post Policy

Same, but with higher $\boldsymbol{\tau}$

Final discussion

Multiplicity of equilibria.

 Role for macroprudential policy (capital flow management).

Optimal Foreign Reserves and Central Bank Policy Under Financial Stress*

Luis F. Céspedes (Central Bank of Chile)
Roberto Chang (Rutgers University & NBER)

(*): The views expressed herein are exclusively those of the authors and do not necessarily reflect the position of the Central Bank of Chile.