In Search of a Nominal Anchor: What Drives Inflation Expectations?

Carlos Carvalho (PUC-Rio)
Stefano Eusepi (New York Fed)
Emanuel Moench (Deutsche Bundesbank)
Bruce Preston (Melbourne University)

December 11, 2015

The views expressed here are the authors’ and are not representative of the views of the Deutsche Bundesbank, the Eurosystem, the Federal Reserve Bank of New York or of the Federal Reserve System.
Motivation

- Successful monetary policymaking relies on \textit{anchored} inflation expectations.
 - Despite recent past, stability of long-run inflation expectations not an inherent feature of the economy.

- Yet: do not know much about what drives long-term expectations.
 - Under what conditions are expectations anchored?

- In most macro-models \textit{long-term} inflation expectations are:
 - Assumed to be constant; or
 - Assumed to drift exogenously.
This Paper

- Simple model of expectation formation based on learning.
- Price-setting agents act as econometricians: estimate average long-run inflation mean.

- **Key feature 1**: state-dependent sensitivity of long-run inflation expectations to short-term inflation surprises.
 \[\Rightarrow\] Generates unanchoring (high sensitivity) of long-term inflation expectations in response to large and persistent surprises.

- **Key feature 2**: with nominal rigidities expected future inflation matters for current prices.
 \[\Rightarrow\] Expectations are partially self-fulfilling, producing an endogenous inflation trend.
Objective

Can such a model explain the evolution of long-term inflation expectations as measured by survey forecasts?

- Estimate the model using only actual inflation and survey-based measures of short-term inflation forecasts.

- Evaluate predictions for long-term survey forecasts for US and 11 other countries:
 - Consensus Forecasts dataset: Canada, France, Germany, Italy, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, UK.
Introduction

Literature

- Inflation dynamics under learning
 - Chevillonné et al. (2010), Cornea et al. (2013), Lansing (2008), Milani (2005), Primiceri (2008), Sargent et al. (2005).

- Inflation drift

- State dependent gain/ Model selection
A Simple Model

Forecasting model of price-setting agents:

$$\pi_t = (1 - \gamma_p) \bar{\pi}_t + \gamma_p \pi_{t-1} + \varphi_t.$$

- $\bar{\pi}_t$: agents estimate (possibly drifting) long-term inflation mean

$$\hat{E}_t \lim_{T \to \infty} \pi_T = \bar{\pi}_t.$$

- φ_t: a zero mean stationary “short-run component”

$$\varphi_t = s_t + \mu_t$$

$$s_t = \rho_s s_{t-1} + \epsilon_t.$$

- s_t, μ_t: relate to marginal cost and cost-push shocks in NK model.
A Simple Model - ctd.

True inflation DGP:

\[\pi_t = (1 - \gamma_p) \Gamma \bar{\pi}_t + \gamma p \pi_{t-1} + \varphi_t. \]

- \(\Gamma \): measures **feedback** from beliefs to actual inflation.

\[\Rightarrow \text{In NK model: feed-back to price-setting decisions.} \]

- True DGP for inflation has a constant mean which agents will eventually learn.
 - \(\Gamma < 1 \): restricted to ensure \(\pi_t \) is stationary.
Learning about the Inflation Trend

- We assume the following learning algorithm:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + k_{t-1}^{-1} \times f_t \quad \text{where} \quad f_t = \pi_t - \hat{E}_{t-1}\pi_t.
\]

- In the spirit of Marcet and Nicolini (2003), learning gain \(k_t > 1 \):

\[
k_t = \begin{cases}
 k_{t-1} + 1, & \text{if } \frac{\left| \hat{E}_{t-1}\pi_t - E_{t-1}\pi_t \right|}{\sqrt{\mathbb{E}[\pi_t - E_{t-1}\pi_t]^2}} < \nu \\
 \bar{g}^{-1}, & \text{otherwise.}
\end{cases}
\]

- \(E_{t-1}\pi_t \): model-consistent forecast.

\(\Rightarrow \) Captures effort to protect against structural change.

\(\Rightarrow \) Use statistical tools to detect time-variation in their model’s intercept.
Learning about the Inflation Trend - ctd.

• We assume the following learning algorithm:

\[
\bar{\pi}_t = \bar{\pi}_{t-1} + k_{t-1}^{-1} \times f_t \quad \text{where} \quad f_t = \pi_t - \hat{E}_{t-1}\pi_t.
\]

• In the spirit of Marcet and Nicolini (2003), learning gain \(k_t > 1 \):

\[
k_t = \begin{cases}
 k_{t-1} + 1, & \text{if} \quad \frac{\left| \hat{E}_{t-1}\pi_t - E_{t-1}\pi_t \right|}{\sqrt{E[\pi_t - E_{t-1}\pi_t]^2}} < \nu \\
 \bar{g}^{-1}, & \text{otherwise.}
\end{cases}
\]

• More intuition on switching criterion:

\[
\left| \hat{E}_{t-1}\pi_t - E_{t-1}\pi_t \right| = \left| (1 - \gamma_p) (1 - \Gamma) \left[\bar{\pi}_0 + \sum_{\tau=0}^{t} k_{\tau}^{-1} f_{\tau} \right] \right|, \text{ given } \bar{\pi}_0, f_0, k_0.
\]

⇒ Large when past forecast errors are of same sign for a few periods.
Anchored Expectations?

- **Anchored expectations**: agents learn about a constant long-run mean of inflation (Least Squares).

 \[k_{t}^{-1} \rightarrow 0. \]

- **Unanchored expectations**: agents doubt the constancy of long-run inflation and put more weight on recent inflation (Constant gain).

 \[k_{t}^{-1} = \bar{g}. \]
Lower Bound on Rationality

1. Parameters ν and \bar{g} such that agents eventually learn.
 - Here $\bar{\pi}_t \rightarrow \pi$.

2. Claim: ν and \bar{g} nearly optimal within the learning algorithm.
 - No individual agent has strong incentives to deviate.
 - Key role of feed-back effects (Γ high enough).

Implication: learning mechanism not policy invariant.
Data: US

- **Strategy**: given agents’ updating rule use measures of short-term forecasts and inflation to infer their long-term forecasts.

- **Goal**: evaluate the model’s ability to explain long-term inflation forecasts observed in survey data.

- **Data**: CPI inflation (quarterly), 1955Q1-2015Q2.

- **Short-term forecasts (consensus)**:
US: Actual Inflation and Short-Term Survey Forecasts
Estimation: US

- Model in state-space form:

\[\xi_t = F(k_{t-1}^{-1})\xi_{t-1} + S_C\epsilon_t. \]

- Observation equation:

\[
Y_{tUS} = \begin{bmatrix}
\pi_t \\
E_{t}^{SPF} \pi_{t+1} \\
E_{t}^{SPF} \pi_{t+2} \\
E_{t}^{LIV1} \left(\frac{1}{2} \sum_{i=1}^{2} \pi_{t+i} \right) \\
E_{t}^{LIV2} \left(\frac{1}{2} \sum_{i=1}^{2} \pi_{t+i} \right)
\end{bmatrix} = \pi^* + H'_t\xi_t + o_t.
\]

- Estimate with Bayesian methods — structural parameters:

\[
\bar{\theta} = (\pi^* \nu \bar{g} \gamma_p \Gamma \rho_s \sigma^2_s \sigma^2_\mu)'.
\]
US Estimates - Table of Priors and Posteriors

<table>
<thead>
<tr>
<th>Prior</th>
<th>Dist.</th>
<th>Mean</th>
<th>Std</th>
<th>Mode</th>
<th>Mean</th>
<th>Std</th>
<th>5%</th>
<th>Med.</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>π*</td>
<td>Normal</td>
<td>0.500</td>
<td>0.300</td>
<td>0.535</td>
<td>0.612</td>
<td>0.050</td>
<td>0.536</td>
<td>0.608</td>
<td>0.698</td>
</tr>
<tr>
<td>ν</td>
<td>Gamma</td>
<td>0.050</td>
<td>0.040</td>
<td>0.027</td>
<td>0.034</td>
<td>0.015</td>
<td>0.013</td>
<td>0.032</td>
<td>0.061</td>
</tr>
<tr>
<td>¯g</td>
<td>Gamma</td>
<td>0.100</td>
<td>0.090</td>
<td>0.144</td>
<td>0.142</td>
<td>0.026</td>
<td>0.105</td>
<td>0.139</td>
<td>0.189</td>
</tr>
<tr>
<td>γp</td>
<td>Beta</td>
<td>0.500</td>
<td>0.265</td>
<td>0.118</td>
<td>0.120</td>
<td>0.024</td>
<td>0.085</td>
<td>0.118</td>
<td>0.162</td>
</tr>
<tr>
<td>Γ</td>
<td>Beta</td>
<td>0.500</td>
<td>0.265</td>
<td>0.938</td>
<td>0.899</td>
<td>0.045</td>
<td>0.816</td>
<td>0.904</td>
<td>0.962</td>
</tr>
<tr>
<td>ρφ</td>
<td>Beta</td>
<td>0.600</td>
<td>0.200</td>
<td>0.888</td>
<td>0.869</td>
<td>0.026</td>
<td>0.825</td>
<td>0.871</td>
<td>0.908</td>
</tr>
<tr>
<td>σφ</td>
<td>lGamma</td>
<td>0.500</td>
<td>4.000</td>
<td>0.083</td>
<td>0.088</td>
<td>0.009</td>
<td>0.075</td>
<td>0.088</td>
<td>0.103</td>
</tr>
<tr>
<td>σµ</td>
<td>lGamma</td>
<td>0.500</td>
<td>4.000</td>
<td>0.377</td>
<td>0.370</td>
<td>0.035</td>
<td>0.313</td>
<td>0.370</td>
<td>0.427</td>
</tr>
</tbody>
</table>
1Q Ahead Forecast Errors: Model-Implied and SPF
Long-term (6-10 Years) Model-Implied Inflation Forecasts
Adding Michigan Survey 6-10 Years
Introduction

Adding Blue Chip Economic Indicators 1-10 Years
Adding Blue Chip Economic Indicators 6-10 Years
Adding Blue Chip Financial Forecasts 6-10 Years
Adding Consensus Economics 6-10 Years
Adding Survey of Professional Forecasters 6-10 Years
Learning Gain
Comparing with Other Models

- **Exogenous drift**: popular approach both in reduced-form and DSGE models:

 \[\bar{\pi}_{t+1} = \rho_\pi \bar{\pi}_t + e_{t+1}; \rho_\pi \approx 1. \]

 - Does not predict as well the sharp rise in long-term expectations over the 70s.

- **Constant gain**: widely used on the learning literature.

 - Produces excessive volatility in the second part of the sample.
Estimation: Other Countries

Data:

Data limitations:

- Limited sample of surveys + year-over-year forecasts.
 - Forecasts for current year include quarterly forecasts of 1-2 quarters ahead.
 - Forecasts for the following year give highest weight to 1-4 quarters ahead forecasts.
- Not a precise measure of one-quarter-ahead prediction errors.
Estimation: Other Countries - ctd.

Solution:

1. “Structural” params: use US posterior as prior for these countries.
 - For π^* and obs. errors use same prior distrib. as for the US.

2. Down-weight foreign country’s Likelihood. Posterior:

\[P^* \left(\theta^* | Y^*_t, Y^*_tUS, \theta^{US} \right) = \lambda^* \ln L(Y^*_t | \theta^{US}, \theta^*) + \ln \left[L(Y^*_tUS | \theta^{US}) p(\theta^{US}) \right] + \ln p(\theta^*). \]

- Small λ^*: Model predictions using US posterior distribution.
Summary Results: Foreign Countries

1. Model characterizes well the evolution of long-term forecasts.
 - Survey-based forecasts are inside the 95% bands for most of the sample.
 - With the exception of France, Italy and Spain, posterior estimates with λ^* up to 0.6 are very similar to US posterior distribution.

 - Japan and Switzerland: episodes of unanchoring in the past 15 years.
 - Canada, France, Sweden and the UK: more stable expectations.

3. Beyond inflation surprises: announcement effects?
 - Examples: some episodes in Canada, Japan and Sweden.
Japan: Consumer Price Inflation and Short-Term Forecasts
Japan: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.1$
Japan: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.3$
Japan: Learning Gain: $\lambda^* = 0.1$
France: Consumer Price Inflation and Short-Term Forecasts
France: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.1$
France: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.3$
France: Learning Gain: $\lambda^* = 0.1$
Germany: Consumer Price Inflation and Short-Term Forecasts
Germany: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.1$
Germany: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.6$
Germany: Learning Gain: $\lambda^* = 0.1$
Canada: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.1$
Sweden: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.1$
Introduction

Switzerland: Consumer Price Inflation and Short-Term Forecasts

[Graph showing Consumer Price Index (CPI) and short-term forecasts for Switzerland from 1980 to 2010.]
Switzerland: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.1$
Switzerland: Learning Gain: $\lambda^* = 0.1$
Switzerland: Model-Implied and Obs. 6-11 Years Forecasts: $\lambda^* = 0.6$
Switzerland: Learning Gain: $\lambda^* = 0.6$
Conclusion

- Simple learning model which links long-term inflation expectations to short-term forecast errors.

- In model inflation and inflation expectations can become unmoored in response to large and persistence short-term forecast errors.

- Model describes long-term survey forecasts of inflation very well for number of countries even using only posterior distribution for the US.

- In our model short-term forecast errors are treated as exogenous...

- ...but in full general equilibrium model they depend on policy regime.