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The proper estimation of distress dependence amongst the banks
in a system is key to monitoring the stability of the banking system.
Financial supervisors recognize the importance of assessing not only
the risk of distress, i.e. large losses and possible defaults by a specific
bank, but also the impact that such an event would have on other
banks in the system. Clearly, an event involving simultaneous, large
losses in several banks would affect the stability of the whole system,
and thus represents a major concern for supervisors. Banks’ distress
dependence is based on the fact that banks are usually linked, either
directly, through the inter-bank deposit market and participation in
syndicated loans, or indirectly, through lending to the same sectors
and proprietary trades. Their distress dependence varies throughout
the economic cycle and tends to rise in times of distress, since the
fortunes of banks decline concurrently through either direct links,
that is, contagion after idiosyncratic shocks, affecting inter-bank
deposit markets and participation in syndicated loans, or indirect
links, that is, negative systemic shocks, affecting lending to common
sectors and proprietary trades. At such times, the banking system’s
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joint probability of distress (JPoD, defined as the probability that
all banks in the system will experience large losses simultaneously
or banks’ distress dependence), may experience larger, nonlinear
increases than those experienced by the probabilities of distress (PoDs)
of individual banks. Consequently, it becomes essential for the proper
estimation of the banking system’s stability to incorporate banks’
distress dependence and its changes across the economic cycle.

Based on Segoviano and Goodhart (2009), in this paper we
estimate a set of banking stability measures (BSMs) that express
the interdependent structure of bank distress, capturing both linear
(correlation) and nonlinear distress dependencies among the banks
in the system. Moreover, the structure of linear and nonlinear
distress dependencies shifts as banks’ probabilities of distress (PoDs)
change; hence, the proposed stability measures incorporate changes
in distress dependence consistent with the economic cycle. This is a
key advantage over traditional risk models, most of which incorporate
only linear dependence (correlation structure), assuming it remains
constant throughout the economic cycle.!

The proposed BSMs represent a set of tools to analyze (define)
stability from three different, yet, complementary perspectives, as
they quantify: (i) “tail risk” in the banks within a system, (i1) distress
between specific banks, and (111) cascade effects, defined as distress
throughout the associated system, triggered by the distress of a
specific bank.

As described below, the authors conceptualize the banking
system as a portfolio of banks comprising the core banks of systemic
importance in any country. We then estimate the banking system
portfolio’s multivariate density (BSMD), based on which we construct
a set of banking stability measures (BSMs). We show how these BSMs
can be constructed from a very limited data set, for example, empirical
measurements of individual bank distress. Generally speaking,
alternative approaches are used, according to data availability. In this
case, the authors have opted for a data set that is available in most

1. In contrast to correlation, which only captures linear dependence, copula functions
characterize the whole dependence structure; i.e., linear and non-linear dependence,
embedded in multivariate densities (Nelsen, 1999). Thus, in order to characterize banks’
distress dependence we employ a novel, non-parametric copula approach, the CIMDO
copula (Segoviano, 2009), described below. Compared to traditional methodologies
used to model parametric copula functions, the CIMDO copula avoids the difficulties of
explicitly choosing the parametric form of the copula function to be used, and calibrating
its parameters, since CIMDO copula functions are inferred directly (implicitly) from
the joint (simultaneous) movements of individual bank PoDs.
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countries to estimate BSMs. Consequently, such measures can be
developed for a wide range of developing and developed countries.
In this paper, we also incorporate non-bank financial institutions,
whether corporate or sovereign, to facilitate analysis of distress
dependence between the banking sector and other sectors. Being able
to establish a set of measures with a minimum of basic components
facilitates a broader range of comparative analysis, involving
both time series and cross-sections. The flexibility of using these
measures is relevant to monitoring banking stability, as cross-border
financial linkages are becoming increasingly significant, as has
been illustrated by the financial market turmoil of recent months.
Thus, monitoring banking stability cannot stop at national borders.
Section 1 describes how Segoviano and Goodhart (2009) model
distress dependence. Section 2 provides a summary of the Banking
Stability Measures proposed by the authors. Section 3 shows how
these measures can be employed to analyze stability from different
perspectives. Finally, section 4 offers our conclusions.

1. DISTRESS DEPENDENCE IN THE FINANCIAL SYSTEM

Quantitative estimation of distress dependence among banks
and/or other financial institutions i1s a difficult task. Information
restrictions and difficulties in modeling distress dependence
arise due to the fact that distress is an extreme event, which
can be viewed as a tail event defined in the distress region of the
probability distribution that describes a bank’s implied asset price
movements (figure 1).

Figure 1. The Probability of Distress
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Source: Segoviano and Goodhart (2009).
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The fact that distress is a tail event makes the often used
correlation coefficient inadequate to capture bank distress
dependence and the standard approach to model parametric copula
functions difficult to implement. In our modeling of banking systems’
stability and distress dependence, we replicate Segoviano and
Goodhart (2009) and proceed as follows (figure 2):

Step 1: We conceptualize the banking system as a portfolio of
banks.

Step 2: For each of the banks included in the portfolio, we obtain
empirical measurements of probabilities of distress (PoDs).

Step 3: Using the Consistent Information Multivariate Density
Optimizing (CIMDO) methodology, presented in Segoviano
(2006) and summarized below, and taking as input variables
the individual banks’ PoDs, developed in the previous step, we
estimate the banking system’s (portfolio) multivariate density
(BSMD).

Step 4: Based on the BSMD, we estimate the proposed banking
stability measures (BSMs).

The banking system multivariate density (BSMD) characterizes
both the individual and joint asset value movements of the portfolio
of banks representing the banking system (figure 2).

Figure 2. The Banking System’s Multivariate Density
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Source: Segoviano and Goodhart (2009).
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1.1 The Importance of Time-Varying Distress
Dependence

We recover the BSMD using the Consistent Information
Multivariate Density Optimizing (CIMDO) methodology (Segoviano,
2006b). This offers key technical improvements over traditional
risk models that, generally speaking, only account for linear
dependence (correlations) assumed to remain constant throughout
the cycle or a fixed period of time. The BSMD captures bank distress
dependence structure, as characterized by the CIMDO copula
function (Segoviano, 2009), in terms of both linear and nonlinear
distress dependencies among banks in the system, and allows for
these to change throughout the economic cycle, reflecting the fact
that distress dependence increases in periods of distress. This implies
that systemic risks rise faster than individual risks.

To illustrate this point, for a portfolio of globally active banks we
estimate the average probability of default, and the joint probability
of default using alternative assumptions to describe the BSMD (a
multivariate ¢-density, t-JPoD), and the CIMDO density (JPoD).? The
joint probability of default represents the probability of all the banks
included in the portfolio becoming distressed. Accordingly, this is
estimated by integrating the alternative BSMD across the region of
default of each of the marginal densities that compose them.

Daily percentage changes in the JPoD are larger than daily
percentage changes in the average for individual PoDs and the
t-JPoD. This empirical fact provides evidence that in times of distress,
not only do individual PoDs increase (as captured by the three
alternative measures), but so does distress dependence (as captured
by the JPoD). Therefore, systemic risk may experience larger and
nonlinear increases than those for individual bank probabilities of
distress (PoDs) and those suggested by a density distribution with
fixed correlation parameters. Consequently, measures for financial
stability based on averages, or indexes that assume fixed correlation
parameters over time could be misleading.

The CIMDO method involves a reduced-form or non-parametric
approach to model copulas that seems to adequately capture default
dependence and its changes at different points in the economic cycle.
This method is easily implementable within the data constraints

2. The degrees of freedom and correlation parameters that characterize the
multivariate ¢-density are estimated using empirically observed data.
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affecting bank distress dependence modeling and produces robust
estimates under the probability integral transformation (PIT) criterion.?
To show improvements in modeling distress dependence (and therefore
in our proposed measures for stability), in the next sections, we (1)
model the BSMD using the CIMDO methodology, and (ii) illustrate the
advantages embedded in the CIMDO copula as used to characterize
distress dependence among banks in the banking system.

1.2 The CIMDO Approach: Modeling Banking System
Multivariate Density

We estimate the BSMD using the CIMDO methodology and
empirical measures of probabilities of distress (PoDs) for individual
banks. There are alternative approaches to estimating individual
banks’ probabilities of distress. For example, (1) the structural
approach, (i1) credit default swaps, and (ii1) out-of-the-money option
prices (OOM). It is important to emphasize the fact that in the CIMDO
framework, the PoDs for individual banks are exogenous variables
and can therefore be calculated using any alternative for estimating
PoDs. This makes estimating BSMD very flexible.

The CIMDO methodology is based on the minimum cross-
entropy approach (Kullback, 1959). Under this approach, a posterior
multivariate distribution p (the CIMDO density) is recovered using
an optimization procedure, by which a prior density g is updated with
empirical information, using a set of constraints. Thus, the posterior
density satisfies the constraints imposed on the prior density. In
this case, the banks’ empirically estimated PoDs represent the
information used to formulate the constraint set. Accordingly, the
CIMDO density (the BSMD) is the posterior density that is closest
to the prior distribution and that is consistent with the empirically
estimated PoDs of banks in the system.

To formalize these ideas, we proceed by defining a banking
system (portfolio of banks) composed of two banks, X and Y, whose
logarithmic returns are characterized by the random variables x and
y. Hence, we define the CIMDO objective function as:*

3. The PIT criterion for multivariate density’s evaluation is presented in Diebold
and others (1999).

4. A detailed definition and development of the CIMDO objective function and
constraint set and the optimization procedure that is followed to solve the CIMDO
function is presented in Segoviano (2006b).
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p(x,y)

C(,9)=/ Jp(x,y)In ( dxdy, where g(x,y) and p(x,y) € R.
q

’

Note that the prior distribution follows a parametric form, q,
consistent with economic intuition (for example, default is triggered
by a drop in the firm’s asset value below a threshold value) and
with theoretical models (such as the structural approach to model
risk). However, the parametric density, g, is usually inconsistent
with the empirically observed measures of distress. Hence, the
information provided by the empirical measures of distress of each
bank in the system is of prime importance to estimating the posterior
distribution. To incorporate this information into the posterior
density, we formulate consistency-constraint equations that have to
be fulfilled when optimizing the CIMDO objective function. These
constraints are imposed on the marginal densities of the multivariate
posterior density, and take the form:

ffp(x,y)xx{xém)dxdy:Pth",
1)
f f P(®.3)X, . dvdx=PoDy,

where p(x,y) is the posterior multivariate distribution that represents
the unknown to be solved. PoD;" and PoD); are the empirically estimated
probabilities of distress (PoDs) for each bank in the system, and X/,: .,
X[y, are indicating functions defined using distress thresholds x %,
X dy, estimated for each bank in the portfolio. To ensure that the solution
for p(x,y) represents a valid density, the conditions that p(x,y) > 0 and
the probability additivity constraint, [/p(x,y)dxdy=1, must also be
satisfied. Once the set of constraints is defined, the CIMDO density
is recovered by minimizing the functional:

L= [ [ pex.y)Inp,y)dzdy - [ [ px,)ng(x,y) dxdy
N Ufp(x,y) Xz ’Oc)dxdy—PoDj‘}
Ay [ f f P, ) X ,Oc)dydfooD}’]

+u[ f f p(x,y)dxdyfl},

@

where X\, X\, represent the Lagrange multipliers of the consistency
constraints and p represents the Lagrange multiplier of the probability
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additivity constraint. By using the calculus of variations, the
optimization procedure can be performed. Hence, the optimal solution
is represented by a posterior multivariate density taking the form:

p(x,5) =q(x,5) eXp{—[H i +(§1x[ )+(X2X[x§m))”. 3)

X ,00)

Intuitively, we know that imposing the constraint set on the
objective function guarantees that the posterior multivariate
distribution (BSMD) contains marginal densities that satisfy the
PoDs observed empirically for each bank in the banking portfolio.
Thus, in the modeling of portfolio risk, CIMDO-recovered distributions
outperform the most commonly used parametric multivariate
densities, according to the probability integral transformation (PIT)
criterion.? This is because using the CIMDO approach to recover
multivariate distributions, the available information, embedded in
the constraint set, is used to adjust the shape of the multivariate
density via the optimization procedure described above. This appears
to be a more efficient manner of using the empirically observed
information than under parametric approaches, which adjust the
shape of parametric distributions via fixed sets of parameters. A
detailed development of the PIT criterion and Monte Carlo studies
used to evaluate specifications of the CIMDO density are presented
in Segoviano (2006b).

1.3 The CIMDO copula: Distress Dependence among
Institutions in the System

The BSMD reflects the structure of linear and nonlinear default
dependence among banks included in the portfolio that is used
to represent the banking system. This dependence structure is
characterized by the copula function of the BSMD, that is, the CIMDO-
copula, which changes at each period of time, consistent with shifts in
the empirically observed PoDs. To illustrate this point, we heuristically
introduce the copula approach to characterize dependence structures
of random variables and explain the particular advantages of the
CIMDO-copula. For further details see Segoviano (2008).

5. The standard and conditional normal distributions, the ¢-distribution, and the
mixture of normal distributions.
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1.3.1 The copula approach

The copula approach is based on the fact that any multivariate
density, which characterizes the stochastic behavior of a group of
random variables, can be broken into two subsets of information:
(1) information about each random variable, that is, the marginal
distribution of each variable; and (i1) information about the dependence
structure among the random variables. Thus, to recover the latter,
the copula approach sterilizes the marginal information for each
variable, thereby isolating the dependence structure embedded in the
multivariate density. Sterilization of marginal information is done by
transforming the marginal distributions into uniform distributions;
U(0,1), which are uninformative distributions.® For example, let x
and y be two random variables with individual distributions x~F,
y~H and a joint distribution (x,y)~G. To transform x and y into two
random variables with uniform distributions U(0,1) we define two
new variables as u=F(x), v=H(y), both distributed as U(0,1) with
joint density c(u,v). Under the distribution of transformation of
random variables, the copula function c(u,v) is defined as:

g[FH) (), H Y (u)}

4

c(u,v) = f[F(fl) (u)}h{H(%) (U)},

where g, f, and h are defined densities. From equation (4), we see
that copula functions are multivariate distributions, whose marginal
distributions are uniform on the interval [0,1]. Therefore, since
each of the variables is individually (marginally) uniform, i.e. their
information content has been sterilized, their joint distribution will
only contain dependence information. Rewriting equation (4) in
terms of x and y we get:

gu,v) (5)
c|F(x),H(y)|=—"—"—.
[ E)H( >] f(x)h(y)
Equation (5) tells us that the joint density of u and v is the ratio
of the joint density of x and y to the product of the marginal densities.
Thus, if the variables are independent, equation (5) is equal to one.

6. For further details, proofs and a comprehensive and didactical exposition of
copula theory, see Nelsen (1999), and Embrechts, McNeil, and Straumann (1999) where
properties and different types of copula functions are also presented.
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The copula approach to model dependence possesses many
positive features when compared to correlations. In comparison
to correlation, the dependence structure characterized by copula
functions, describes linear and nonlinear dependencies of any
type of multivariate densities, throughout their entire domain.
Moreover, copula functions are invariant under increasing and
continuous transformations of marginal distributions. According
to standard procedure, first, a given parametric copula is chosen
and calibrated to describe the dependence structure among the
random variables characterized by a multivariate density. Then,
marginal distributions characterizing the individual behavior
of random variables, are modeled separately. Lastly, marginal
distributions are coupled with the chosen copula function to
construct a multivariate distribution. Therefore, dependence
modeling using standard parametric copulas involves two
important shortcomings:

(1) Itrequiresthat modelers deal with the choice, proper specification
and calibration of parametric copula functions, that is, the copula
choice problem (CCP). In general, the CCP is a challenging
task, since results are very sensitive to the functional form and
parameter values of the chosen copula functions (Frey and McNeil,
2001). To specify the correct functional form and parameters, it
is necessary to have information on the joint distribution of the
variables of interest, in this case, joint distributions of distress,
which are not available.

(11) The parametric copula functions commonly employed in portfolio
risk measurement require the specification of correlation
parameters, which, as usually specified, remain fixed over
time (see appendix A). Thus, although it is an improvement
on dependence modeling using correlations, the dependence
structure characterized using parametric copula functions, still
poses the problem of characterizing dependence that remains
fixed over time.”

1.3.2 The CIMDO copula

Our approach to model multivariate densities is the inverse of
the standard copula approach. We first infer the CIMDO density as

7. Note that even if correlation parameters are dynamically updated using rolling
windows, correlations remain fixed within these rolling windows. Moreover, most of the
time, how the length of rolling windows is defined remains subjective.
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explained in section 3.1. The CIMDO density portrays the dependence

structure among the random variables that it characterizes. Thus,

once we have inferred the CIMDO density, we can extract the copula
function describing its dependence structure (the CIMDO copula).

We do this by estimating marginal densities from the multivariate

density and using Sklar’s theorem (Sklar, 1959).

The CIMDO copula maintains all the benefits of the copula

approach:

(1) It describes linear and nonlinear dependencies among the
variables described by the CIMDO density. This dependence
structure is invariant under increasing and continuous
transformations of marginal distributions.

(11) It characterizes the dependence structure along the entire
domain of the CIMDO density. Nevertheless, the dependence
structure characterized by the CIMDO copula appears to be
more robust in the tail of the density (see discussion below),
where our main interest lies (that is, to characterize distress
dependence).

The CIMDO copula, however, avoids the drawbacks implicit in the

use of standard parametric copulas:

(1) It circumvents the copula choice problem. The explicit choice and
calibration of parametric copula functions is avoided because
the CIMDO copula is extracted from the CIMDO density (as
explained above). Thus, in contrast to most copula models,
the CIMDO copula is recovered without explicitly imposing
parametric forms that are difficult to model empirically and
frequently wrongly specified, when using restricted data
sets. Note that under such information constraints, when,
for example, the only information available covers marginal
probabilities of distress, the CIMDO copula is not only easily
implementable, it outperforms the most common parametric
copulas used in portfolio risk modeling under the PIT criterion.
This is particularly true for the tail of the copula function, where
distress dependence is characterized.

(i1) The CIMDO copula avoids the imposition of constant correlation
parameter assumptions. It updates automatically when the
probabilities of distress are used to infer the CIMDO density
change. Therefore, the CIMDO copula incorporates banks’
changing distress dependencies according to the dissimilar effects
of shocks on individual banks’ probabilities of distress, in a way
that is consistent with the economic cycle.
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To formalize these ideas, note that if the CIMDO density takes the
form presented in equation (3), appendix B shows that the CIMDO
copula, ¢ (u,v) is represented by

1

¢ (u,0) = ——
fﬂ(J q[f’?l(u%y]exp[*izxx& (y)}dy

®)
o[ F (), H, ™ () exp[~(1+)]

fj:Q[x,Hcfl(v)]exp[—fxlxxz (x)}dx ’

where u=F (x) & x=F,1(u), and v=H (y) & y=H_(v).

_Equation (6) shows that the CIMDO copula is a nonlinear function
of \;, X\, and i, the Lagrange multipliers of the CIMDO functional
presented in equation (2). As with all optimization problems, the
Lagrange multipliers reflect the change in the objective function’s
value, as a result of a marginal change in the constraint set.
Therefore, as the empirical PoDs of individual banks change at each
period of time, the Lagrange multipliers change, the values of the
constraint set change, and the CIMDO copula changes. Consequently,
the default dependence among system banks changes.

As mentioned, then, the default dependence gets updated
automatically with changes in empirical PoDs for each period in
time. This is a relevant improvement over most risk models, which
usually account for linear dependence (correlation) only, which,
moreover is also assumed to remain constant throughout the cycle
or over a fixed period of time.

2. BANKING STABILITY MEASURES

The BSMD characterizes the probability of distress of the
individual banks included in the portfolio, their distress dependence,
and changes across the economic cycle. This is a rich set of
information that allows us to analyze (define) banking stability from
three different, yet complementary, perspectives. For this purpose,
we define a set of BSMs to quantify:

(1) Tail risk, defined as common distress of the financial institutions
in a system,;
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(1) Distress among specific institutions;
(111) Cascade effects, defined as distress in the system associated with
distress in a specific institution.

We hope that the complementary perspectives on financial
stability offered by the BSMs proposed here constitute a useful tool
set to help financial supervisors identify how risks are evolving and
where contagion could most easily develop. To illustrate and make it
easier to present definitions below, we proceed by defining a banking
system (portfolio of banks) consisting of three banks whose asset
values are characterized by the random variables x, y and r. We
then use the procedure described in section 3.1 to infer the CIMDO
density function, which takes the form:

1+A+(x

p(x,y,r) =q(x,y,r)exp{—|
+(>\2 X[

xj,oo))
)+ (>A\3 X[

(7
)

xfl,rx:) x;,ac)

where q(x,y,r) and p(x,y,r) € R®.

2.1 Perspective 1: Tail Risk

To analyze common distress in the banks comprising the system,
we propose the joint probability of distress (JPoD) and the banking
stability index.

2.1.1 The joint probability of distress

The joint probability of distress represents the probability of all
banks in the system (portfolio) becoming distressed, that is, the tail
risk of the system. The JPoD reflects changes in individual bank
PoDs and captures changes in distress dependence among the banks.
The latter increases in times of financial distress. Therefore, in
such periods, the banking system’s JPoD may experience larger and
nonlinear increases than those experienced by the (average) PoDs
of individual banks. For the hypothetical banking system defined
in equation (7) the JPoD is defined as P(XNYNR) and is estimated
by integrating the density (BSMD) as follows:

jjjp(x,y,r) dxdydr = JPoD. (8)

y o
X Xa
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2.1.2 The banking stability index

The banking stability index (BSI) is based on the conditional
expectation of default probability measure, developed by Huang
(1992).8 The BSI reflects the expected number of banks becoming
distressed, given that at least one bank has become distressed. A
higher number signifies increased instability. For example, for a
system of two banks, the BSI is defined as follows:

P(X>ux3)+P(Y > x7)
1-P(X <xl,Y<x))

BSI= 9

The BSI represents a probability measure based on the condition of
any bank, without indicating the specific bank, becoming distressed.’

2.2 Perspective 2: Distress Between Specific Banks
2.2.1 Distress dependence matrix

For each period under analysis and for each pair of banks in the
portfolio, we estimate the set of pairwise conditional probabilities of
distress, presented in the distress dependence matrix (DiDe). This
matrix contains the probability of distress of the bank specified in
the row, if the bank specified in the column becomes distressed.
Although conditional probabilities do not imply causation, this set
of pairwise conditional probabilities can provide important insights
into interlinkages and the likelihood of contagion between banks in
the system. Table 1 provides the DiDE for the hypothetical banking
system defined in equation (7), on a given date.

Table 1. Distress Dependence Matrix

Bank X Bank Y Bank R
Bank X 1 P(X|Y) P(X|R)
Bank Y P(Y|X) 1 P(Y|R)
Bank R P(R|X) P(R]Y) 1

Source: Segoviano and Goodhart (2009).

8. This function is presented in Huang (1992). For empirical applications, see
Hartmann and others (2001).

9. Huang (1992) shows that this measure can also be interpreted as a relative
measure of banking linkage. When the BSI=1 in the limit, banking linkage is weak
(asymptotic independence). As the value of the BSI increases, banking linkage increases
(asymptotic dependence).
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Here, for example, the probability of distress in bank X conditional
on bank Y becoming distressed is estimated by

P(X > x3,Y > x3)

Pz P(Y > x))

Y >ux))= (10)

2.3 Perspective 3: Cascade Effects

2.3.1 The probability of cascade effects (PCE)

This indicator characterizes the likelihood that one, two, or more
institutions, up to the total number of Financial Institutions (FIs
hereafter) in the system become distressed given that a specific FI
becomes distressed. Therefore, this measure quantifies the potential
cascade effects in the system, given distress occurring in a specific
bank. Consequently, we propose this measure as an indicator to
quantify the systemic importance of a specific bank if it becomes
distressed. Again, note that conditional probabilities do not imply
causation. We do consider, however, that the PCE can provide
important insights into systemic interlinkages among the banks in
a system. For example, in a system with four banks, X, Y, Z, and R,
the PCE can be defined as follows:

PCE = P(Y|X)+ P(Z|X) + P(R|X)
~[P(YNR|X)+ P(Y N Z|X)+ P(ZN R|X)] 11)
+P(YNRNZ|X).

3. BANKING STABILITY MEASURES: EMPIRICAL RESULTS

We have used the BSM proposed by Segoviano and Goodhart
(2009) to examine relative changes in stability over time in the
following cases:

(1) Financial stability and spillovers among country/regions;

(1) Spillovers between foreign banks (from developed countries) and
emerging sovereign markets;

(1) Spillovers between developed country banks and developed
sovereign markets;

(iv) Spillovers between the banking system and corporate sectors.
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Our estimations are performed from 2005 to February 2009,
using publicly available data, and include major American
and European banks, and sovereign banks in Latin America,
Eastern Europe, Europe, and Asia. The flexibility inherent in our
approach is relevant to monitoring bank stability, since cross-
border financial linkages are growing and becoming increasingly
significant, as has been underlined by turmoil in financial markets
in recent months. Thus, monitoring banking stability cannot stop
at national borders.

3.1 Estimating the Probability of Individual Bank
Distress

The proposed BSMs can be constructed from a very limited
set of data, such as empirical measures of distress for individual
banks, which we have labeled probabilities of distress (PoDs). These
measures can be estimated using alternative approaches, such as
Merton-type models, credit default swaps (CDS), option prices, and
bond spreads, depending on the data available. This means that the
data set necessary to estimate BSMs is available in most countries.
Consequently, such measures can be developed for a wide range of
developing and developed countries.

Being able to establish this kind of set of measures with minimal
base components, makes a broader range of comparative analysis,
including both time series and cross-sections, possible. In the
applications below, we used CDS-PoDs, since they seemed the best
available distress indicator for the banks under analysis. Note,
however, that estimating the proposed BSMs is not intrinsically
related to CDS-PoDs. Thus, if we were to find a better approach,
replacing the PoD approach selected here to estimate BSMs would
be straightforward, since in this framework PoDs are exogenous
variables.10

10. Arguments against using CDS-PoDs emphasize that CDS spreads may
sometimes overshoot. They do not generally stay wrong for long, however. Rating
agencies have mentioned that CDS spreads frequently anticipate rating changes.
Although the magnitude of shifts may sometimes be unrealistic, the direction is usually
a good distress signal. For these reasons, and due to the problems encountered with
other approaches (which we consider more serious), we decided to use CDS-PoDs to
estimate the proposed BSMs.
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3.2 Financial Stability and Spillovers among regions!!

To analyze financial stability across regions, we included major
American, European, and Asian banks, grouped in alternative
portfolios, to observe:

3.2.1 Perspective 1: Tail risk

* FIs are highly interconnected, with distress in one FI
associated with high probability of distress elsewhere.
This i1s clearly indicated by the JPoD and the BSI. Moreover,
movements in the JPoD and BSI coincide with events considered
relevant by markets on specific dates (figure 3). Note also that
risks vary by geographical location and business area of the FI
(figure 4).

Figure 3. Tail Risk: January 2007-February 2009
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Sources: Bloomberg L.P.; IMF staff estimates.

Note: Global group consists of Bank of America, Citigroup, J.P. Morgan Chase & Co., Wachovia, Goldman Sachs,
Lehman Brothers, Merrill Lynch, Morgan Stanley, Deutsche Bank, Royal Bank of Scotland, UBS, HSBC, PMI,
AMBAC Financial, AIG, and Swiss Re.

11. The authors would like to thank Tami Bayoumi for insightful discussions and
contributions to the analysis of these empirical results.



Figure 4. Tail Risk by Regions: January 2007-February 2009
(BSI: number of banks, LHS; JPoD: probability, RHS)
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3.2.2 Perspective 2: Distress between specific institutions

Table 2 illustrates the following:

Distress dependence across major American Fls has greatly
increased. This is clearly shown by the conditional PoDs presented
in the DiDe. On average, if any of the U.S. FIs fell into distress,
the average probability of this affecting other FIs increased from
23 percent on 1 July 2007 to 41 percent on 12 September 2008.
By September, Lehman and AIG vulnerability had increased
significantly. This is revealed by Lehman’s and AIG’s large PoDs
conditional on any other FI experiencing distress, which increased
from 30 and 15 percent, respectively, on 1 July 2007 to 52 and
44 percent on 15 August, and 56 and 55 percent, on average, on
12 September 2008 (row-average Lehman and AIG). Moreover,
a Lehman default was estimated on 12 September to raise the
chances of distress elsewhere by 46 percent In other words, the PoD
of any other bank conditional on Lehman experiencing distress
went from 25 percent on 1 July 2007 to 37 percent on 12 September
2008 (column-average Lehman).

Note that a similar effect in the system would have been caused

by the distress of AIG, since the PoD of any other bank dependent
on AIG experiencing distress went from 20 percent on 1 July 2007
to 34 percent on 12 September 2008 (column-average AIG).

Lehman’s connections to the other major U.S. banks were
similar to AIG’s. This can be seen by comparing the chances of
each one of the U.S. banks being affected by distress in Lehman
and AIG (column Lehman versus column AIG) on 12 September.
Links were particularly close between Lehman, AIG, Washington
Mutual, and Wachovia, all of which were particularly exposed
to housing. On 12 September, a Lehman bankruptcy implied an
88, 43, and 27 percent likelihood that Washington Mutual, AIG,
and Wachovia, respectively, would fall into distress.

Distress dependence appears to be an early warning sign.
It is also very interesting to note that up to a month earlier than
the Lehman event, distress dependence was already signaling
that a default of Lehman or AIG would have caused significant
disruptions in the system. This is revealed by the PoD for any
other bank dependent on Lehman or AIG experiencing distress,
which increased significantly to 41 and 39 percent, respectively,



70 6€°0 970 €70 17°0 €¢°0 ¥%'0 170 LG0 Gggeo €70 afeIaar UWN]0)

¥v'0 00°T ¥€°0 ge0 Ge0 17°0 020 8€°0 870 %90 9¢°0 DIV
1¥°0 ¥6'0 00T LE0 gg'o 80 G1'0 820 70 1770 1€°0 £oTue)g UBIIOW
0¢°0 9€°0 €G°0 00°1T 870 19°0 120 LE0 860 G0 6€°0 YouLr (LI
%90 9€°0 ¥9°0 %90 00°T 69°0 %50 6€°0 9¢0 1670 (Al sietjorg urwya
1€°0 81°0 (4] 920 8¢'0 00°T 60°0 61°0 vE€0 860 12°0 S{oBg UBWplOH
g8'0 8L°0 08°0 ¢80 LLO 080 00°1T 680 68°0 36°0 €8°0 [eNINN U033UTYSE
g0 6€°0 170 6€°0 LEO gv'0 €20 00T g9'0 69°0 17°0 Jueq BIAOTOBM
850 g1°'0 020 810 LT°0 gz'o L0°0 020 00°T LEO 81°0 9sBY) URSIOW "d'f
0€°0 61°0 120 61°0 LT°0 ¥6°0 60°0 ¥e'0 170 00°T 020 BolIowy jo yueq
€0 12°0 Ggz'0 €20 €20 80 €10 €20 Ge0 %e0 00°T Jueqn

800G 1sn8ny ¢J

€20 020 €20 €¢'0 ¢¢'0 Y20 LT°0 Gc0 Lg0 0€°0 060 adeI0oA® UWN[O)
ST°0 00°'T ¥0°0 G0°0 ¥70°0 g0'0 ¥0°0 80°0 L0'0 11°0 G0'0 DIV
820 ¢1'0 00T Gg'0 €20 0€°0 010 61°0 €20 gg'0 q1'0 Ka[ue)g uedIopN
0€°0 <] 920 00°T 9¢°0 820 €10 61°0 Le0 920 ST'0 OuLT [[LIIdIN
0€°0 ¥1°0 920 620 00°T Gg0 I1°0 61°0 gz'0 20 9T1°0 SIayjoIg urwWYa
L20 €10 92°0 €20 L20 00T 80°0 910 €20 020 €10 Sydeg§ urwWpoy
€20 ¢l'0 11°0 €10 010 010 00T 020 810 ¢c0 ¥1°0 [eNININ U033UIYSLM
0%°0 0T°0 80°0 80°0 L0°0 80°0 80°0 00°'T G0 LE0 80°0 jued BIAOUDBM
¥2°0 I1°0 ¢1'0 ¥1°0 rAN(] ¥1°0 60°0 €¢'0 00'T €¢'0 0T'0 asey) ueSION ‘J'f
020 11°0 60°0 60°0 L0°0 80°0 80°0 12°0 ¢3¢0 00°T 80°0 BOLISWY JO Jueg
9170 g0'0 90°0 90°0 90°0 90°0 S0'0 80°0 80°0 60°0 00°'T Jueqnry
afpraan moy  pry  SW  TW g1 SH  MAPM OYDM WAL OVd 11D L00g S1np [

XLIJRT\ @oudpuada( SsaIISI(] 'g 99l



*STUOTIB[NOTRD SIOYINY :90IN0S

170 7670 9%°0 Gv'0 LE0 080 660 0¥°0 S0 16°0 670 edeI0oA® UWN[O)
Gg'0 00°'T L¥°0 6%°0 €¥°0 740 620 €970 69°0 99°0 060 DIV
1€°0 71°0 00T LG0 ¢3¢0 0¥°0 60°0 61°0 620 820 1%°0 Ka[ue)g uedIopN
€70 920 8%°0 00°T LE0 €9°0 9170 0€°0 Ly0 170 €0 OUAT [[LIIDIN
9¢°0 LE0 69°0 6970 00°'T GL0 G%'0 €¥°0 8¢°0 €9°0 LY0 SIaYjoIg urwWyYa
gc'0 11°0 L30 0g°0 810 00T 90°0 €10 720 61°0 q1°0 SYoBS UBWPIO)
€6°0 68°0 16°0 ¢6°0 88°0 16°0 00T ¥6°0 ¢6°0 L6°0 €6°0 [enInyy uol3uryse p
670 620 €70 1€°0 Lg0 9670 LT°0 00°T <] 09°0 ¥€'0 jueq eIAOyOB M
€¢'0 60°0 910 ¥1°0 IT°0 61°0 g0'0 910 00°'T 650 €1°0 98B UBSIOW "d'P
€20 1170 ¢1’o €10 010 91°0 ¢0'0 81°0 1€°0 00T ¥1°0 BOLISWY O yueg
€60 11°0 9170 ¥1°0 €10 LT°0 L0"0 ¥1°0 61°0 020 00°'T Juequiry
ofpuoap moy  pry  SW  TW g1 SH  NWPM oyvM WAL OVE 11D 8008 42quaidag g1

(Ponunuod) ‘g AL,



348 Miguel A. Segoviano and Charles A.E. Goodhart

on 15 August 2008 (column-average Lehman and AIG). Moreover,
On 15 August, a Lehman bankruptcy implied a 77, 32, and 37
percent likelihood that Washington Mutual, AIG, and Wachovia,
respectively, would experience distress. The Lehman bankruptcy
seems to have sealed the fate of AIG and Washington Mutual,
while boosting the pressure on Wachovia, as indicated by the
DiDe. Even though distress dependence does not imply causation,
these results show that the analysis of distress dependence,
even several weeks prior to a distress event, can provide useful
insights of how distress in a specific institution can affect other
institutions and ultimately the stability of the system.

3.2.3 Perspective 3: Cascade effects

¢« The probability of cascade effects (PCE) signaled major
impacts on markets if Lehman or AIG became distressed.
The PCE for these institutions reached 97 and 95 percent,
respectively, on 12 September 2008. Thus, the PCE also signaled
the possible domino effect, observed in the days after Lehman’s
collapse (figure 5). Note that the PCE for both institutions had
already increased by August 2008. This analysis is in line with
the insights brought by the DiDe in perspective 2, which indicated
Lehman’s distress would be associated with distress in several
institutions.

Figure 5. Probability of Cascade Effects if Lehman/AIG fall
into Distress
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3.3 Spillovers Between Foreign Banks and Emerging
Sovereign Markets

In this section, we extend our methodology to analyze how rising
problems in advanced country banking systems are linked with
increasing risks in emerging markets. For this purpose, we use CDS
spreads based on sovereign and bank bonds to derive probabilities of
sovereign and bank distress. These PoDs, then, represent markets’
views on the risk of distress for these banks and countries. While
absolute risks are discussed, the focus is largely on cross distress
dependence of risks and what this can tell us about emerging
vulnerabilities (perspective 2). Specifically, using publicly available
data we estimate cross vulnerabilities between Latin American,
Eastern European, and Asian emerging markets and the advanced
country banks with the most presence in these regions. Countries
and banks analyzed are:

* Latin America. Countries: Mexico, Colombia, Brazil and Chile.
Banks: BBVA, Santander, Citigroup, and HSBC.

« Eastern Europe. Countries: Bulgaria, Croatia, Hungary and
Slovakia. Banks: Intesa, Unicredito, Erste, Société Générale, and
Citigroup.

¢ Asia. Countries: China, South Korea, Thailand, Malaysia, the
Philippines, and Indonesia. Banks: Citigroup, J.P. Morgan
Chase, HSBC, Standard and Chartered, BNP, Deutsche Bank,
and DBS.

The key observation from this analysis is that concerns about
bank solvency and emerging market instability appear to be highly
interlinked. To illustrate these interlinkages, we present distress
dependence matrices estimated for each region in table 3.12 To
analyze how distress dependence has evolved over time, we also
estimate the time series of the conditional probabilities of distress
of banks/countries if other banks/countries default.!?

12. These matrices can be estimated for each day. They report links across countries
(bottom right, quadrant 4), and across banks (top left, quadrant 1). The bottom left
(quadrant 3) reports how sovereign distress is conditional on bank problems, while the
top right (quadrant 2) indicates the opposite.

13. Note that there is a daily time series for each of the quadrants described in
the previous footnote. Each observation in the time series corresponds to the average
of the conditional probabilities in each quadrant, at each day.
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3.3.1 Distress between foreign banks and emerging
sovereign markets

¢ The analysis shows that risk in sovereign markets and
banks increased markedly after October 2008. In the run-
up to the crisis, there was little concern about risks to sovereigns
and parent banks in Eastern Europe, and risk perceptions
in Latin America and Asia were falling. From July 2007 to
September 2008, both sovereign risk and bank risk increased
and moved in tandem, but from October 2008, risk in sovereigns
has been significantly higher than in banks (figure 6). This may
reflect the deepening downturn in emerging economies in late
2008 and the support received by banks in developed countries
from their sovereigns.

* Bank problems appear to have a significant impact on
sovereign distress. This is seen by comparing the probability of
distress of the emerging sovereign Markets conditional on distress
in the mature market banks in July 2007 and in September 2008.
In the last quarter of 2008, sovereign risk conditional on bank
risk has increased further (figure 7).

e Bank location is important to sovereign distress. Quadrant
3 of the distress dependence matrices (table 3) reveals that
distress among Spanish banks is associated with the most
distress in Latin America, while distress among Italian banks
has the most impact on Eastern Europe. Distress of standard
chartered banks is associated with significant stress in Asia
(quadrant 3, column-average). These results suggest that location
matters, since these banks have a substantial presence in the
respective regions under analysis.

* Directlinks between banks and countries matter. Distress
in countries with a particularly large foreign bank presence,
such as Mexico and the Czech Republic, is most strongly
associated with potential banking distress (quadrant 2). Direct
links between individual banks and countries also matter, for
example, distress at Citigroup, Intesa, and DBS were more
important to Mexico, Hungary, and Indonesia than other
countries (quadrant 3).

¢ The results also illustrate the influence of systemic
risk, which constitutes an indirect link to Asia, over
and above direct regional and bilateral links. Direct
ownership and lending by foreign banks is generally lower



Figure 6. Probabilities of Distress
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Figure 7. Distress Dependence over Time
(average conditional probabilities for the region)
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in Asia than in Eastern Europe or Latin America, insulating
banking systems somewhat from these direct links, and
increasing the relative importance of indirect links involving
bank and/or sovereign distress. In addition, links between
banks may be somewhat less important for emerging Asia, as
borrowing through debt markets tends to play a larger role in
local financial systems. Indirect effects are particularly evident
in South Korea and Indonesia. An important strength of our
approach is that market prices reflect the perception that
direct and indirect links exist. For the former, market presence
might be an important element, as in Latin America and
Eastern Europe. For the latter, however, liquidity pressures
and systemic banking distress/macroeconomic spillovers might
play an important role. This feature of our approach appears
to be particularly relevant in Asia.

¢ Overall, the results indicate that systemic bank risks
and emerging market vulnerabilities appear to be highly
dependent. This probably reflects the fact that distress in
individual banks acts as a bellwether for the state of the financial
system overall, through direct or indirect links.
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3.4 Spillovers between Developed Country Banks and
their Sovereign Markets

This section applies the proposed model to study the transmission
of shocks from banks in developed countries (with large exposure
to emerging market, such as Austria, the United Kingdom, France,
and Germany) to their own sovereign markets.

3.4.1 Tail risk and cascade effects

¢ Measures of bank interconnectedness started to rise at
the onset of the crisis. The joint probability of distress (JPoD)
and banking stability index indicate that systemic tail risk has
risen substantially (figure 8).

e The probability of cascade effects has also increased
substantially, suggesting that future shocks would be
transmitted quickly through the financial system (figure 8).

3.4.2 Distress between banks and sovereign markets in
developed economies

e Links between advanced country banks and sovereign
markets increased markedly after October. As the fiscal
costs of potential bank bailouts have become apparent, banking
sector concerns and sovereign risk have become increasingly
intertwined. This is significant in Austria and the United Kingdom
(figure 9).



Figure 8. Tail Risk and Cascade Effects
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Figure 9. Distress between Banks and Sovereign Markets in
Developed Economies
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Figure 9. (continued)
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3.5 Spillovers between the Banking System and
Corporate Sectors

To analyze spillovers between the banking system and the
corporate sector, we estimated linkages between non-bank financial
companies, other corporations and banks in the U.S. and Europe.

3.5.1 Distress between banks and corporations

¢« Banksin developed countries have gradually become more
interlinked with non-banks and non-financial corporations.
Banks became less dependent on other corporations in late 2008
(likely due to public support), but spillovers to other corporations
continued to rise (figure 10). This constitutes evidence of spillovers
from the banking crisis into the real economy.

Figure 10. Distress between Banks and Corporations in
Developed Economies
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4. CONCLUSIONS

The purpose of this paper is to estimate the BSM proposed by
Segoviano and Goodhart (2009) and use it to analyze the financial
stability of the main banks in any country or region, to enable
tracking of the relative stability of this portfolio of banks over
time and compare cross-sections of comparative groupings. This
framework offers several advantages:

e It provides measures for analyzing (defining) stability from three
different, but complementary perspectives.

e It can be constructed using a very limited set of data,
specifically, the empirical measurements of default probabilities
for individual banks. These measures can also be estimated
using alternative approaches, depending on data availability.
The data set needed for estimates is available in many developed
and developing countries, provided there is reasonable data on
individual bank PoDs.

¢ It includes banks’ default interdependence structure (copula
function), thus capturing linear and nonlinear default
dependencies among the main banks in a system.

e Itallows quantification of changesin banks’ default interdependence
structure at specific points in time. Thus, it can be useful to
quantify empirically observed increases in dependencies at times
of distress and relax the assumption of fixed correlations across
time, commonly used in risk measurement models.

In the empirical part of this paper, we discussed the application
of this methodology to several country and regional examples, using
information available up to February 2009. This flexibility is useful to
monitoring bank stability, as cross-border financial linkages increase
and become more significant, as apparent during the financial market
turmoil of recent months. Thus, monitoring bank stability cannot
stop at national borders.
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APPENDIX A
Copula Functions

Let x and y be two random variables with individual distributions
x~F, y~H and a joint distribution (x, y)~G. The joint distribution
contains three types of information. Individual (marginal)
information on the variable x, individual (marginal) information
on the variable y and information on the dependence between x
and y. To model the dependence structure between the two random
variables, the copula approach sterilizes the marginal information
on x and y from their joint distribution, isolating the dependence
structure as a result. Marginal information is sterilized by
transforming the distribution of x and y into a uniform distribution;
U(0,1), which is uninformative. Under this distribution the random
variables have an equal probability of taking a value between 0 and
1 and a zero probability of taking a value outside [0,1]. Therefore,
this distribution is typically thought of as being uninformative.
To transform x and y into U(0,1) we use the probability integral
transformation (PIT).

Under PIT, two new variables are defined as u=F\(x), v=H(y), both
distributed as U(0,1) with joint density c(«,v). Under the distribution
of transformation of random variables (Cassella and Berger, 1990),
the copula function c¢(u,v) is defined as:

g[F@,H ' (v)]
FlF @lnlE @]

c(u,v) =

(A1)

where g, f, and h are defined densities.

From equation (A1), we see that copula functions are multivariate
distributions, whose marginal distributions are uniform on the
interval [0,1]. Therefore, since each of the variables is individually
(marginally) uniform (that is, their information content has
been sterilized via PIT), their joint distribution will only contain
dependence information. Rewriting equation (A1) in terms of x and
y we get

¢[F(x),H(y)| = %. (A2)
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From equation (A2), we see that the joint density of u and v is
the ratio of the joint density of x and y to the product of the marginal
densities. Therefore, if the variables are independent, equation (A2)
is equal to one.

Sklar’s Theorem

The following theorem was developed by Sklar (1959) and is
known as Sklar’s Theorem. It is relevant to copula functions, and is
used in all applications of copulas. If G is a joint distribution function
with marginals F and H, then a copula C exists for all x, y in R,

G(x,y) = C[F(x), H(y)]. (A3)

If F and H are continuous, then C is unique; otherwise, C is
uniquely determined on RanF x RanH. Conversely, if C is a copula
and F and H are distribution functions, then the multivariate
function G defined by equation (A3) is a joint distribution function
with univariate margins F and H. Thus, the dependence structure
is completely characterized by the copula C (Nelsen, 1999). Nelsen
also provides the following corollary to Sklar’s theorem.
Corollary: Let G be any joint distribution with continuous marginals
F and H. Let F &V (u), H &Y (v) denote the (quasi) inverses of
the marginal distributions. Then there exists a unique copula
C: [0,1] x [0,1]—[0,1] such that, g[F Y (v), H Y (v)]ve[0,1] x [0,1].
If the cross partial derivatives of equation (A3) are taken, we obtain:

g(x,5) = f(O(y)e|[F(x),H(y)|. (Ad)

The converse of Sklar’s theorem implies that we can couple
together any marginal distributions, of any family, with any copula
function and a valid joint density will be defined. The corollary
implies that from any joint distribution we can extract the implied
copula and marginal distributions (Nelsen, 1999).

Parametric Copula Functions

In the finance literature, it is common to see the Gaussian copula
and the ¢ copula for modeling dependence among financial assets. These
are defined as follows (Embrechts, Lindskog, and McNeil, 2003):
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Gaussian copula: The copula of the bivariate normal distribution
can be written as:

CGa (u U) f(l) (u)f‘l’ )

where p is the linear correlation coefficient of the corresponding
bivariate normal distribution, and ®! denotes the inverse of
the distribution function of the univariate standard normal
distribution.

s —2pst+t*
2(1—p?)

dsdt,  (A5)

2m(1 — p>/

t copula: The copula of the bivariate ¢-distribution with v degrees
of freedom and correlation p is:

—(v+2)/2
s* —2pst 4 1*

£l i)
cLwoy=[ [ . p)/\1+ T (A6)

where ¢ !(v) denotes the inverse of the distribution function of the
standard univariate ¢-distribution with v degrees of freedom. As it
can be seen, this copula depends only on p and v.
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AppPENDIX B
CIMDO copula

To provide a heuristic explanation of the CIMDO copula, we
compare the copula of a bivariate CIMDO distribution and a
bivariate distribution of the form that the prior density in the entropy
functional would take, for example, a ¢-distribution. First, we recall
from equation (4) that copula functions are defined as

g|F U, H )

c(u,v) =

FIF @) @)

We then assume that the prior has a density function q(x,y). Thus,
its marginal cumulative distribution functions take the form

x +o0
u=F®= [ [ "qxydydx, and

x +00 -1
v:H(y):j:xﬁ% q(x,y)dxdy,where u=Fx)s x=F (u),

and v=H(y) < y=H '(v).

Therefore, its marginal densities take the form

flx)= f:oq(x,y)dy, and

= [ atyds

Substituting these into the copula definition, we obtain the copula
of the prior,

q|F ), H ()|

[ dlF@o)dy [ alsH @)

—0o0

¢, (w,v) = (B1)

Similarly, we assume that the CIMDO distribution with g(x,y) as
the prior takes the form
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p(x,y) =q(x,) exp{— [1 +i+ (Xlxmm)) + (sz[xi;m))”-

We also define u:li’c(x)(:)x:F'[l(u), and U:Hc(y)(@y:Hc*l(v).
Its marginal densities take the form

fw=[ ey exp{—[1+a+<ﬂlxx§ @) +(ax, <y>>}}dy,

and

o= [ty exp{—[1+@+<ilxx; @) +(ox,, <y>>]}dx.

Substituting these into the copula definition, we obtain the CIMDO
copula,

1
[ alE @fexp[-Sox, )]y

c,(u,v) =

(B2)
q|F @), H, )] exp[~(1+)]

fﬂcQ{x,H[l(v)}exp[—f\lxx; (x)]dx‘

—00

Equation (B2) shows that the CIMDO copula is a nonlinear function
of fi, \;, and \,, which change as the PoDs of the banks under analysis
change. Therefore, the CIMDO copula captures changes in PoDs, as
these change at different periods of the economic cycle.
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