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The proper estimation of distress dependence amongst the banks 
in a system is key to monitoring the stability of the banking system. 
Financial supervisors recognize the importance of assessing not only 
the risk of distress, i.e. large losses and possible defaults by a specific 
bank, but also the impact that such an event would have on other 
banks in the system. Clearly, an event involving simultaneous, large 
losses in several banks would affect the stability of the whole system, 
and thus represents a major concern for supervisors. Banks’ distress 
dependence is based on the fact that banks are usually linked, either 
directly, through the inter-bank deposit market and participation in 
syndicated loans, or indirectly, through lending to the same sectors 
and proprietary trades. Their distress dependence varies throughout 
the economic cycle and tends to rise in times of distress, since the 
fortunes of banks decline concurrently through either direct links, 
that is, contagion after idiosyncratic shocks, affecting inter-bank 
deposit markets and participation in syndicated loans, or indirect 
links, that is, negative systemic shocks, affecting lending to common 
sectors and proprietary trades. At such times, the banking system’s 
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joint probability of distress (JPoD, defined as  the probability that 
all banks in the system will experience large losses simultaneously 
or banks’ distress dependence), may experience larger, nonlinear 
increases than those experienced by the probabilities of distress (PoDs) 
of individual banks. Consequently, it becomes essential for the proper 
estimation of the banking system’s stability to incorporate banks’ 
distress dependence and its changes across the economic cycle. 

Based on Segoviano and Goodhart (2009), in this paper we 
estimate a set of banking stability measures (BSMs) that express 
the interdependent structure of bank distress, capturing both linear 
(correlation) and nonlinear distress dependencies among the banks 
in the system. Moreover, the structure of linear and nonlinear 
distress dependencies shifts as banks’ probabilities of distress (PoDs) 
change; hence, the proposed stability measures incorporate changes 
in distress dependence consistent with the economic cycle. This is a 
key advantage over traditional risk models, most of which incorporate 
only linear dependence (correlation structure), assuming it remains 
constant throughout the economic cycle.� 

The proposed BSMs represent a set of tools to analyze (define) 
stability from three different, yet, complementary perspectives, as 
they quantify: (i) “tail risk” in the banks within a system, (ii) distress 
between specific banks, and (iii) cascade effects, defined as distress 
throughout the associated system, triggered by the distress of a 
specific bank.

As described below, the authors conceptualize the banking 
system as a portfolio of banks comprising the core banks of systemic 
importance in any country. We then estimate the banking system 
portfolio’s multivariate density (BSMD), based on which we construct 
a set of banking stability measures (BSMs). We show how these BSMs 
can be constructed from a very limited data set, for example, empirical 
measurements of individual bank distress. Generally speaking, 
alternative approaches are used, according to data availability. In this 
case, the authors have opted for a data set that is available in most 

�. In contrast to correlation, which only captures linear dependence, copula functions 
characterize the whole dependence structure; i.e., linear and non-linear dependence, 
embedded in multivariate densities (Nelsen, 1999). Thus, in order to characterize banks’ 
distress dependence we employ a novel, non-parametric copula approach, the CIMDO 
copula (Segoviano, 2009), described below. Compared to traditional methodologies 
used to model parametric copula functions, the CIMDO copula avoids the difficulties of 
explicitly choosing the parametric form of the copula function to be used, and calibrating 
its parameters, since CIMDO copula functions are inferred directly (implicitly) from 
the joint (simultaneous) movements of individual bank PoDs.
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countries to estimate BSMs. Consequently, such measures can be 
developed for a wide range of developing and developed countries. 

In this paper, we also incorporate non-bank financial institutions, 
whether corporate or sovereign, to facilitate analysis of distress 
dependence between the banking sector and other sectors. Being able 
to establish a set of measures with a minimum of basic components 
facilitates a broader range of comparative analysis, involving 
both time series and cross-sections. The flexibility of using these 
measures is relevant to monitoring banking stability, as cross-border 
financial linkages are becoming increasingly significant, as has 
been illustrated by the financial market turmoil of recent months. 
Thus, monitoring banking stability cannot stop at national borders. 
Section 1 describes how Segoviano and Goodhart (2009) model 
distress dependence. Section 2 provides a summary of the Banking 
Stability Measures proposed by the authors. Section 3 shows how 
these measures can be employed to analyze stability from different 
perspectives. Finally, section 4 offers our conclusions.

1. Distress Dependence in the Financial System

Quantitative estimation of distress dependence among banks 
and/or other financial institutions is a difficult task. Information 
restrictions and difficulties in modeling distress dependence 
arise due to the fact that distress is an extreme event, which 
can be viewed as a tail event defined in the distress region of the 
probability distribution that describes a bank’s implied asset price 
movements (figure 1).

Figure 1. The Probability of Distress

Source: Segoviano and Goodhart (2009).
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The fact that distress is a tail event makes the often used 
correlation coefficient inadequate to capture bank distress 
dependence and the standard approach to model parametric copula 
functions difficult to implement. In our modeling of banking systems’ 
stability and distress dependence, we replicate Segoviano and 
Goodhart (2009) and proceed as follows (figure 2):

	 Step 1: We conceptualize the banking system as a portfolio of 
banks.

	 Step 2: For each of the banks included in the portfolio, we obtain 
empirical measurements of probabilities of distress (PoDs). 

	 Step 3: Using the Consistent Information Multivariate Density 
Optimizing (CIMDO) methodology, presented in Segoviano 
(2006) and summarized below, and taking as input variables 
the individual banks’ PoDs, developed in the previous step, we 
estimate the banking system’s (portfolio) multivariate density 
(BSMD).

	 Step 4: Based on the BSMD, we estimate the proposed banking 
stability measures (BSMs). 

The banking system multivariate density (BSMD) characterizes 
both the individual and joint asset value movements of the portfolio 
of banks representing the banking system (figure 2). 

Figure 2. The Banking System’s Multivariate Density

Source: Segoviano and Goodhart (2009).



331Distress Dependence and Financial Stability

1.1 The Importance of Time-Varying Distress 
Dependence

We recover the BSMD using the Consistent Information 
Multivariate Density Optimizing (CIMDO) methodology (Segoviano, 
2006b). This offers key technical improvements over traditional 
risk models that, generally speaking, only account for linear 
dependence (correlations) assumed to remain constant throughout 
the cycle or a fixed period of time. The BSMD captures bank distress 
dependence structure, as characterized by the CIMDO copula 
function (Segoviano, 2009), in terms of both linear and nonlinear 
distress dependencies among banks in the system, and allows for 
these to change throughout the economic cycle, reflecting the fact 
that distress dependence increases in periods of distress. This implies 
that systemic risks rise faster than individual risks. 

To illustrate this point, for a portfolio of globally active banks we 
estimate the average probability of default, and the joint probability 
of default using alternative assumptions to describe the BSMD (a 
multivariate t-density, t-JPoD), and the CIMDO density (JPoD).� The 
joint probability of default represents the probability of all the banks 
included in the portfolio becoming distressed. Accordingly, this is 
estimated by integrating the alternative BSMD across the region of 
default of each of the marginal densities that compose them.

Daily percentage changes in the JPoD are larger than daily 
percentage changes in the average for individual PoDs and the  
t-JPoD. This empirical fact provides evidence that in times of distress, 
not only do individual PoDs increase (as captured by the three 
alternative measures), but so does distress dependence (as captured 
by the JPoD). Therefore, systemic risk may experience larger and 
nonlinear increases than those for individual bank probabilities of 
distress (PoDs) and those suggested by a density distribution with 
fixed correlation parameters. Consequently, measures for financial 
stability based on averages, or indexes that assume fixed correlation 
parameters over time could be misleading.

The CIMDO method involves a reduced-form or non-parametric 
approach to model copulas that seems to adequately capture default 
dependence and its changes at different points in the economic cycle. 

This method is easily implementable within the data constraints 

�. The degrees of freedom and correlation parameters that characterize the 
multivariate t-density are estimated using empirically observed data.
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affecting bank distress dependence modeling and produces robust 
estimates under the probability integral transformation (PIT) criterion.� 
To show improvements in modeling distress dependence (and therefore 
in our proposed measures for stability), in the next sections, we (i) 
model the BSMD using the CIMDO methodology, and (ii) illustrate the 
advantages embedded in the CIMDO copula as used to characterize 
distress dependence among banks in the banking system.

1.2 The CIMDO Approach: Modeling Banking System 
Multivariate Density

We estimate the BSMD using the CIMDO methodology and 
empirical measures of probabilities of distress (PoDs) for individual 
banks. There are alternative approaches to estimating individual 
banks’ probabilities of distress. For example, (i) the structural 
approach, (ii) credit default swaps, and (iii) out-of-the-money option 
prices (OOM). It is important to emphasize the fact that in the CIMDO 
framework, the PoDs for individual banks are exogenous variables 
and can therefore be calculated using any alternative for estimating 
PoDs. This makes estimating BSMD very flexible. 

The CIMDO methodology is based on the minimum cross-
entropy approach (Kullback, 1959). Under this approach, a posterior 
multivariate distribution p (the CIMDO density) is recovered using 
an optimization procedure, by which a prior density q is updated with 
empirical information, using a set of constraints. Thus, the posterior 
density satisfies the constraints imposed on the prior density. In 
this case, the banks’ empirically estimated PoDs represent the 
information used to formulate the constraint set. Accordingly, the 
CIMDO density (the BSMD) is the posterior density that is closest 
to the prior distribution and that is consistent with the empirically 
estimated PoDs of banks in the system.	

To formalize these ideas, we proceed by defining a banking 
system (portfolio of banks) composed of two banks, X and Y, whose 
logarithmic returns are characterized by the random variables x and 
y. Hence, we define the CIMDO objective function as:�

�. The PIT criterion for multivariate density’s evaluation is presented in Diebold 
and others (1999).

�. A detailed definition and development of the CIMDO objective function and 
constraint set and the optimization procedure that is followed to solve the CIMDO 
function is presented in Segoviano (2006b).
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risk). However, the parametric density, q, is usually inconsistent 
with the empirically observed measures of distress. Hence, the 
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bank in the system is of prime importance to estimating the posterior 
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where p(x,y) is the posterior multivariate distribution that represents 
the unknown to be solved. PoDt
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for p(x,y) represents a valid density, the conditions that p(x,y) ≥ 0 and 
the probability additivity constraint, ∫∫p(x,y)dxdy=1, must also be 
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where λ1, λ2 represent the Lagrange multipliers of the consistency 
constraints and m represents the Lagrange multiplier of the probability 
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additivity constraint. By using the calculus of variations, the 
optimization procedure can be performed. Hence, the optimal solution 
is represented by a posterior multivariate density taking the form: 
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Intuitively, we know that imposing the constraint set on the 
objective function guarantees that the posterior multivariate 
distribution (BSMD) contains marginal densities that satisfy the 
PoDs observed empirically for each bank in the banking portfolio. 
Thus, in the modeling of portfolio risk, CIMDO-recovered distributions 
outperform the most commonly used parametric multivariate 
densities, according to the probability integral transformation (PIT) 
criterion.� This is because using the CIMDO approach to recover 
multivariate distributions, the available information, embedded in 
the constraint set, is used to adjust the shape of the multivariate 
density via the optimization procedure described above. This appears 
to be a more efficient manner of using the empirically observed 
information than under parametric approaches, which adjust the 
shape of parametric distributions via fixed sets of parameters. A 
detailed development of the PIT criterion and Monte Carlo studies 
used to evaluate specifications of the CIMDO density are presented 
in Segoviano (2006b).

1.3 The CIMDO copula: Distress Dependence among 
Institutions in the System

The BSMD reflects the structure of linear and nonlinear default 
dependence among banks included in the portfolio that is used 
to represent the banking system. This dependence structure is 
characterized by the copula function of the BSMD, that is, the CIMDO-
copula, which changes at each period of time, consistent with shifts in 
the empirically observed PoDs. To illustrate this point, we heuristically 
introduce the copula approach to characterize dependence structures 
of random variables and explain the particular advantages of the 
CIMDO-copula. For further details see Segoviano (2008).

�. The standard and conditional normal distributions, the t-distribution, and the 
mixture of normal distributions.
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1.3.1 The copula approach

The copula approach is based on the fact that any multivariate 
density, which characterizes the stochastic behavior of a group of 
random variables, can be broken into two subsets of information: 
(i) information about each random variable, that is, the marginal 
distribution of each variable; and (ii) information about the dependence 
structure among the random variables. Thus, to recover the latter, 
the copula approach sterilizes the marginal information for each 
variable, thereby isolating the dependence structure embedded in the 
multivariate density. Sterilization of marginal information is done by 
transforming the marginal distributions into uniform distributions; 
U(0,1), which are uninformative distributions.� For example, let x 
and y be two random variables with individual distributions x~F, 
y~H and a joint distribution (x,y)~G.  To transform x and y into two 
random variables with uniform distributions U(0,1) we define two 
new variables as u=F(x), v=H(y),  both distributed as U(0,1) with 
joint density c(u,v). Under the distribution of transformation of 
random variables, the copula function c(u,v) is defined as:
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where g, f, and h are defined densities. From equation (4), we see 
that copula functions are multivariate distributions, whose marginal 
distributions are uniform on the interval [0,1]. Therefore, since 
each of the variables is individually (marginally) uniform, i.e. their 
information content has been sterilized, their joint distribution will 
only contain dependence information. Rewriting equation (4) in 
terms of x and y we get:

c F x H y
g u v

f x h y
( ) ( )



 =,

( , )
( ) ( )

. 	
(5)

Equation (5) tells us that the joint density of u and v is the ratio 
of the joint density of x and y to the product of the marginal densities. 
Thus, if the variables are independent, equation (5) is equal to one. 

�. For further details, proofs and a comprehensive and didactical exposition of 
copula theory, see Nelsen (1999), and Embrechts, McNeil, and Straumann (1999) where 
properties and different types of copula functions are also presented.
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The copula approach to model dependence possesses many 
positive features when compared to correlations. In comparison 
to correlation, the dependence structure characterized by copula 
functions, describes linear and nonlinear dependencies of any 
type of multivariate densities, throughout their entire domain. 
Moreover, copula functions are invariant under increasing and 
continuous transformations of marginal distributions. According 
to standard procedure, first, a given parametric copula is chosen 
and calibrated to describe the dependence structure among the 
random variables characterized by a multivariate density. Then, 
marginal distributions characterizing the individual behavior 
of random variables, are modeled separately. Lastly, marginal 
distributions are coupled with the chosen copula function to 
construct a multivariate distribution. Therefore, dependence 
modeling using standard parametric copulas involves two 
important shortcomings:
(i)	 It requires that modelers deal with the choice, proper specification 

and calibration of parametric copula functions, that is, the copula 
choice problem (CCP). In general, the CCP is a challenging 
task, since results are very sensitive to the functional form and 
parameter values of the chosen copula functions (Frey and McNeil, 
2001). To specify the correct functional form and parameters, it 
is necessary to have information on the joint distribution of the 
variables of interest, in this case, joint distributions of distress, 
which are not available.

(ii)	The parametric copula functions commonly employed in portfolio 
risk measurement require the specification of correlation 
parameters, which, as usually specified, remain fixed over 
time (see appendix A). Thus, although it is an improvement 
on dependence modeling using correlations, the dependence 
structure characterized using parametric copula functions, still 
poses the problem of characterizing dependence that remains 
fixed over time.�

1.3.2 The CIMDO copula

Our approach to model multivariate densities is the inverse of 
the standard copula approach. We first infer the CIMDO density as 

�. Note that even if correlation parameters are dynamically updated using rolling 
windows, correlations remain fixed within these rolling windows. Moreover, most of the 
time, how the length of rolling windows is defined remains subjective.
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explained in section 3.1. The CIMDO density portrays the dependence 
structure among the random variables that it characterizes. Thus, 
once we have inferred the CIMDO density, we can extract the copula 
function describing its dependence structure (the CIMDO copula). 
We do this by estimating marginal densities from the multivariate 
density and using Sklar’s theorem (Sklar, 1959). 
The CIMDO copula maintains all the benefits of the copula 
approach:
(i)	 It describes linear and nonlinear dependencies among the 

variables described by the CIMDO density. This dependence 
structure is invariant under increasing and continuous 
transformations of marginal distributions.

(ii)	It characterizes the dependence structure along the entire 
domain of the CIMDO density. Nevertheless, the dependence 
structure characterized by the CIMDO copula appears to be 
more robust in the tail of the density (see discussion below), 
where our main interest lies (that is, to characterize distress 
dependence).

The CIMDO copula, however, avoids the drawbacks implicit in the 
use of standard parametric copulas:
(i)	 It circumvents the copula choice problem. The explicit choice and 

calibration of parametric copula functions is avoided because 
the CIMDO copula is extracted from the CIMDO density (as 
explained above). Thus, in contrast to most copula models, 
the CIMDO copula is recovered without explicitly imposing 
parametric forms that are difficult to model empirically and 
frequently wrongly specified, when using restricted data 
sets. Note that under such information constraints, when, 
for example, the only information available covers marginal 
probabilities of distress, the CIMDO copula is not only easily 
implementable, it outperforms the most common parametric 
copulas used in portfolio risk modeling under the PIT criterion. 
This is particularly true for the tail of the copula function, where 
distress dependence is characterized.

(ii)	The CIMDO copula avoids the imposition of constant correlation 
parameter assumptions. It updates automatically when the 
probabilities of distress are used to infer the CIMDO density 
change. Therefore, the CIMDO copula incorporates banks’ 
changing distress dependencies according to the dissimilar effects 
of shocks on individual banks’ probabilities of distress, in a way 
that is consistent with the economic cycle.
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To formalize these ideas, note that if the CIMDO density takes the 
form presented in equation (3), appendix B shows that the CIMDO 
copula, cc(u,v) is represented by
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where u=Fc(x) ⇔ x=Fc
-1(u), and v=Hc(y) ⇔ y=Hc

-1(v).
Equation (6) shows that the CIMDO copula is a nonlinear function 

of λ̂1, λ̂2 and µ̂, the Lagrange multipliers of the CIMDO functional 
presented in equation (2). As with all optimization problems, the 
Lagrange multipliers reflect the change in the objective function’s 
value, as a result of a marginal change in the constraint set. 
Therefore, as the empirical PoDs of individual banks change at each 
period of time, the Lagrange multipliers change, the values of the 
constraint set change, and the CIMDO copula changes. Consequently, 
the default dependence among system banks changes. 

As mentioned, then, the default dependence gets updated 
automatically with changes in empirical PoDs for each period in 
time. This is a relevant improvement over most risk models, which 
usually account for linear dependence (correlation) only, which, 
moreover is also assumed to remain constant throughout the cycle 
or over a fixed period of time.

2. Banking Stability Measures

The BSMD characterizes the probability of distress of the 
individual banks included in the portfolio, their distress dependence, 
and changes across the economic cycle. This is a rich set of 
information that allows us to analyze (define) banking stability from 
three different, yet complementary, perspectives. For this purpose, 
we define a set of BSMs to quantify:

(i)	 Tail risk, defined as common distress of the financial institutions 
in a system;
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(ii)	Distress among specific institutions;
(iii)	Cascade effects, defined as distress in the system associated with 

distress in a specific institution.

We hope that the complementary perspectives on financial 
stability offered by the BSMs proposed here constitute a useful tool 
set to help financial supervisors identify how risks are evolving and 
where contagion could most easily develop. To illustrate and make it 
easier to present definitions below, we proceed by defining a banking 
system (portfolio of banks) consisting of three banks whose asset 
values are characterized by the random variables x, y and r. We 
then use the procedure described in section 3.1 to infer the CIMDO 
density function, which takes the form:
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where q(x,y,r) and p(x,y,r) ∈ R3.

2.1 Perspective 1: Tail Risk

To analyze common distress in the banks comprising the system, 
we propose the joint probability of distress (JPoD) and the banking 
stability index.

2.1.1 The joint probability of distress

The joint probability of distress represents the probability of all 
banks in the system (portfolio) becoming distressed, that is, the tail 
risk of the system. The JPoD reflects changes in individual bank 
PoDs and captures changes in distress dependence among the banks. 
The latter increases in times of financial distress. Therefore, in 
such periods, the banking system’s JPoD may experience larger and 
nonlinear increases than those experienced by the (average) PoDs 
of individual banks. For the hypothetical banking system defined 
in equation (7) the JPoD is defined as  P(X∩Y∩R) and is estimated 
by integrating the density (BSMD) as follows:

p x y r dxdydr JPoD
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2.1.2 The banking stability index

The banking stability index (BSI) is based on the conditional 
expectation of default probability measure, developed by Huang 
(1992).� The BSI reflects the expected number of banks becoming 
distressed, given that at least one bank has become distressed. A 
higher number signifies increased instability. For example, for a 
system of two banks, the BSI is defined as follows: 

BSI =
≥ + ≥

- < <
P X x P Y x

P X x Y x
d
x

d
y

d
x

d
y

( ) ( )
( , )

.
1 	

(9)

The BSI represents a probability measure based on the condition of 
any bank, without indicating the specific bank, becoming distressed.�

2.2 Perspective 2: Distress Between Specific Banks

2.2.1 Distress dependence matrix

For each period under analysis and for each pair of banks in the 
portfolio, we estimate the set of pairwise conditional probabilities of 
distress, presented in the distress dependence matrix (DiDe). This 
matrix contains the probability of distress of the bank specified in 
the row, if the bank specified in the column becomes distressed. 
Although conditional probabilities do not imply causation, this set 
of pairwise conditional probabilities can provide important insights 
into interlinkages and the likelihood of contagion between banks in 
the system. Table 1 provides the DiDE for the hypothetical banking 
system defined in equation (7), on a given date.

Table 1. Distress Dependence Matrix

Bank X Bank Y Bank R

Bank X 1 P(X Y) P(X R)
Bank Y P(Y X) 1 P(Y R)
Bank R P(R X) P(R Y) 1
Source: Segoviano and Goodhart (2009).

�. This function is presented in Huang (1992). For empirical applications, see 
Hartmann and others (2001).

�. Huang (1992) shows that this measure can also be interpreted as a relative 
measure of banking linkage. When the BSI=1 in the limit, banking linkage is weak 
(asymptotic independence). As the value of the BSI increases, banking linkage increases 
(asymptotic dependence).



341Distress Dependence and Financial Stability

Here, for example, the probability of distress in bank X conditional 
on bank Y becoming distressed is estimated by

P X x Y x
P X x Y x

P Y xd
x

d
y d

x
d
y

d
y( )

( , )
( )

.≥ ≥ =
≥ ≥

≥
	

(10)

2.3 Perspective 3: Cascade Effects

2.3.1 The probability of cascade effects (PCE)

This indicator characterizes the likelihood that one, two, or more 
institutions, up to the total number of Financial Institutions (FIs 
hereafter) in the system become distressed given that a specific FI 
becomes distressed. Therefore, this measure quantifies the potential 
cascade effects in the system, given distress occurring in a specific 
bank. Consequently, we propose this measure as an indicator to 
quantify the systemic importance of a specific bank if it becomes 
distressed. Again, note that conditional probabilities do not imply 
causation. We do consider, however, that the PCE can provide 
important insights into systemic interlinkages among the banks in 
a system. For example, in a system with four banks, X, Y, Z, and R, 
the PCE can be defined as follows:

PCE P Y X P Z X P R X

P Y R X P Y Z X P Z R X

P Y R

= + +

- + +





+

( ) ( ) ( )

( ) ( ) ( )

(

∩ ∩ ∩

∩ ∩ZZ X ).
	

(11)

3. Banking Stability Measures: Empirical Results

We have used the BSM proposed by Segoviano and Goodhart 
(2009) to examine relative changes in stability over time in the 
following cases:

(i)	 Financial stability and spillovers among country/regions;
(ii)	Spillovers between foreign banks (from developed countries) and 

emerging sovereign markets; 
(iii)	Spillovers between developed country banks and developed 

sovereign markets;
(iv)	Spillovers between the banking system and corporate sectors.
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Our estimations are performed from 2005 to February 2009, 
using publicly available data, and include major American 
and European banks, and sovereign banks in Latin America, 
Eastern Europe, Europe, and Asia. The flexibility inherent in our 
approach is relevant to monitoring bank stability, since cross-
border financial linkages are growing and becoming increasingly 
significant, as has been underlined by turmoil in financial markets 
in recent months. Thus, monitoring banking stability cannot stop 
at national borders.

3.1 Estimating the Probability of Individual Bank 
Distress

The proposed BSMs can be constructed from a very limited 
set of data, such as empirical measures of distress for individual 
banks, which we have labeled probabilities of distress (PoDs). These 
measures can be estimated using alternative approaches, such as 
Merton-type models, credit default swaps (CDS), option prices, and 
bond spreads, depending on the data available. This means that the 
data set necessary to estimate BSMs is available in most countries. 
Consequently, such measures can be developed for a wide range of 
developing and developed countries.

Being able to establish this kind of set of measures with minimal 
base components, makes a broader range of comparative analysis, 
including both time series and cross-sections, possible. In the 
applications below, we used CDS-PoDs, since they seemed the best 
available distress indicator for the banks under analysis. Note, 
however, that estimating the proposed BSMs is not intrinsically 
related to CDS-PoDs. Thus, if we were to find a better approach, 
replacing the PoD approach selected here to estimate BSMs would 
be straightforward, since in this framework PoDs are exogenous 
variables.10

10. Arguments against using CDS-PoDs emphasize that CDS spreads may 
sometimes overshoot. They do not generally stay wrong for long, however. Rating 
agencies have mentioned that CDS spreads frequently anticipate rating changes. 
Although the magnitude of shifts may sometimes be unrealistic, the direction is usually 
a good distress signal. For these reasons, and due to the problems encountered with 
other approaches (which we consider more serious), we decided to use CDS-PoDs to 
estimate the proposed BSMs.
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3.2 Financial Stability and Spillovers among regions11

To analyze financial stability across regions, we included major 
American, European, and Asian banks, grouped in alternative 
portfolios, to observe:

3.2.1 Perspective 1: Tail risk

•	 FIs are highly interconnected, with distress in one FI 
associated with high probability of distress elsewhere. 
This is clearly indicated by the JPoD and the BSI. Moreover, 
movements in the JPoD and BSI coincide with events considered 
relevant by markets on specific dates (figure 3). Note also that 
risks vary by geographical location and business area of the FI 
(figure 4). 

Figure 3. Tail Risk: January 2007-February 2009

Sources: Bloomberg L.P.; IMF staff estimates.
Note: Global group consists of Bank of America, Citigroup, J.P. Morgan Chase & Co., Wachovia, Goldman Sachs, 
Lehman Brothers, Merrill Lynch, Morgan Stanley, Deutsche Bank, Royal Bank of Scotland, UBS, HSBC, PMI, 
AMBAC Financial, AIG, and Swiss Re.

11. The authors would like to thank Tami Bayoumi for insightful discussions and 
contributions to the analysis of these empirical results.



Figure 4. Tail Risk by Regions: January 2007-February 2009 
(BSI: number of banks, LHS; JPoD: probability, RHS)

Asia

Euro area

Non Euro area

United States

Source: Authors’ calculations.
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3.2.2 Perspective 2: Distress between specific institutions

Table 2 illustrates the following:
•	 Distress dependence across major American FIs has greatly 

increased. This is clearly shown by the conditional PoDs presented 
in the DiDe. On average, if any of the U.S. FIs fell into distress, 
the average probability of this affecting other FIs increased from 
23 percent on 1 July 2007 to 41 percent on 12 September 2008.

•	 By September, Lehman and AIG vulnerability had increased 
significantly. This is revealed by Lehman’s and AIG’s large PoDs 
conditional on any other FI experiencing distress, which increased 
from 30 and 15 percent, respectively, on 1 July 2007 to 52 and 
44 percent on 15 August, and 56 and 55 percent, on average, on 
12 September 2008 (row-average Lehman and AIG). Moreover, 
a Lehman default was estimated on 12 September to raise the 
chances of distress elsewhere by 46 percent In other words, the PoD 
of any other bank conditional on Lehman experiencing distress 
went from 25 percent on 1 July 2007 to 37 percent on 12 September 
2008 (column-average Lehman).

Note that a similar effect in the system would have been caused 
by the distress of AIG, since the PoD of any other bank dependent 
on AIG experiencing distress went from 20 percent on 1 July 2007 
to 34 percent on 12 September 2008 (column-average AIG).

•	 Lehman’s connections to the other major U.S. banks were 
similar to AIG’s. This can be seen by comparing the chances of 
each one of the U.S. banks being affected by distress in Lehman 
and AIG (column Lehman versus column AIG) on 12 September. 
Links were particularly close between Lehman, AIG, Washington 
Mutual, and Wachovia, all of which were particularly exposed 
to housing. On 12 September, a Lehman bankruptcy implied an 
88, 43, and 27 percent likelihood that Washington Mutual, AIG, 
and Wachovia, respectively, would fall into distress.

•	 Distress dependence appears to be an early warning sign. 
It is also very interesting to note that up to a month earlier than 
the Lehman event, distress dependence was already signaling 
that a default of Lehman or AIG would have caused significant 
disruptions in the system. This is revealed by the PoD for any 
other bank dependent on Lehman or AIG experiencing distress, 
which increased significantly to 41 and 39 percent, respectively, 
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on 15 August 2008 (column-average Lehman and AIG). Moreover, 
On 15 August, a Lehman bankruptcy implied a 77, 32, and 37 
percent likelihood that Washington Mutual, AIG, and Wachovia, 
respectively, would experience distress. The Lehman bankruptcy 
seems to have sealed the fate of AIG and Washington Mutual, 
while boosting the pressure on Wachovia, as indicated by the 
DiDe. Even though distress dependence does not imply causation, 
these results show that the analysis of distress dependence, 
even several weeks prior to a distress event, can provide useful 
insights of how distress in a specific institution can affect other 
institutions and ultimately the stability of the system. 

3.2.3 Perspective 3: Cascade effects 

•	 The probability of cascade effects (PCE) signaled major 
impacts on markets if Lehman or AIG became distressed. 
The PCE for these institutions reached 97 and 95 percent, 
respectively, on 12 September 2008. Thus, the PCE also signaled 
the possible domino effect, observed in the days after Lehman’s 
collapse (figure 5). Note that the PCE for both institutions had 
already increased by August 2008. This analysis is in line with 
the insights brought by the DiDe in perspective 2, which indicated 
Lehman’s distress would be associated with distress in several 
institutions.

Figure 5. Probability of Cascade Effects if Lehman/AIG fall 
into Distress

Source: Authors’ calculations.
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3.3 Spillovers Between Foreign Banks and Emerging 
Sovereign Markets

In this section, we extend our methodology to analyze how rising 
problems in advanced country banking systems are linked with 
increasing risks in emerging markets. For this purpose, we use CDS 
spreads based on sovereign and bank bonds to derive probabilities of 
sovereign and bank distress. These PoDs, then, represent markets’ 
views on the risk of distress for these banks and countries. While 
absolute risks are discussed, the focus is largely on cross distress 
dependence of risks and what this can tell us about emerging 
vulnerabilities (perspective 2). Specifically, using publicly available 
data we estimate cross vulnerabilities between Latin American, 
Eastern European, and Asian emerging markets and the advanced 
country banks with the most presence in these regions. Countries 
and banks analyzed are:

•	 Latin America. Countries: Mexico, Colombia, Brazil and Chile. 
Banks: BBVA, Santander, Citigroup, and HSBC.

•	 Eastern Europe. Countries: Bulgaria, Croatia, Hungary and 
Slovakia. Banks: Intesa, Unicredito, Erste, Société Générale, and 
Citigroup. 

•	 Asia. Countries: China, South Korea, Thailand, Malaysia, the 
Philippines, and Indonesia. Banks: Citigroup, J.P. Morgan 
Chase, HSBC, Standard and Chartered, BNP, Deutsche Bank, 
and DBS.

The key observation from this analysis is that concerns about 
bank solvency and emerging market instability appear to be highly 
interlinked. To illustrate these interlinkages, we present distress 
dependence matrices estimated for each region in table 3.12 To 
analyze how distress dependence has evolved over time, we also 
estimate the time series of the conditional probabilities of distress 
of banks/countries if other banks/countries default.13

12. These matrices can be estimated for each day. They report links across countries 
(bottom right, quadrant 4), and across banks (top left, quadrant 1). The bottom left 
(quadrant 3) reports how sovereign distress is conditional on bank problems, while the 
top right (quadrant 2) indicates the opposite.

13. Note that there is a daily time series for each of the quadrants described in 
the previous footnote. Each observation in the time series corresponds to the average 
of the conditional probabilities in each quadrant, at each day.
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3.3.1 Distress between foreign banks and emerging 
sovereign markets

•	 The analysis shows that risk in sovereign markets and 
banks increased markedly after October 2008. In the run-
up to the crisis, there was little concern about risks to sovereigns 
and parent banks in Eastern Europe, and risk perceptions 
in Latin America and Asia were falling. From July 2007 to 
September 2008, both sovereign risk and bank risk increased 
and moved in tandem, but from October 2008, risk in sovereigns 
has been significantly higher than in banks (figure 6). This may 
reflect the deepening downturn in emerging economies in late 
2008 and the support received by banks in developed countries 
from their sovereigns.

•	 Bank problems appear to have a significant impact on 
sovereign distress. This is seen by comparing the probability of 
distress of the emerging sovereign Markets conditional on distress 
in the mature market banks in July 2007 and in September 2008. 
In the last quarter of 2008, sovereign risk conditional on bank 
risk has increased further (figure 7).

•	 Bank location is important to sovereign distress. Quadrant 
3 of the distress dependence matrices (table 3) reveals that 
distress among Spanish banks is associated with the most 
distress in Latin America, while distress among Italian banks 
has the most impact on Eastern Europe. Distress of standard 
chartered banks is associated with significant stress in Asia 
(quadrant 3, column-average). These results suggest that location 
matters, since these banks have a substantial presence in the 
respective regions under analysis.

•	 Direct links between banks and countries matter. Distress 
in countries with a particularly large foreign bank presence, 
such as Mexico and the Czech Republic, is most strongly 
associated with potential banking distress (quadrant 2). Direct 
links between individual banks and countries also matter, for 
example, distress at Citigroup, Intesa, and DBS were more 
important to Mexico, Hungary, and Indonesia than other 
countries (quadrant 3).

•	 The results also illustrate the influence of systemic 
risk, which constitutes an indirect link to Asia, over 
and above direct regional and bilateral links. Direct 
ownership and lending by foreign banks is generally lower 



Figure 6. Probabilities of Distress

Emerging Asia

Eastern Europe

Latin America

Source: Authors’ calculations.



Figure 7. Distress Dependence over Time
(average conditional probabilities for the region)

Emerging Asia

Eastern Europe

Latin America

Source: Authors’ calculations.
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in Asia than in Eastern Europe or Latin America, insulating 
banking systems somewhat from these direct links, and 
increasing the relative importance of indirect links involving 
bank and/or sovereign distress. In addition, links between 
banks may be somewhat less important for emerging Asia, as 
borrowing through debt markets tends to play a larger role in 
local financial systems. Indirect effects are particularly evident 
in South Korea and Indonesia. An important strength of our 
approach is that market prices reflect the perception that 
direct and indirect links exist. For the former, market presence 
might be an important element, as in Latin America and 
Eastern Europe. For the latter, however, liquidity pressures 
and systemic banking distress/macroeconomic spillovers might 
play an important role. This feature of our approach appears 
to be particularly relevant in Asia.

•	 Overall, the results indicate that systemic bank risks 
and emerging market vulnerabilities appear to be highly 
dependent. This probably reflects the fact that distress in 
individual banks acts as a bellwether for the state of the financial 
system overall, through direct or indirect links. 
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3.4 Spillovers between Developed Country Banks and 
their Sovereign Markets

This section applies the proposed model to study the transmission 
of shocks from banks in developed countries (with large exposure 
to emerging market, such as Austria, the United Kingdom, France, 
and Germany) to their own sovereign markets. 

3.4.1 Tail risk and cascade effects

•	 Measures of bank interconnectedness started to rise at 
the onset of the crisis. The joint probability of distress (JPoD) 
and banking stability index indicate that systemic tail risk has 
risen substantially (figure 8). 

•	 The probability of cascade effects has also increased 
substantially, suggesting that future shocks would be 
transmitted quickly through the financial system (figure 8).

3.4.2 Distress between banks and sovereign markets in 
developed economies

•	 Links between advanced country banks and sovereign 
markets increased markedly after October. As the fiscal 
costs of potential bank bailouts have become apparent, banking 
sector concerns and sovereign risk have become increasingly 
intertwined. This is significant in Austria and the United Kingdom 
(figure 9).



Figure 8. Tail Risk and Cascade Effects

BSIs for regional groups
of banks

BSIs for major banks
and insurance companies 

JPoDs for major banks
Cascade effect

within bank group

Source: IMF staff estimates.

Figure 9. Distress between Banks and Sovereign Markets in 
Developed Economies 

Probability of distress of an advanced country sovereign market, conditional 
on an advanced country bank falling into distress (sample average)

Source: IMF staff estimates.



Figure 9. (continued)

Banks’ average probability
of distress

Sovereign market probability
of distress

Probability of sovereign
market distress conditional on

distress of Austrian banks

Probability of sovereign
market distress conditional

on the distress of U.K. banks

Probability of sovereign
market distress conditional

on distress of the French banks

Probability of sovereign
market distress conditional

on the distress of German banks 

Sources: Bloomberg and IMF staff estimates.
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3.5 Spillovers between the Banking System and 
Corporate Sectors

To analyze spillovers between the banking system and the 
corporate sector, we estimated linkages between non-bank financial 
companies, other corporations and banks in the U.S. and Europe.

3.5.1 Distress between banks and corporations

•	 Banks in developed countries have gradually become more 
interlinked with non-banks and non-financial corporations. 
Banks became less dependent on other corporations in late 2008 
(likely due to public support), but spillovers to other corporations 
continued to rise (figure 10). This constitutes evidence of spillovers 
from the banking crisis into the real economy.

Figure 10. Distress between Banks and Corporations in 
Developed Economies

Distress dependence between banks and non-bank FIs
U.S. Euro area

Distress dependence between banks and non-financial corporations
U.S. Euro area

Source: IMF staff estimates.
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4. Conclusions

The purpose of this paper is to estimate the BSM proposed by 
Segoviano and Goodhart (2009) and use it to analyze the financial 
stability of the main banks in any country or region, to enable 
tracking of the relative stability of this portfolio of banks over 
time and compare cross-sections of comparative groupings. This 
framework offers several advantages: 

•	 It provides measures for analyzing (defining) stability from three 
different, but complementary perspectives. 

•	 It can be constructed using a very limited set of data, 
specifically, the empirical measurements of default probabilities 
for individual banks. These measures can also be estimated 
using alternative approaches, depending on data availability. 
The data set needed for estimates is available in many developed 
and developing countries, provided there is reasonable data on 
individual bank PoDs.

•	 It includes banks’ default interdependence structure (copula 
function), thus capturing linear and nonlinear default 
dependencies among the main banks in a system.

•	 It allows quantification of changes in banks’ default interdependence 
structure at specific points in time. Thus, it can be useful to 
quantify empirically observed increases in dependencies at times 
of distress and relax the assumption of fixed correlations across 
time, commonly used in risk measurement models.

In the empirical part of this paper, we discussed the application 
of this methodology to several country and regional examples, using 
information available up to February 2009. This flexibility is useful to 
monitoring bank stability, as cross-border financial linkages increase 
and become more significant, as apparent during the financial market 
turmoil of recent months. Thus, monitoring bank stability cannot 
stop at national borders.
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Appendix A
Copula Functions

Let x and y be two random variables with individual distributions 
x∼F, y∼H and a joint distribution (x, y)∼G. The joint distribution 
contains three types of information. Individual (marginal) 
information on the variable x, individual (marginal) information 
on the variable y and information on the dependence between x 
and y. To model the dependence structure between the two random 
variables, the copula approach sterilizes the marginal information 
on x and y from their joint distribution, isolating the dependence 
structure as a result. Marginal information is sterilized by 
transforming the distribution of x and y into a uniform distribution; 
U(0,1), which is uninformative. Under this distribution the random 
variables have an equal probability of taking a value between 0 and 
1 and a zero probability of taking a value outside [0,1]. Therefore, 
this distribution is typically thought of as being uninformative. 
To transform x and y into U(0,1) we use the probability integral 
transformation (PIT).

Under PIT, two new variables are defined as u=F(x), v=H(y), both 
distributed as U(0,1) with joint density c(u,v). Under the distribution 
of transformation of random variables (Cassella and Berger, 1990), 
the copula function c(u,v) is defined as:

c u v
g F u H v

f F u h H v
( , )

( ), ( )

( ) ( )

( ) ( )

( ) ( )
=
















- -

- -

1 1

1 1 

,
	

(A1)

where g, f, and h are defined densities.
From equation (A1), we see that copula functions are multivariate 

distributions, whose marginal distributions are uniform on the 
interval [0,1]. Therefore, since each of the variables is individually 
(marginally) uniform (that is, their information content has 
been sterilized via PIT), their joint distribution will only contain 
dependence information. Rewriting equation (A1) in terms of x and 
y we get

c F x H y
g x y

f x h y
( ), ( )

( , )
( ) ( )

.  = 	 (A2)



364 Miguel A. Segoviano and Charles A.E. Goodhart

From equation (A2), we see that the joint density of u and v is 
the ratio of the joint density of x and y to the product of the marginal 
densities. Therefore, if the variables are independent, equation (A2) 
is equal to one.

Sklar’s Theorem

The following theorem was developed by Sklar (1959) and is 
known as Sklar’s Theorem. It is relevant to copula functions, and is 
used in all applications of copulas. If G is a joint distribution function 
with marginals F and H, then a copula C exists for all x, y in R,

G x y C F x H y( , ) ( ), ( ) .=   	 (A3)

If F and H are continuous, then C is unique; otherwise, C is 
uniquely determined on RanF × RanH. Conversely, if C is a copula 
and F and H are distribution functions, then the multivariate 
function G defined by equation (A3) is a joint distribution function 
with univariate margins F and H. Thus, the dependence structure 
is completely characterized by the copula C (Nelsen, 1999). Nelsen 
also provides the following corollary to Sklar’s theorem.
Corollary: Let G be any joint distribution with continuous marginals 
F and H. Let F (-1) (u), H (-1) (v)

 
denote the (quasi) inverses of 

the marginal distributions. Then there exists a unique copula  
C: [0,1] x [0,1]→[0,1] such that, g[F (-1) (u), H (-1) (v)]∀∈[0,1] x [0,1].  
If the cross partial derivatives of equation (A3) are taken, we obtain: 

g x y f x h y c F x H y( , ) ( ) ( ) ( ), ( ) .=   	 (A4)

The converse of Sklar’s theorem implies that we can couple 
together any marginal distributions, of any family, with any copula 
function and a valid joint density will be defined. The corollary 
implies that from any joint distribution we can extract the implied 
copula and marginal distributions (Nelsen, 1999). 

Parametric Copula Functions

In the finance literature, it is common to see the Gaussian copula 
and the t copula for modeling dependence among financial assets.  These 
are defined as follows (Embrechts, Lindskog, and McNeil, 2003):
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Gaussian copula: The copula of the bivariate normal distribution 
can be written as:

C u v
s st t

R
Ga

vu
,
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exp

(
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- +
--∞
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dsdt

	
(A5)

where r is the linear correlation coefficient of the corresponding 
bivariate normal distribution, and Φ-1 denotes the inverse of 
the distribution function of the univariate standard normal 
distribution.

t copula: The copula of the bivariate t-distribution with u degrees 
of freedom and correlation r is:

C u v
s st tt

t v

υρ

π ρ

ρ
υ ρ

υ

,
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υ
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1
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(A6)

where tu
-1(v) denotes the inverse of the distribution function of the 

standard univariate t-distribution with u degrees of freedom. As it 
can be seen, this copula depends only on r and u.
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Appendix B 
CIMDO copula

To provide a heuristic explanation of the CIMDO copula, we 
compare the copula of a bivariate CIMDO distribution and a 
bivariate distribution of the form that the prior density in the entropy 
functional would take, for example, a t-distribution. First, we recall 
from equation (4) that copula functions are defined as

c u v
g F u H v

f F u h H v
( , )

( ), ( )

( ) ( )
=
















-( ) -( )

-( ) -( )

1 1

1 1 

.

We then assume that the prior has a density function q(x,y). Thus, 
its marginal cumulative distribution functions take the form

u F x q x y dydx
x

= =
-∞

+∞

-∞ ∫∫( ) ( , ) , and

v H y q x y dxdy
x

= =
-∞

+∞

-∞ ∫∫( ) ( , ) , where u F x x F u= ⇔ = -( ) ( ),1

and v H y y H v= ⇔ = -( ) ( ).1

Therefore, its marginal densities take the form

f x q x y dy( ) ( , ) ,=
-∞

+∞

∫  and

h y q x y dx( ) ( , ) .=
-∞

+∞

∫
Substituting these into the copula definition, we obtain the copula 
of the prior,

c u v
q F u H v
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.
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


-∞

+∞

∫ dx 	
(B1)

Similarly, we assume that the CIMDO distribution with q(x,y) as 
the prior takes the form
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p x y q x y
x xd

x
d
y( , ) ( , )exp ( ) ( )ˆ ˆ ˆ
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
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We also define u F x x F uc c= ⇔ = -( ) ( ),1  and v H y y H vc c= ⇔ = -( ) ( ).1  
Its marginal densities take the form

f x q x y x yc x xd
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Substituting these into the copula definition, we obtain the CIMDO 
copula,
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(B2)

Equation (B2) shows that the CIMDO copula is a nonlinear function 
of ˆ , ˆ ˆ,µ λ λ1 2and , which change as the PoDs of the banks under analysis 
change. Therefore, the CIMDO copula captures changes in PoDs, as 
these change at different periods of the economic cycle.
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