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At least since the time of Irving Fisher, economists, as well as 
the general public, have regarded the interest rate as the most 
important variable in the economy. But in times of crisis, collateral 
rates (margins or leverage equivalently) are far more important. 
Despite the cries of newspapers to lower the interest rates, the Fed 
would sometimes do much better to attend to the economy-wide 
leverage and leave the interest rate alone.

When a homeowner (or hedge fund or a big investment bank) 
takes out a loan using, say, a house as collateral, he must negotiate 
not just the interest rate, but how much he can borrow. If the house 
costs $100 and he borrows $80 and pays $20 in cash, we say that the 
margin, or haircut is 20%, the loan to value is $80/$100 = 80%, and 
the collateral rate is $100/$80 = 125%. The leverage is the reciprocal 
of the margin, namely, the ratio of the asset value to the cash needed 
to purchase it, or $100/$20 = 5. These ratios are all synonomous.

In standard economic theory, the equilibrium of supply and demand 
determines the interest rate on loans. It would seem impossible that 
one equation could determine two variables, the interest rate and the 
margin. But in my theory, supply and demand do determine both the 
equilibrium leverage (or margin) and the interest rate.

It is apparent from everyday life that the laws of supply and 
demand can determine both the interest rate and leverage of a 
loan: the more impatient borrowers are, the higher the interest 
rate; the more nervous the lenders become, or the riskier the asset 
prices become, the higher the collateral they demand. But standard 
economic theory fails to properly capture these effects, struggling 
to see how a single supply-equals-demand equation for a loan could 
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determine two variables: the interest rate and the leverage. The 
theory typically ignores the possibility of default (and thus the need 
for collateral), or else it fixes the leverage as a constant, allowing the 
equation to predict the interest rate.

Yet, variation in leverage has a huge impact on the price of 
assets, contributing to economic bubbles and busts. This is because 
for many assets there is a class of buyers for whom the asset is more 
valuable than it is for the rest of the public (standard economic theory, 
in contrast, assumes that asset prices reflect some fundamental 
value). These buyers are willing to pay more, perhaps because they 
are more optimistic, or they are more risk tolerant, or they simply 
like the assets more, or they are important hedges for them and not 
for the others. If they can get their hands on more money through 
more highly leveraged borrowing (that is, getting a loan with less 
collateral), they will spend it on the assets and drive those prices up. 
If they lose wealth, or lose the ability to borrow, they will buy less, 
so the asset will fall into more pessimistic hands and be valued less. 

In the absence of intervention, leverage becomes too high in times 
when markets have been stable and apparently devoid of risk for 
long periods of time, and too low in scary times when asset prices 
are very uncertain. The high leverage during the safe period makes 
the economy much more vulnerable when uncertainty returns. As a 
result, in boom times asset prices are too high, and in crisis times 
they are too low. This is the leverage cycle.

Leverage dramatically increased in the United States and 
globally from 1999 to 2006. A bank that in 2006 wanted to buy a 
AAA-rated mortgage security could borrow 98.4% of the purchase 
price, using the security as collateral, and pay only 1.6% in cash. The 
leverage was thus 100 to 1.6, or about 60 to 1. The average leverage 
in 2006 across all of the US$2.5 trillion of so-called ‘toxic’ mortgage 
securities was about 16 to 1, meaning that the buyers paid down 
only $150 billion and borrowed the other $2.35 trillion. Home buyers 
could get a mortgage leveraged 35 to 1, with less than a 3% down 
payment. Security and house prices soared.

By 2009 leverage had been drastically curtailed by nervous 
lenders wanting more collateral for every dollar loaned. Those toxic 
mortgage securities were leveraged on average only about 1.2 to 1.  
A homeowner who bought his house in 2006 by taking out a subprime 
mortgage with only 3% down could not take out a similar loan in 
2009 without putting down 30% (unless he qualified for one of the 
government rescue programs). The odds are great that he wouldn’t 
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Figure 1. Securities Leverage Cycle, Margins Offered and 
AAA Securities Prices 
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Source: Author’s elaboration.
The chart represents the average margin required by dealers on a hypothetical portfolio of bonds subject to certain 
adjustments noted below. Observe that the Margin % axis has been reversed, since lower margins are correlated 
with higher prices.The portfolio evolved over time, and changes in average margin reflect changes in composition 
as well as changes in margins of particular securities. In the period following Aug. 2008, a substantial part of the 
increase in margins is due to bonds that could no longer be used as collateral after being downgraded, or for other 
reasons, and hence count as 100% margin.

Figure 2. Housing Leverage Cycle, Margins Offered (Down 
Payments Required) and Housing Prices 
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Source: Author’s elaboration.
Observe that the Down Payment axis has been reversed, because lower down payment requirements are correlated 
with higher home prices. For every AltA or Subprime first loan originated from Q1 2000 to Q1 2008, down payment 
percentage was calculated as appraised value (or sale price if available) minus total mortgage debt, divided by 
appraised value. For each quarter, the down payment percentages were ranked from highest to lowest, and the 
average of the bottom half of the list is shown in the diagram. This number is an indicator of down payment 
required: clearly many homeowners put down more than they had to, and that is why the top half is dropped from 
the average. A 13% down payment in Q1 2000 corresponds to leverage of about 7.7, and 2.7% down payment in Q2 
2006 corresponds to leverage of about 37. Subprime/AltA issuance stopped in Q1 2008. 
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have the cash to do it, and reducing the interest rate by 1 or 2% 
wouldn’t change his ability to act.

Seven and a half years after the crash of subprime mortgages in 
February 2007, the economy still has not returned to normal. The 
Fed has lowered interest rates to near 0 and kept them there for 
five years. But it has not tried to boost leverage, except for a brief 
successful period in 2009 and 2010.

Figure 3. VIX Index 
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The leverage cycle is a recurring phenomenon. The financial 
derivatives crisis in 1994 that bankrupted Orange County in 
California was the tail end of a leverage cycle. So was the emerging 
markets mortgage crisis of 1998, which brought the Connecticut-
based hedge fund Long-Term Capital Management to its knees, 
prompting an emergency rescue by other financial institutions. The 
crash of 1987 also seems to be at the tail end of a leverage cycle. The 
Tulip Bulb mania and the Japanese land boom of the 1980s were 
leverage cycles.

The policy implication of my theory of equilibrium leverage is 
that the Fed should manage system wide leverage, curtailing leverage 
in normal or ebullient times, and propping up leverage in anxious 
times. The theory challenges the “fundamental value” theory of asset 
pricing and the efficient markets hypothesis.

If agents extrapolate blindly, assuming from past rising prices 
that they can safely set very small margin requirements, or that 
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falling prices means that it is necessary to demand absurd collateral 
levels, then the cycle will get much worse. But a crucial part of my 
leverage cycle story is that every agent is acting perfectly rationally 
from his own individual point of view. People are not deceived into 
following illusory trends. They do not ignore danger signs. They 
do not panic. They look forward, not backward. But under certain 
circumstances the cycle spirals into a crash anyway. The lesson is 
that even if people remember this leverage cycle, there will be more 
leverage cycles in the future, unless the Fed acts to stop them.

The leverage cycle always involves the same elements. First, a 
sustained period of calm leads lenders to increase loan to value ratios, 
both because they feel safe and because financial innovation is given 
time to further stretch collateral. This leads to higher asset prices as 
more people can afford the downpayment to buy more assets or with 
indivisible assets, to buy the asset at all. Borrowing thus goes up for 
a squared reason: a higher percentage is borrowed of higher valued 
assets. Next a little bit of bad news occurs. This causes prices to drop 
a little, which in turn leads to huge losses for the most optimistic, 
leveraged buyers. The redistribution of wealth from optimists to 
pessimists further erodes prices, causing more losses for optimists. 
If lenders gauge future uncertainty by extrapolating from the past, 
then these price declines make them nervous and cause them to set 
tighter margins. Alternatively, even if they rationally forecast the 
future, and the news is not just bad, but scary, in the sense that it 
increases uncertainty, they will also tighten margins. This leads 
to steeper price declines, which causes leveraged optimists to lose 
more money, which causes rational lenders to anticipate further 
price declines, leading then demanding more collateral, and so on. 
All three elements feed back on each other.

The best way to stop a crash is to act long before it occurs, by 
restricting leverage in ebullient times. The best time for an investor 
to enter the market is just after the crash.

My theory is of course not completely original. Over 400 years ago 
in the Merchant of Venice, Shakespeare explained that to take out 
a loan, one had to negotiate both the interest rate and the collateral 
level. It is clear which of the two Shakespeare thought was the more 
important. Who can remember the interest rate Shylock charged 
Antonio? (It was zero percent.) But everybody remembers the pound 
of flesh that Shylock and Antonio agreed on as collateral. The upshot 
of the play, moreover, is that the regulatory authority (the court) 
decides that the collateral Shylock and Antonio freely agreed upon 
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was socially suboptimal, and the court decreed a different collateral: 
a pound of flesh but not a drop of blood. The Fed should also decree 
different collateral rates sometimes.

In more recent times there has been pioneering work on collateral 
by Shleifer and Vishny SV (1992), Bernanke, Gertler, Gilchrist BGG 
(1996, 1999), and Holmström and Tirole (1997). This work emphasized 
the asymmetric information between borrower and lender, leading to a 
principal agent problem. In Holmström and Tirole (1997) the managers 
of a firm are not able to borrow all the inputs necessary to build a 
project because lenders would like to see them put skin in the game, by 
putting their own money down, to guarantee that they exert maximal 
effort. The BGG (1999) model, adapted from their earlier work, is cast 
in an environment with costly state verification. I do not invoke any 
asymmetric information. I believe that it is important to note that 
endogenous leverage need not be based on asymmetric information. 
Of course the asymmetric information revolution in economics was 
a tremendous advance, and asymmetric information plays a critical 
role in many lender-borrower relationships; however, sometimes the 
profession becomes obsessed with it. In the crisis of 2007 − 2009, it 
does not appear to me that asymmetric information played a critical 
role in setting margins. Certainly the buyers of mortgage securities 
did not control their payoffs. In my model the only thing backing the 
loan is the physical collateral. Because the loans are no-recourse, 
there is no need to learn anything about the borrower. All that matters 
is the collateral. Repo loans, and mortgages in many states, are 
literally no-recourse. In the rest of the states, lenders rarely come 
after borrowers for more money beyond taking the house. And for 
subprime borrowers, the hit to the credit rating is becoming less and 
less tangible. In looking for determinants of (changes in) leverage, 
one should start with the distribution of collateral payoffs, and not 
the level of asymmetric information.

Another important paper on collateral is Kiyotaki and Moore 
(1997). Like BGG (1996), this paper emphasized the feedback from 
the fall in collateral prices to a fall in borrowing capacity, such as 
would occur from a constant loan to value ratio. By contrast, my 
work defining collateral equilibrium focused on what determines the 
ratios (LTV, margin, or leverage) and why they change. In practice, I 
believe the change in ratios has been far bigger and more important 
for borrowing than the change in price levels. The possibility of 
changing ratios is latent in the BGG models, but not emphasized by 
them. In my 1997 paper I showed how one supply-equals-demand 



166 John Geanakoplos

was socially suboptimal, and the court decreed a different collateral: 
a pound of flesh but not a drop of blood. The Fed should also decree 
different collateral rates sometimes.

In more recent times there has been pioneering work on collateral 
by Shleifer and Vishny SV (1992), Bernanke, Gertler, Gilchrist BGG 
(1996, 1999), and Holmström and Tirole (1997). This work emphasized 
the asymmetric information between borrower and lender, leading to a 
principal agent problem. In Holmström and Tirole (1997) the managers 
of a firm are not able to borrow all the inputs necessary to build a 
project because lenders would like to see them put skin in the game, by 
putting their own money down, to guarantee that they exert maximal 
effort. The BGG (1999) model, adapted from their earlier work, is cast 
in an environment with costly state verification. I do not invoke any 
asymmetric information. I believe that it is important to note that 
endogenous leverage need not be based on asymmetric information. 
Of course the asymmetric information revolution in economics was 
a tremendous advance, and asymmetric information plays a critical 
role in many lender-borrower relationships; however, sometimes the 
profession becomes obsessed with it. In the crisis of 2007 − 2009, it 
does not appear to me that asymmetric information played a critical 
role in setting margins. Certainly the buyers of mortgage securities 
did not control their payoffs. In my model the only thing backing the 
loan is the physical collateral. Because the loans are no-recourse, 
there is no need to learn anything about the borrower. All that matters 
is the collateral. Repo loans, and mortgages in many states, are 
literally no-recourse. In the rest of the states, lenders rarely come 
after borrowers for more money beyond taking the house. And for 
subprime borrowers, the hit to the credit rating is becoming less and 
less tangible. In looking for determinants of (changes in) leverage, 
one should start with the distribution of collateral payoffs, and not 
the level of asymmetric information.

Another important paper on collateral is Kiyotaki and Moore 
(1997). Like BGG (1996), this paper emphasized the feedback from 
the fall in collateral prices to a fall in borrowing capacity, such as 
would occur from a constant loan to value ratio. By contrast, my 
work defining collateral equilibrium focused on what determines the 
ratios (LTV, margin, or leverage) and why they change. In practice, I 
believe the change in ratios has been far bigger and more important 
for borrowing than the change in price levels. The possibility of 
changing ratios is latent in the BGG models, but not emphasized by 
them. In my 1997 paper I showed how one supply-equals-demand 

167The Leverage Cycle, Default, and Foreclosure

equation can determine leverage as well as interest even when the 
future is uncertain. In my 2003 paper on the anatomy of crashes and 
margins (it was an invited address at the 2000 World Econometric 
Society meetings), I argued that in normal times leverage and asset 
prices get too high, and in bad times, when the future looks worse and 
more uncertain, leverage and asset prices fall too low. In the certainty 
model of Kiyotaki and Moore, to the extent leverage changes at all, 
it goes in the opposite direction, getting looser after bad news. In 
Fostel and Geanakoplos (2008b), on leverage cycles and the anxious 
economy, we noted that margins do not move in lockstep across asset 
classes, and that a leverage cycle in one asset class might spread 
to other unrelated asset classes. In Geanakoplos and Zame (2009, 
2014) we describe the general properties of collateral equilibrium. In 
Geanakoplos and Kubler (2005), we show that managing collateral 
levels can lead to Pareto improvements.1

The recent crisis has stimulated a new generation of important 
papers on leverage and the economy. Notable among these are 
Brunnermeier and Pedersen (2009), anticipated partly by Gromb 
and Vayanos (2002), and Adrian and Shin (2009), and Simsek (2013). 

This paper emphasizes two dangers to leverage. The first is that 
the roller coaster of leverage, caused by changes in risk perceptions, 
leads to a roller coaster in asset prices. That has all sorts of 
implications for the risk exposure of agents who are forced to hold 
these assets and cannot hedge them (like households who own houses 
or banks whose major business is holding mortgages). Second, when 
a boom is followed by a bust, many borrower will find themselves 
under water, owing more than the value of the collateral. There are 
typically large losses in turning over the collateral, partly because of 
vandalism and so on, and partly because agents have no incentive to 
invest in their collateral when they know it may be seized anyway. 
Subprime lenders (bondholders) received on average less than 25% 
of the loan amount back when they foreclosed on a home during the 
years 2007−12. We shall see that in the model even though every 
lender rationally anticipates the incentives his borrowers will face, 
they still collectively extend too much leverage because no lender 
takes into account that if he reduced his loan size the price of housing 
would be slightly higher in the future and some other homeowner 
might not go underwater and stop fixing his house.

1. For Pareto improving interventions in credit markets, see also Gromb-Vayanos 
(2002) and Lorenzoni (2008).
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Section 2 describes a very simple two period model of collateral 
equilibrium with one risky asset. This enables me to introduce the 
notation gently and to display the connection between uncertainty, 
leverage, and asset prices in graphical form. There it is explained 
why the limits to borrowing that arise when collateral is needed to 
guarantee delivery can paradoxically increase the price of assets that 
need to be purchased with borrowed funds. In section 3, I introduce 
general notation for collateral equilibrium. Then I describe the 
leverage cycle. In section 4, I introduce delays in unencumbering 
collateral and the resulting costs of foreclosure. This brings out one 
of the negative externalities caused by increased leverage.

1. a Two-period, binomial eConomy wiTh one risky 
asseT

To introduce our notation and to illustrate some of the analytical 
ideas in a simple environment, let us consider the following family of 
examples taken from Geanakoplos (2003). For this family of examples 
we define equilibrium without financial contracts, Arrow Debreu 
equilibrium, and collateral equilibrium. We end by comparing asset 
prices across the different equilibria.

Consider two time periods 0,1 , and two states of nature U and D in 
the last period and agents or households h ∈ H. Suppose that there are 
three commodities at time 0, whose holdings are denoted by x0 = (x01, 
x02, x03) = (c0, y0, w0) which we call the perishable consumption good C, 
the durable asset Y, and the durable (“warehousable”) consumption 
good W. Suppose there is just one commodity in each state U and D, 
which we think of as the perishable consumption good, and whose 
holdings we denote by xs = cs, s = U, D. We think of the durable 
consumption good as something like cigarettes or canned food or 
oil in a well, that can be stored costlessly until the next period, or 
costlessly transformed one to one into the consumption good and 
used up immediately, by lighting the cigarette or opening the can of 
sardines, or drawing the oil out of the well.

Each unit of Y pays either dU or dD < dU of the consumption 
good in the two states U (as in Up) or D (as in Down), respectively. 
Imagine the asset as a mortgage that either pays in full or defaults 
with recovery dD. (All mortgages will either default together or pay 
off together). But it could also be an undrilled oil well that could 
be a gusher or a small one. The only difference between W and Y is 
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that the output of W is known for sure to be 1 next period, while the 
output of Y is uncertain. 

Figure 4. Simple Binomial Tree
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belief γ

U
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The durable consumption good and the asset provide no direct 
utility to their holders at time 0, they just increase income in the 
future. Moreover their future value does not depend on who holds 
them at time 0. We call such assets financial assets, in contrast to 
houses, that do provide immediate utility at time 0 to those who 
hold them.

To complete the formal description of our example, we must also 
specify the production technology. We let the matrices

EU = [0  dU  1], ED = [0  dD  1]

denote what happens next period to each of the commodities at 
time 0. The first column of each matrix corresponds to the dividend in 
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states U and D of holding the perishable consumption good at time 0. 
The second column corresponds to the dividend in states U and D 
of holding the durable asset Y, and the third column corresponds to 
holding holding the durable consumption good W (“warehousing” or 
“storing” it). Thus an agent who holds x0 = (x01, x02, x03) = (c0, y0, w0) in 
period 0 receives EU, x0 of dividends at U and ED, x0 of dividends at D.

We also describe the intraperiod technology 

Z0 = {z = (z01, z02, z03) : z ≤ (λ, 0, − λ), λ ∈ R}

which respresents the idea that the durable consumption good can 
be transformed one to one into the perishable consumption good and 
vice versa. We suppose every agent has access to this technology.

1.1 A Continuum of Risk Neutral Agents and the 
Marginal Buyer 

Let us consider the simplest possible agents. Suppose the agents 
h ∈ H only care about the total expected consumption they get, no 
matter when they get it. They are not impatient.

Thus δh = 1 and uh(c) = c for all h ∈ H. The difference between the 
agents is thus only in the probabilities γ

U
h, γD

h
 = 1 − γU

h each attaches 
to the good outcome of Y and the bad outcome. We suppose that γ

U
h 

is strictly monotonically increasing and continuous in h so that 
the higher h is, the more optimistic is the agent. When H is a finite 
set, the continuity hypothesis is vacuous. But we consider the case 
where H is the unit interval with the uniform Lebesgue measure. 
For this continuum case, the summation over h ∈ H must always be 
understood as the integral over H = [0,1] with respect to the standard 
Lebesgue measure.

The advantage of the continuum of agents approach is that 
every agent will always be able to optimize by going to one extreme 
or another, for example putting all its wealth into the risky asset Y 
or into the riskless asset W. But one agent, which we shall call the 
marginal buyer, will be indifferent to both extremes.

1.2 Equilibrium Asset Pricing without Credit

We can always choose the perishable consumption good as the 
numeraire in every state 0,1 and 2; hence we take its price to be 1 
in every state. Since the storable consumption good is transformable 
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one to one into the perishable consumption good, we can also take 
the price of W0 to be 1. Suppose the price of the asset per unit at 
time 0 is pY , somewhere between 0 and 1.

If borrowing were not allowed, and agents could only trade the 
commodities among themselves in period 0, then the budget set for 
each agent would be 

Bh
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Figure 5. Marginal Buyer Theory of Price
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Source: Author’s elaboration. 

Figure 6. Edgeworth Box with a Continuum of Risk Neutral 
Agents
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Given the price pY, each agent chooses the consumption plan 
(ch

0, y
h
0, w

h
0, c

h
1, c

h
2) in Bh

0(pY)that maximizes his utility Uh defined above. 
In equilibrium all markets must clear 
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The agents h who believe that

γ
U
h dU + (1 − γU

h)dD > pY

will spend all their wealth at 0 to buy the risky asset Y, since by 
paying pY now they get something with expected payoff next period 
greater than pY and they are not impatient. Those who think

γ
U
h dU + (1 − γU

h)dD < pY

will sell their share of the asset and buy either consumption good 
(between which they are indifferent).

Under the assumption that γ
U
h  is strictly monotically increasing 

and continuous in h, there must be a unique agent h* who is 
indifferent between W and Y. We call him the marginal agent. Those 
above h* will spend all their money on Y, and those below h* will 
spend all their money on W. The presence of the marginal agent 
makes it easy to describe and compute equilibrium.

Without borrowing, equilibrium (h*, pY) must solve two equations

γ
U
h*dU + (1 − γU

h*)dD = pY

(1 − h
*)(1 + pY) = pY
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where the fi rst says that the marginal agent h* is indifferent between 
W and Y, and the second equation says that if the top (1 − h

*) agents 
spend all their income they should just be able to afford to buy the 
one unit outstanding of Y.

In the numerical examples that follow we shall always suppose 
that every agent owns one unit of the risky asset at time 0 and 
also one unit of the warehousable consumption good at time 0, 
e0

h
 = (e

h
01, eh

02, eh
03) = (e

h
Co

, eh
Yo

, e
h
Wo
) = (0, 1, 1), and that the output from 

the risky asset is 1 in the up state U and 0.2 in the down state D. 
The endowments and asset payoffs are thus

eh = (e
h
Co

, e
h
Yo

, e
h
Wo

, e
h
CU

, e
h
CD
) = (0, 1, 1, 0, 0)

(dU, dD)
 = (0, 0.2)

Suppose γ
U
h
 = h for all h. Then solving the system of two equations 

gives equilibrium (h*, pY) = (0.596, 0.677) ≈ (0.60, 0.68). Agent 
h = 0.60 values the asset at 0.68 = 0.60(1) + 0.40 (0.2) . Each agent 
above 0.60 will spend all his 1.68 of wealth on asset Y. The total cost 
of Y is 0.68, and indeed 0.40(1.68) = 0.67 ≈ 0.68 units in aggregate. 
Since the market for risky assets clears at time 0, and everybody is 
optimizing, by the Walras Law, the market for all the other goods 
must clear as well and this is the equilibrium with no borrowing. In 
this equilibrium agents are indifferent to storing or consuming right 

Figure 7. No Credit Equilibrium
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away, so we can describe equilibrium as if everyone warehoused and 
postponed consumption by taking

p = 0.68

(ch
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0, wh
0, ch

U, ch
D)
 = (0, 2.5, 0, 2.5, 0.5) for h ≥ 0.60

(ch
0, yh

0, wh
0, ch

U, ch
D)
 = (0, 0, 1.68, 1.68, 1.68) for h < 0.60.

Similarly if agents are more optimistic, and γ
U
h   = 1 − (1 − h)

2
 > h 

for all h ∈ (0,1), then equilibrium (h*, pY) = (0.545, 0.835). On the 
other hand, if agents are more pessimistic and γ

U
h
 = 1 − (1 − h)

0.1
 < h 

for all h ∈ (0,1), then equilibrium (h*, pY) = (0.764, 0.308).

1.3 Arrow Debreu Equilibrium

If agents can commit to delivering fully on state contingent 
promises, then we get Arrow Debreu equilibrium. Arrow Debreu 
equilibrium is defined by Arrow prices (πU, πD) of the promise to 
deliver one unit of the consumption good in U, and the promise to 
deliver one unit in D, together with consumption (ch
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and such that each agent h is choosing (ch
0, wh

0, ch
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D) to maximize 
Uh(c0, cU, cD) such that 
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For the economy with a continuum of risk neutral agents who 
do not discount the future, it is evident that again there must be a 
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marginal buyer h* such that the agents h > h
* spend all their wealth 

on cU and the agents h < h
* spend all their wealth on cD All the time 0 

goods will be warehoused to the future.
Taking endowments eh

 = (0, 1, 1, 0, 0) and risky asset payoffs 
(dU, dD) = (1, 0.2) as before, total consumption in U must be 2 and 
in D it must be 1.2. Suppose γ

U
h
 = h for all h. Then the Arrow Debreu 

equilibrium is (h*, πU, pY) = (0.436, 0.436, 0.549) ≈ (0.44, 0.44, 0.55). 
Agent h = 0.44 values the asset at 0.55 = 0.44(1) + 0.56(0.2). Every 
agent above 0.44 will buy as much as he can afford of the Up Arrow 
security. Each of these agents can spend 1.55, hence spending 0.56 
(1.55) = 0.87 in aggregate. Since the cost of all the Arrow up is 2 
(0.436) = 0.87 , the markets clear.

Similarly if agents are more optimistic, and γ
U
h
 = 1 − (1 − h)

2 for 
all h then equilibrium (h*, πU, pY) = (0.33, 0.55, 0.64) On the other 
hand, if agents are more pessimistic and γ

U
h   = 1 − (1 − h)

0.1 for all h 
then equilibrium (h*, πU, pY) = (0.783, 0.142, 0.314).

Observe that the asset price in the no borrowing equilibrium can 
be higher than the Arrow Debreu asset price. Thus when γ

U
h   = h, the 

Arrow Debreu price is higher 0.68 > 0.55 and when γ
U
h   = 1 − (1 − h)

2 
the Arrow Debreu price is also higher, 0.83 > 0.64. But when 
γ

U
h   = 1 − (1 − h)

0.1, the Arrow Debreu price is lower 0.308 < 0.314. 
The difference between the two economies is essentially that in 
the no borrowing economy, there is also no short selling; with short 
selling of both assets (and delivery fully guaranteed) we would get 
the Arrow Debreu outcome. If short selling were allowed, the agents 

Figure 8. Arrow Debreu Equilibrium
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who thought one of the assets was overvalued would sell it short. 
That can sometimes lower the price of Y, but it can other times lower 
the price of W.

1.4 Collateral Equilibrium

When credit markets are created, the first question that arises 
is why should borrowers keep their promises? In the Arrow Debreu 
model, the implicit assumption is made that anyone who defaults 
faces an infinite penalty. We shall now suppose to the contrary that 
no penalties are available, but that there is a state-run court system 
that is able to seize pledged collateral in case of default and turn it 
over to he lender.

1.4.1 Collateral

We shall restrict attention to loans that are non-contingent, 
that is that involve promises of the same amount j in both states. 
We have not yet determined how much people can borrow or lend. 
In conventional economics they can do as much of either as they 
like, at the going interest rate. But in real life lenders worry about 
default. Suppose we imagine that the only way to enforce deliveries 
is through collateral. A borrower can use one unit of the asset Y itself 
as collateral, so that if he defaults the collateral can be seized.2 Of 
course a lender realizes that if the promise is j in both states, then 
with no-recourse collateral he will only receive

min( j, dU) if good news

min( j, dD) if bad news

Observe that because the owner of the collateral has no influence 
on the cash flows of the asset, and with no recourse collateral and 
one period loans, every agent delivers the same on a given contract, 
namely the promise or the collateral, whichever is worth less. The 

2. The other durable good W could also be used as collateral. But since its payoff is 
the same in both states, and the coontracts are all non-contingent, nobody would ever 
both to borrow on it. They could simply sell the asset to raise cash. In the case of Y, 
borrowing on Y gives a net payoff that is different from simply holding Y.
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both to borrow on it. They could simply sell the asset to raise cash. In the case of Y, 
borrowing on Y gives a net payoff that is different from simply holding Y.
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loan market is thus completely anonymous; there is no role for 
asymmetric information about the agents because every agent 
delivers the same way. Lenders need only worry about the collateral, 
not about the identity or actions of the borrowers. 

Figure 9. Contract Promises and Deliveries
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Source: Author’s elaboration.

The introduction of collateralized loan markets introduces two 
more parameters: how much can be promised j, and at what interest 
rate r? At first glance there seems to be only one additional market 
clearing condition, namely, that demand equals supply for loans. 
How can one equation determine two variables?

1.4.2 The credit surface

Before 1997 there had been virtually no work on equilibrium 
margins. Collateral was discussed almost exclusively in models 
without uncertainty (as in Kiyotaki and Moore, 1997), or in corporate 
finance models in which moral hazard reasons like the potential theft 
of loans restrained borrowing (as in Holmström and Tirole, 1997). 
But the 2007−09 crisis revealed that massive shifts in collateral 
rates or leverage occurrred in assets like mortgage securities, in 
which the owners of the securities had absolutely no influence on the 
cash flows, or spccial knowledge of the cash flows. Even now the few 
writers who try to make collateral endogenous in general equilibrium 
do so by taking an ad hoc measure of risk, like volatility or value at 
risk, and assume that the margin is some arbitrary function of the 
riskiness of the repayment.
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It is not surprising that economists have had trouble modeling 
equilibrium haircuts or leverage. We have been taught that the only 
equilibrating variables are prices. It seems impossible that the demand 
equals supply equation for loans could determine two variables.

The key idea, as shown in Geanakoplos (1997), is to think of many 
loans, not one loan. Irving Fisher and then Ken Arrow taught us to 
index commodities by their location, or their time period, or by the 
state of nature, so that the same quality apple in different places or 
different periods might have different prices. So we must index each 
promise by its collateral. A promise of j = dD backed by Y is different 
from a promise of j = dD backed by 1/2 of Y. The former delivers 
dD in both states, but the latter might deliver dD in the good state  
(if dU ≥ 2dD) and (1/2)dD in the bad state. Doubling the promise 
does not double the payoff. The collateral matters.

Conceptually we must replace the notion of contracts as promises 
with the notion of contracts as ordered pairs of promises and 
collateral, so that each ordered pair-contract will trade in a separate 
market, with its own price.

Contractj = (Promisej, Collateralj) = (Aj, Cj)

Though the contract payoffs are not homogeneous in the promise 
with a fixed collateral, the payoffs are indeed homogeneous in the 
ordered pair. Doubling the promise and the collateral does double 
the payoff of the contract. Trading via the former contract is the 
same as trading through the latter contract; only the units change. 
So without loss of generality, we can always normalize the collateral. 
In our example we shall focus on contracts in which the collateral 
Cj is simply one unit of Y.

So let us denote by j the promise of j in both states in the future, 
backed by the collateral of one unit of Y. We take an arbitrarily large 
set J of such assets, but include j = dD = 0.2. Each contract j type 
trades at its own price πj.

Given the price πj , and given that the promises are all non-
contingent, we can always compute the implied nominal interest 
rate as 1 + rj = j/πj. When the collateral is so big that there is no 
default, πj = j/(1 + r), where r is the riskless rate of interest. But 
when there is default, the price cannot be derived from the riskless 
interest rate alone.

In the end we have a menu of contracts, each trading for a 
different price or, equivalently, a different interest rate. The amalgam 
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of all contracts traces out a surface if we think of the terms of the 
contract as the argument and the interest rate as a function of these 
terms. I call this the credit surface. In standard monetary theory we 
describe credit conditions by the riskless interest rate. The riskless 
interest rate appears on one end of the credit surface, where the 
collateral is very big compared to the promise. But credit, and thus 
activity in the economy, often relies more on the parts of the credit 
surface that lie beyond the riskless interest rate. 

Figure 10. Credit Surface

r

LTV(j)
100%

Source: Author’s elaboration.

1.4.3 Collateral budget set and equilibrium

We must distinguish between sales ϕj
 > 0 of these collateralized 

promises (that is borrowing) from purchases θj
 > 0 of these promises 

(that is lending). The two differ more than in their sign. A sale of a 
promise obliges the seller to put up the collateral, whereas the buyer 
of the promise does not bear that burden. The marginal utility of 
buying a promise will often be much less than the marginal disutillity 
of selling the same promise, at least if the agent does not otherwise 
want to hold the collateral.

We can describe the budget set formally with our extra variables.

Bh(pY, π) = {(c0, y0, (θj, ϕj)j∈J, w0, cU, cD) ∈ R+2 × R+2J
 × R+3 :
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The first inequality says that expenditure on consumption goods 
(perishable and warehousable) plus net expenditure on the asset Y 
plus net expenditure on contracts must be less than or equal to the 
value of the consumption good endowments. The seond inequality 
describes the crucial collateral or leverage constraint. Each promise 
must be backed by collateral, and so the sum of the collateral 
requirements across all the promises must be met by the Y on hand. 
The last two equations show the wealth carried into states U and D.

Equilibrium is defined exactly as before, except that now we 
must have market clearing for all the contracts j ∈ J Equilibrium is 
defined by the price of Y and the contract prices (pY,π) and agent 
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1.4.4 Equilibrium leverage

In equilibrium we can define the loan to value (LTV) of each 
contract by the ratio of the borrowed amount to the value of the 
collateral

LTV( j) = 
πj

pY

The loan to value of the collateral Y is the weighted average 
(according to trading volume) of the leverage on each contract that 
uses Y as collateral 

LTV(Y) = Σh∈H πjφh
j

Σh∈H pYφh
j

Equilibrium thus determines the interest rate on each contract, 
and the LTV of each contract and the asset.

Surpisingly, we shall find that when there are only two states, 
then all the traded contracts have the same interest rate, and for each 
asset, every contract using it as collateral has the same loan to value.

Consider again the our numerical example where

eh
 = (e

h
Co

, e
h
Yo

, e
h
Wo

, e
h
CU

, e
h
CD
) = (0, 1, 1, 0, 0)

(dU, dD) = (0, 0.2)

Let γ
U
h   = h for all h ∈ H = [0,1]. Geanakoplos (2003) proved that 

there is a unique equilibrium, which we shall describe momentarily. 
In that equilibrium, the only asset that is traded is ((0.2, 0.2),1) , 
namely, j = 0.2 . All the other contracts are priced, but in equilibrium 
neither bought nor sold. Furthermore, there is a marginal buyer 
h*
 = 0.69 who is indifferent to buying the asset Y and every contract j. 

Their prices can therefore be computed by using state prices 
corresponding to the value the marginal buyer h*

 = 0.69 attributes 
to them. The price of the asset is therefore 

PY = 0.69(1)  + 0.31 (0.2) = 0.75
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Similarly the price of the contracts are calculated as 

  πj = 0.69 min(1, j) + 0.31 min (0.2, j)

  1 + rj = j/πj 

  π0.2 = 0.69 (0.2) + 0.31 (0.2) = 0.2 

 1 + r0.2 = 0.2/0.2 = 1.00 

  π0.3 = 0.69 (0.3) + 0.31 (0.2) = 0.269 

 1 + r0.3 = 0.3/0.269 = 1.12 

  π0.4 = 0.69 (0.4) + 0.31 (0.2) = 0.337 

 1 + r0.4 = 0.4/0.337 = 1.19

Thus an agent who wants to borrow 0.2 using one house as 
collateral can do so at 0% interest. An agent who wants to borrow 
0.269 with the same collateral can do so by promising 12% interest. 
An agent who wants to borrow 0.337 can do so by promising 19% 
interest. The puzzle of one equation determining both a collateral 
rate and an interest rate is resolved; each collateral rate corresponds 
to a different interest rate. It is quite sensible that less secure loans 
with higher defaults will require higher rates of interest.

The surprise is that in this kind of example, with only one 
dimension of risk and one dimension of disagreement, only one 
margin will be traded! Everybody will voluntarily trade only the 
j = 0.2 loan, even though they could all borrow or lend different 
amounts at any other rate.

How can this be? Agent h = 1 thinks for every 0.75 he pays on 
the risky asset, he can get 1 for sure. Wouldn’t he love to be able to 
borrow more, even at a slightly higher interest rate? The answer is 
no! In order to borrow more, he has to substitute say a 0.4 loan for 
a 0.2 loan. He would then deliver the same amount in the bad state 
D, but deliver more in the good state U, in exchange for getting 
more at the beginning. But that is not rational for him. He is the one 
convinced the good state U will occur, so he definitely does not want 
to pay more just where he values money the most.3

3. More precisely, buying Y while simultaneously using it as collateral to sell any 
non-contingent promise of at least 0.2 is tantamount to buying up Arrow securities at 
a price of 0.69 per unit of net payoff in state U. So h > 0.69 is indifferent to trading on 
any of the loan markets promising at least 0.2. By promising 0.4 per unit of Y instead of 
0.2 he simply is buying fewer of the up Arrow securities per contract (because he must 
deliver more in the up state), but he can buy more contracts (since he is receiving more 
money at date 0). He can accomplish exactly the same thing selling less 0.2 promises.
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The lenders are people with h < 0.69 who do not want to buy the 
asset. They are lending instead of buying the asset because they think 
there is a substantial chance of bad news. It should be no surprise 
that they do not want to make risky loans, even if they can get a 
19% rate instead of a 0% rate, because the risk of default is too high 
for them. Indeed the risky loan is perfectly correlated with the asset 
which they have already shown they do not want. Why should they 
give up more money at time 0 to get more money in a state U that 
they think will not occur? If anything, these pessimists would now 
prefer to take the loan rather than give it. But they cannot take the 
loan, because that would force them to hold the collateral to back 
their promises, which they do not want to do.4

Thus the only loans that get traded in equilibrium involve 
margins just tight enough to rule out default. That depends of 
course on the special assumption of only two outcomes. But often the 
outcomes lenders have in mind are just two. And typically they do set 
haircuts in a way that makes defaults very unlikely. Recall that in 
the 1994 and 1998 leverage crises, not a single lender lost money on 
repo trades. In the massive crisis of 2007 only a few tens of millions 
of dollars of repo defaulted, out of trillions loaned. Of course in more 
general models, one would imagine more than one margin and more 
than one interest rate emerging in equilibrium. The upshot is that 
equilibrium leverage for the asset Y must be

LTV(Y) = 
dD

(1 + rdD
) pY

 =  0.2
(1 + 0)(0.75)

 = 29%
 

To summarize, in the usual theory a supply equals demand 
equation determines the interest rate on loans. In my theory 
equilibrium often determines the equilibrium leverage (or margin) 
as well. It seems surprising that one equation could determine 
two variables, and to the best of my knowledge I was the first to 
make the observation (in 1997 and again in 2003) that leverage 
could be uniquely determined in equilibrium. I showed that the 
right way to think about the problem of endogenous collateral is to 

4. More precisely, agents with h < b will want to trade their wealth for as much 
consumption as they can get in the down state. But on account of the incompleteness of 
markets, no combination of buying, selling, borrowing on margin and so on can get them 
more in the down state than in the up state. So they strictly prefer making the 0.2 loan 
to lending, or borrowing with collateral, any loan promising more than 0.2 per unit of Y.
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consider a different market for each loan depending on the amount 
of collateral put up, and thus a different interest rate for each level 
of collateral. A loan with a lot of collateral will clear in equilibrium 
at a low interest rate, and a loan with little collateral will clear at 
a high interest rate. A loan market is thus determined by a pair 
(promise, collateral), and each pair has its own market clearing 
price. The question of a unique collateral level for a loan reduces to 
the less paradoxical sounding, but still surprising, assertion that in 
equilibrium everybody will choose to trade at the same collateral 
level for each kind of promise. I proved that this must be the case 
when there are only two successor states to each state in the tree of 
uncertainty, with risk neutral agents differing in their beliefs, but 
with a common discount rate. More generally, I conjecture that the 
number of collateral rates traded endogenously will not be unique, 
but will be robustly much less than the dimension of the state space, 
or the dimension of agent types.

The following theorem extends my binomial leverage theorem 
for risk neutral agents to any agents with any kind of discounting. 
We have not yet introduced the notation needed to state a formal 
theorem, but we can informally mention the theorem taken from 
Fostel-Geanakoplos (2014a) that we shall formally state in the next 
section.
Binomial No Default Theorem: Consider the two-period two-state 
economy described above with concave (not just risk-neutral) utilities. 
Suppose the risky financial asset pays dU > dD in the two states. Then 
any equilibrium is equivalent to another one (in the sense that all 
consumptions, commodity prices and contract prices are the same) 
in which the only traded contract using the risky financial asset as 
collateral promises j*

 = dD in both states. Thus there is no equilibrium 
default.

In binomial economies with financial assets (assets that provide 
no immediate utility to hold them beyond their dividends), all the 
trade takes place at the unique cusp of the credit surface where the 
riskless rate is about to become a risky rate.

1.4.5 Risk reduces leverage

Since there is a unique contract picked out by equilibrium in 
binomial economies, we can easily define equilibrium leverage and 
see what determines it. The following is taken from Fostel and 
Geanakoplos (2014a)
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Risk-Leverage Theorem for Binomial Economies: Consider 
a two period, two state economy such as the one described above. 
Suppose the risky financial asset pays dU > dD in the two states. Then 
any equilibrium is equivalent to another one (in the sense that all 
consumptions, commodity prices and contract prices are the same) in 
which leverage on every loan backed by the risky asset is

LTV(Y) = 
worst case return

gross riskless rate
 = 

dD/pY

1 + r
 

 

This follows immediately from the previous theorem because 
πj* = dD/(1 + r), hence LTV(Y) = πj*/pY = dD/(1 + r)pY.

Thus we have the very important result that risk reduces 
leverage, where greater risk is defined by a lower worst case return. It 
is worth noting that this formula does not link leverage with volatility 
in general. At best, it links leverage with downside volatility. Of 
course when risks are symmetric, downside volatility and volatility 
are the same. But in general they are not.

1.4.6 Tight credit markets

One of the most important concepts in macroeconomics is the 
idea that at certain times credit is too tight or too loose; these are 
the moments at which the Fed or the Central Bank is often called 
upon to act by changing interest rates.

What does it mean for credit markets to be tight? That the interest 
rate is too high? In collateral equilibrium there is a different meaning. 
Agents who want to borrow more than they have in collateral 
equilibrium have to put up more collateral or pay a higher interest 
rate. Observe that in the equilibrium in our example, every agent 
h > h

* is borrowing at the riskless interest rate r = 0%, but would 
dearly like to borrow more at the same rate. They cannot because 
then they would have to pay a higher interest rate, which they would 
not like to do, or put up more collateral, which they cannot afford 
(since any collateral purchase requires a positive downpayment).

The tightness of the credit market for any agent h can be measured 
by the ratio of the gross interest rate he would be willing to promise to 
borrow an additional dollar (assuming he was also obligated to deliver 
the same way he already was deliverying on the money he previously 
borrowed) divided by the gross interest rate he is paying on the money 
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he is borrowing. In the example, this ratio is higher the higher h is. 
Agent h = 1 thinks that by borrowing 75 cents he can make $1 for 
sure at U. Hence, he would be willing to pay a 33% interest rate for 
an additional penny loan, but cannot borrow any more at 0% than he 
is already borrowing. In order to borrow a penny more, he would be 
required to pay a higher interest rate on all the money he borrows.5

1.4.7 Computing equilibrium: The marginal buyer

Once we know that only one contract will be traded, and that this 
contract will not involve default and therefore trade at the riskless 
interest rate, it becomes very easy to compute equilibrium. As was 
the case with the no credit economy and the Arrow Debreu economy, 
when there is a continuum of risk neutral agents, there will be a 
marginal buyer h* who is just indifferent to buying the asset, and 
in the collateral economy, also indifferent to buying every contract. 
Those h < h

* will sell all the Y they have, and those h > h
* will buy 

all they can with their cash and with the money they can borrow by 
trading contract j = dD.

And what interest rate would the the lenders h < h
* get? 0% 

interest, because they are not lending all they have in cash. (They 
are lending at most dD/h

*
 = 0.2/0.69 = 0.29 < 1 per person). Since 

they are not impatient and they have plenty of cash left, they are 
indifferent to lending at 0%.Competition among these lenders will 
drive the interest rate to 0%.

More formally, letting the marginal buyer be denoted by h = h
* 

we can define the equilibrium equations as

pY = γU
h*dU + (1 − γU

h*)dD

pY = (1 − h
*)(1 + pY) + dD

(5)

Let us return to our numerical example where 

eh
 = (e

h
Co

, e
h
Yo

, e
h
Wo

, e
h
CU

, e
h
CD
) = (0, 1, 1, 0, 0)

(dU, dD) = (0, 0.2)

5. The attentive reader will notice that we do not allow tranching or senioriry of 
loans in this survey. I have treated these subjects elsewhere.
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Let γ
U
h
 = h for all h ∈ H = [0,1]. Equation (1) says that the 

marginal buyer h* is indifferent to buying the asset. Equation (2) 
says that the price of Y is equal to the amount of money the agents 
above h* spend buying it. As we said, the large supply of the durable 
consumption good, no impatience, and no default implies that the 
equilibrium interest rate must be 0.

Solving equations (1) and (2) for pY and h* when beliefs are given 
by γ

U
h
 = h for all h ∈ H , and plugging these into the agent optimization 

gives equilibrium 

h*
 = 0.69 

(pY,r) = (0.75, 0), 

 
(ch

0, y
h
0, (θ

h
dD

, ϕ
h
dD
), w

h
0, c

h
U, ch

D) = (0, 3.2, (0, 3.2), 0, 2.6, 0) for h ≥ 0.69

 (ch
0, y

h
0, (θ

h
dD

, ϕ
h
dD
), w

h
0, c

h
U, ch

D) = (0, 0, (1.45, 0), 1.45, 1.75, 1.75) for h < 0.69.

Compared to the previous equilibrium with no leverage, the price 
rises from 0.69 to 0.75 because the optimists can borrow to buy more. 
Notice also that even at the higher price, fewer agents hold all the 
assets (because they can afford to buy on borrowed money).

Equilibrium can be described picturesquely by observing that 
the asset price must correspond to the valuation of the marginal 
buyer. The final holders of the asset are all those whose valuation 
is higher than the marginal buyer’s. Leverage raises the asset price 
because it enables fewer buyers to hold all the assets (since they can 
purchase not just by spending the cash they have on hand, but also 
by borrowing), thus raising the marginal buyer. A higher marginal 
buyer has a higher valuation for the asset.

We can also compute the equilibrium in the case where agents 
are more optimistic, and γ

U
h
 = 1 − (1 − h)

2
 > h for all h. Then 

equilibrium (h*, pY) = (0.63, 0.89). On the other hand, if agents are 
more pessimistic and γ

U
h
 = 1 − (1 − h)

0.1
 < h for all h, then equilibrium 

(h*, pY) = (0.83, 0.44). In all three cases, the leverage price is 
higher than the corresponding no credit price and higher than the 
corresponding Arrow Debreu price.

Before leaving this example, it is worth noting that the final 
utility of each agent h < h

* is 1 + pY, while the final utility of each 
agent h > h

* is γ
U
h/γ

U
h*(1 + pY). To see how to derive the latter 

expression, observe that by leveraging the risky asset one can 
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effectively purchase the up Arrow security. The prices of all assets 
are determined by h*, hence, it can easily be verified that the price 
of one Arrow up security is γ

U
h*. But the value to h of that security is 

γ
U
h . Hence the formula.

1.4.8 Leverage raises asset prices

The lesson here is that the looser the collateral requirement, the 
higher the prices of assets will be. Had we defined another equilibrium 
by arbitrarily specifying the collateral limit by prohibiting the selling 
of contracts unless j ≤ k < dD , we would have found an equilibrium 
price pY intermediate between the no borrowing price 0.68 and the 
fully leverage price 0.75. This has not been properly understood by 
economists. The conventional view is that the lower the interest rate 
is, then the higher asset prices will be, because their cash flows will 
be discounted less. But in the example I just described, where agents 
are patient, the interest rate will be zero regardless of the collateral 
restrictions (up to 0.2). The fundamentals do not change, but because 
of a change in lending standards, asset prices rise. Clearly there 
is something wrong with conventional asset pricing formulas. The 
higher the leverage, the higher and thus more optimistic the marginal 
buyer is; it is his probabilities that determine value.

We can state this formally as was done in Fostel-Geanakoplos 
(2013) 

Leverage Pricing Theorem: Consider the two period, two state 
economy described above, with a riskless numeraire asset and a risky 
financial asset paying dU > dD in the two states, and a continuum of 
risk neutral agents with strictly monotonic and continuous beliefs γ

U
h , 

who each begin with the same endowment of the risky and riskless 
assets. The collateral equilibrium price of the risky asset will always 
be higher than the no borrowing equilibrium price of the risky asset.

Putting together the risk-leverage theorem and the leverage-
pricing theorem we see that changes in risk affect asset prices, even 
if all agents are risk neutral. When risk goes up (say from a mean 
preserving spread in what everybody thinks the asset payoffs will 
be), leverage on the risky asset will fall. And when leverage falls, 
its price falls. Conversely, when risk diminishes, leverage rises and 
asset prices rise.

Historically, the theory predicts that periods of moderation in 
asset prices lead to higher leverage which leads to higher asset 
prices, and conversely.



188 John Geanakoplos

effectively purchase the up Arrow security. The prices of all assets 
are determined by h*, hence, it can easily be verified that the price 
of one Arrow up security is γ

U
h*. But the value to h of that security is 

γ
U
h . Hence the formula.

1.4.8 Leverage raises asset prices

The lesson here is that the looser the collateral requirement, the 
higher the prices of assets will be. Had we defined another equilibrium 
by arbitrarily specifying the collateral limit by prohibiting the selling 
of contracts unless j ≤ k < dD , we would have found an equilibrium 
price pY intermediate between the no borrowing price 0.68 and the 
fully leverage price 0.75. This has not been properly understood by 
economists. The conventional view is that the lower the interest rate 
is, then the higher asset prices will be, because their cash flows will 
be discounted less. But in the example I just described, where agents 
are patient, the interest rate will be zero regardless of the collateral 
restrictions (up to 0.2). The fundamentals do not change, but because 
of a change in lending standards, asset prices rise. Clearly there 
is something wrong with conventional asset pricing formulas. The 
higher the leverage, the higher and thus more optimistic the marginal 
buyer is; it is his probabilities that determine value.

We can state this formally as was done in Fostel-Geanakoplos 
(2013) 

Leverage Pricing Theorem: Consider the two period, two state 
economy described above, with a riskless numeraire asset and a risky 
financial asset paying dU > dD in the two states, and a continuum of 
risk neutral agents with strictly monotonic and continuous beliefs γ

U
h , 

who each begin with the same endowment of the risky and riskless 
assets. The collateral equilibrium price of the risky asset will always 
be higher than the no borrowing equilibrium price of the risky asset.

Putting together the risk-leverage theorem and the leverage-
pricing theorem we see that changes in risk affect asset prices, even 
if all agents are risk neutral. When risk goes up (say from a mean 
preserving spread in what everybody thinks the asset payoffs will 
be), leverage on the risky asset will fall. And when leverage falls, 
its price falls. Conversely, when risk diminishes, leverage rises and 
asset prices rise.

Historically, the theory predicts that periods of moderation in 
asset prices lead to higher leverage which leads to higher asset 
prices, and conversely.

189The Leverage Cycle, Default, and Foreclosure

1.4.9 Collateral-Leverage Bubbles

The conventional view of credit markets has been that the need 
to post collateral in order to borrow to carry out investment (say in 
education) or to buy essential goods (like housing) lessens demand 
and therefore reduces the fl ow compared to a fi rst best Arrow Debreu 
world in which agents could borrow freely and without limit, as 
long as they paid back their debts in the end. Our examples show 
that this intuition is wrong. The following theorem is from Fostel-
Geanakoplos (2014b).
Collateral Bubbles Theorem: Suppose that in the economy 
described in the Leverage Pricing Theorem there is no endowment 
of commodities in states U and D. Then the collateral equilibrium 
price of the risky asset will always be higher than the Arrow Debreu 
price of the risky asset.

It follows that if it were possible to produce the risky asset from 
the riskless asset in period 0, then there would be overproduction 
instead of underproduction.

Figure 11. Collateral Equilibrium
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Source: Author’s elaboration.

2. The CollaTeral eConomy in general

Having introduced some of the main ideas of the leverage 
cycle and collateral equilibrium, we are now in a better position 
to introduce notation defi ning a more general collateral economy 
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consisting of many time periods and states of nature, an arbitrary 
number of perishable goods and durable goods, and one period 
contracts that can be written on all of them. We use this general 
model to describe the leverage cycle, which is necessarily part of a 
dynamic economy.

2.1 Tree of Date-Events

Let S be a finite tree with root 0 and terminal nodes ST Every 
node s ∈ S  {0} has a unique immediate predecessor s*, and every 
node s ∈ S ST has a set of immediate successors S(s) = {t ∈ S: t

*
 = s}. 

Let (0, s] be the collection of all the points along the path from 0 to s, 
including s but not 0, and let the time of s, τ(s) , denote the number 
of points on the path. In a binary tree, every node s ∈ S  ST has a set 
of immediate successors consisting of two elements S(s) = {sU, sD}.

2.2 Commodities and Assets

At each date-event s ∈ S the commodity space RLS consists of LS 
commodities. At the end of trading in the state, each agent h can hold 
xS ∈ R+LS commodities, which provide him utility. These commodities 
can be perishable or durable or anything in between. To the extent 
that they are durable, they are sometimes called assets. If they 
are completely perishable, they will be called goods or perishable 
commodities. The set of feasible consumption plans is denoted by

X = ×s∈SR+Ls

Given a state s ∈ S  ST and an immediate successor t ∈ S(s) , the 
Lt × Ls matrix Et describes the durability of every commodity between 
s and t. If at node s agent h holds one unit of commodity ℓ after trading 
is done, then at node t he will have an additional Etℓ′ℓ units of each 
commodity ℓ′ ∈ Lt. Thus if he holds the bundle xs ∈ R+Ls at s, he will 
augment his endowment by Etxs at each successor t ∈ S(s) . Note that 
since every state t has a unique predecessor state, the notation Et 
conveys as much information as the more cumbersome notation Est . 

Commodity prices are denoted by ps ∈ R+Ls for all s ∈ S. We denote 
the set of commodity prices by

P = ×s∈SR+Ls
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2.3 Utilities

Each agent h has a utility function

Uh
 : X = ×s∈SR+Ls

 → R

depending on the holding of all the commodities in every state, that 
is on consumption plans x We assume Uh is continuous, concave, 
and weakly monotonic state by state (more of everything in any 
one state strictly increases utility). Often we specialize to the case 
of von Neumann Morgenstern utilities uh. For each s ∈ S  {0} let 
γ

s
h
 > 0 denote the probability that agent h thinks nature will choose 

s, conditional on having chosen s*. (Take γ
0
h
 = 1). For each s ∈ S define 

γ−
s
h
 = Πt∈(0,s]γs

h
 = … γ

h
s*
γ

s
h. Let 0 = δh ≤ 1 denote the discount factor of 

agent h. We often write

Uh(x) = Σ
s∈S

γ−
s
hδh
τ(s)uh(xs)

Notice that in our general model we allow for agents to obtain 
utility from holding every commodity, whether it is perishable or 
not. Thus in contrast to the simplified two period model described 
earlier, we allow for nonfinancial asssets such as houses, which give 
immediate utility and pay dividends in later periods.

2.4 Production

Every agent has access to the same instantaneous, constant 
returns to scale production technology Zs ⊂ RLs for each state s. If 
z ∈ Zs, then zℓ < 0 means commodity ℓ is an input into production z, 
and zℓ > 0 means commodity ℓ is an output from production z. We 
assume that Zs is a closed, convex, cone and that 0 ∈ Zs. We also 
assume that there exists some p ∈ R+Ls

+ with p · z ≤ 0 for all z ∈ Zs. The 
assumption that Zs is a cone means that there is constant returns 
to scale, which allows us to simplify the notation for equilibrium 
because we can assume that equilibrium production will make 
zero profits, and so we do not need to keep track of agent income 
from production. It is well known that the assumption of constant 
returns to scale can be made without any loss of generality once we 
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have competitive markets and convexity. Define the set of feasible 
production plans by 

Z = ×s∈SZs

2.5 Contracts

At each node s ∈ S  ST, any agent h can sell a one period 
contract j ∈ Js which promises delivery of Dtj ∈ R+Lt in each successor 
state t ∈ S(s). The contract must be collateralized by a bundle of 
commodities cj ∈ R+Ls at node s. Thus each contract j ∈ J = ∪s∈S ST

Js 
is characterized by its issuance date s( j), its collateral cj, and its 
promise Dtj ∈ R+Lt in each successor state t ∈ S(s( j)) of s( j).

There is no punishment for failure to keep promises, except for 
the confiscation of collateral. Hence actual money delivery per unit 
promise in each successor state t ∈ S(s) is given by

D
−

tj = min(pt · Dtj, pt · Etcj)

Deliveries depend on the future prices pt; even if the promise Dtj 
and the collateal Etcj are non-contingent, the delivery might be if the 
prices are contingent. The vector of deliveries across contracts in any 
state s is denoted by D

−

s ∈ Δsj = R+J(s*). The whole vector of deliveries 
is denoted by 

D
−

 ∈ Δ = ×s∈SΔs

We denote the purchase of contract j by the holding θj ≥ 0 and 
the sale (or issuance) of contract j by φj ≥ 0. We denote the vector of 
contract purchases in any state s ∈ S by θs ∈ Θs = R+J(s) and the set of 
contract purchase plans by

Θ = ×s∈SΘs

Similarly we denote the vector of contract sales in any state s ∈ S 
by ϕs ∈ Φs = R+J(s) and the vector of contract sale plans by 

Φ = ×s∈SΦs

Contract prices are denoted by πsj . An agent who chooses φsj > 0  
for j ∈ J(s) is borrowing πsjφsj dollars in state s and the agent who 
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chooses θsj > 0 is lending πsj θsj  dollars in state s. We denote the 
vector of contract prices in state s by πs ∈ Πs = R+J(s) and the set of all 
contract prices by

Π = ×s∈SΠs

2.6 Budget Set

Assuming θ0* = φ0* = 0, and xh
0* = 0, we define the budget set for 

each agent h by

Bh(p, π, D
−
) = {(x, θ, φ) ∈ X × Θ × Φ : ∀s ∈ S

ps · ( xs − e
h
s − Esxs*) + πs · ( θs − φs) ≤ D

−

s · ( θs* − φs*)

Σ
j∈J

cjφsj≤ xs}

where 

D
−

sj = min(ps · Dsj, ps · Escj)

2.7 Collateral Equilibrium

(p, π, z, D
−
, (x

h, θ
h, φ

h)h∈H) ∈ P × Π × Z × Δ × (X × Θ × Φ)
H

such that 

Σ
h

xh
s = Σ

h

(eh
s + Es xh
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2.8 Binomial No Default and Leverage Theorem

We now have enough notation in place to formally state a theorem 
from Fostel and Geanakoplos (2013) about default and leverage for 
financial assets in binomial economies.
Binomial No Default and Risk-Leverage Theorem: Consider 
a collateral equilibrium (p, π, z, D

−
, (x

h, θ
h, φ

h)h∈H) for a collateral 
economy described in the last section. Suppose the tree S of date 
events is binomial. Consider any contract j whose collateral cj does 
not affect any agent’s utility in the issuance date s( j).6 Suppose 
there is another contract j*

 ∈ J with s( j*) = s( j) and some λ > 0 with 
pt · Dtj * = λpt · Dtj  ≤ pt · Etcj for all t ∈ S(s) and pt · Dtj * = λpt · Dtj  = pt · Etcj 
for some t ∈ S(s). Then there is another collateral equilibrium 
(p, π, z, D

−
, (x

h, θ
−h, φ

−h)h∈H) with the same consumptions and prices 
in which contract j is not traded (unless j = j

*). In particular, every 
collateral equilibrium is equivalent to one in which there is no default 
on contracts collateralized by financial assets. Furthermore, suppose 
that all contracts j written in state s that use some bundle cj as 
collateral are non-contingent, psU · DsUj = psD · DsDj. Then the leverage 
of collateral cj can be taken to be 

LTV( cj)
 =  1

1 + rs

 
min(psU · EsU cj, psD · EsDcj)

ps · cj

where rs is the unambiguously defined riskless interest rate in state s. 
In particular, the loan to value (hence, leverage) on any collateral 
in state s is inversely related to the worst case return or “risk” of the 
collateral.

The theorem shows that in binomial economies we do not need to 
consider default on loans collateralized by financial assets. The only 
non-contingent contracts that need to be considered are those that 
promise the maximum amount that can be delivered for sure in both 
states. But that does not mean the spectre of default is irrelevant. 
Indeed, the leverage of any financial asset depends crucially on the 
possibility of default, so that the more risky the asset’s payoffs, the 
less it can be leveraged.

6. By the definition of collateral economy we have described above, the productivity 
of the collateral Etcj does not depend on who owns it either, for any t ∈ S(s). Hence 
we are talking about a financial asset (bundle) cj.
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3. The leverage CyCle

In the two period economy we already clearly saw how risk can 
reduce leverage, and how reduced leverage causes asset prices to 
fall. Conversely, moderations of risk tend to increase leverage and 
increase asset prices. In the two-period leverage example of section 2 
the price of the leveraged risky asset starts off too high in period 0. 
When bad news occurs and the value plummets in the last period to 
0.2, there is a crash. But this is a crash in the fundamentals. There 
is nothing the government can do to avoid it.

The point of the leverage cycle is that excess leverage followed by 
excessive deleveraging will cause a crash even before there has been 
a crash in the fundamentals, and even if there is no subsequent crash 
in the fundamentals. When the price crashes everybody will say it 
has fallen more than their view of the fundamentals warranted. The 
asset price is excessively high in the initial period (compared to the 
first best Arrow Debreu price) because volatility is low and there is 
too much leverage, and it crashes after just a little bit of bad news, 
provided the news increases volatility, which leads to deleveraging. 
The fluctuations in fundamental volatility create fluctuations in 
leverage which itself creates excess volatility of the asset price. 
Had leverage been curtailed by government regulation in the initial 
period, the initial asset price would have been lower and the asset 
price after the bad news would have been higher, smoothing the cycle.

3.1 A Three-Period Model

Let us consider the same example but with three periods instead 
of two, taken from Geanakoplos (2003) and Geanakoplos (2010). 
The state space is now S = {0, U, D, UU, DU, DD} . Notice that 
after U there is no uncertainty, because the only successor state 
is UU, whereas after D there is still uncertainty because there 
are two successor states DU and DD. If going from 0 to D is bad 
news, it is also scary bad news because it also means an increase 
in volatility. Suppose that in the three states 0,U, D there are three 
commodities: the perishable consumption good, risky asset, and 
durable consumption good C,Y,W as before. The holdings of these 
three commodities are denoted by xs = (xs1, xs2, xs3) = (cs, ys, ws), for 
s ∈ {0, U, D}. Suppose there is just one commodity in each state 
UU, DU, DD, which we think of as the perishable consumption good, 
and whose holdings we denote by xs = cs, s ∈ {UU, DU, DD}. Let every 
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agent own one unit of the risky asset at time 0 and also one unit of the 
warehousable consumption good at time 0, e0

h
 = (e

h
01, e

h
02, e

h
03) = (0, 1, 1), 

and nothing in every other state. But now suppose the asset Y pays 
off after two periods instead of one period. After good news in either 
period the asset pays 1 unit of the perishable consumption good at 
the end, otherwise 0.2 of the perishable consumption good. Thus at 
UU and DU it pays off 1, and only with two pieces of bad news at 
DD does the asset pay 0.2.

More precisely 
  

0 0 0
EU = ED =  0 1 0 
  0 0 1

meaning that one unit of C at time 0 becomes nothing of any of 
the commodities at U or D (represented by the first column of the 
matrix), while one unit of Y at time 0 becomes 1 unit of Y at U and 
D (represented by the second column) and one unit of W becomes 
1 unit of W at U and at D (represented by the third column of each 
matrix). Furthermore,

EUU = [ 0   1   1 ], EDU = [ 0   1   1 ], EDD = [ 0   0.2   1]

meaning that the perishable good at U or D turns into nothing at 
the terminal nodes (represented by the first column of each matrix), 
while one unit of Y at U turns into 1 unit of the perishable good at 

Figure 12. Leverage Cycle Tree

X

Public = Pessimists

New marginal buyer

New optimists

Source: Author’s elaboration.
Leverage Cycle starts before scary news. Uncertanity and disagreement grow from U to D.
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UU (represented by the second column of the first matrix), as does 
one unit of W (represented by the third column of the first matrix), 
while one unit of Y at D turns into 1 unit of C at DU and only 0.2 
units of C at DD (as represented by the second column of the last two 
matrices), while one unit of W at D turns into 1 unit of C at both DU 
and DD (as represented by the last column of the final two matrices).

This is a situation in which two things must go wrong (i.e., two 
down moves) before there is a crash in fundamentals. Investors 
differ in their probability beliefs over the odds that either bad event 
happens. The move of nature from 0 to D lowers the expected payoff 
of the asset Y in every agent’s eyes, and also increases every agent’s 
view of the variance of the payoff of asset Y. The news creates more 
uncertainty, and more disagreement.

As before we suppose that the agents can all turn the durable 
consumption good into the perishable consumption good at any time, 
so we describe the intraperiod technology 

Zs= {z = (z01, z02, z03) : z ≤ (λ, 0, −λ), λ ∈ R}   for s = 0, U, D

Zs= {0}   for s = UU, DU, DD

Suppose again that agents have no impatience, and care only 
about their expected consumption of the perishable consumption 
good C. We suppose as before that there is a continuum of agents 
h ∈ [0,1] and that

Uh(c0, cU, cD, cUU, cDU, cDD)

= c0 + γU
h cU + γD

h cD + γU
h cUU + γD

h γ h
DU

 cDU + γD
h γ h

DD
cDD

((eh
0c, e

h
0y, e

h
0w),(eU

h
c
, eU

h
y
, eU

h
w
),(e

D
h

c
, eD

h
y
, eD

h
w
), eU

h
U

, e
h
DU

, e
h
DD
)

= ((0,1,1),(0,0,0),(0,0,0),0,0,0)

We suppose that γ
U
h  and γ h

DU
 are strictly increasing in h. Note 

that agent h assigns only a probability of γ
D
h γ h

DD
 to reaching the only 

state, DD, where the asset pays off 0.2.

3.1.1 Equilibrium

In each state s let the price of the perishable consumption good 
be normalized to 1. Since the perishable consumption good can be 
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produced one to one from the durable consumption good, the latter 
must also have a price of 1 in states s = 0, U, d. We denote the price 
of the asset by psy in each state s ∈ S  ST.

We suppose that at each state s ∈ S  ST it is possible to promise 
any amount i of the perishable consumption good in both of the 
following two states sU, sD, using one unit of Y as collateral at s. 
Denote each such contract by si.

The crucial question again is how much leverage will the market 
allow at each state s? From the Binomial No Default and Leverage 
Theorem described in the previous section, it can be shown that in 
every state s, the only promise that will be actively traded is the one 
that makes the maximal promise on which there will be no default. 
Since there will be no default on this contract, it trades at the riskless 
rate of interest rs per dollar promised. It will result in equilibrium 
that the interest rate is zero in every state. Thus at time 0, agents can 
borrow the minimum of the price of Y at U and at D, for every unit of 
Y they hold at 0. At U agents can borrow 1 unit of the consumption 
good, for every unit of Y they hold at U. At D they can borrow only 
0.2 units of the consumption good, for every unit of Y they hold at D. 
In normal times, at 0, there is not very much bad that can happen 
in the short run. Lenders are therefore willing to lend much more 
on the same collateral, and leverage can be quite high.

Geanakoplos (2003, 2010) proved that the unique equilibrium in 
this model is of the following form. At time 0 agents h ∈ [a,1] leverage 
as much as they can to buy all of asset Y. At U their bets pay off 
and after delivering fully on their loans, they hold their remaining 
wealth in Y until consumption at UU. At D, however, they owe the 
totality of the value of their asset holdings. They pay off their debts 
but are left penniless. At D a new class of buyers h ∈ [b, a) leverage as 
much as they can to buy all the assets. The price of the asset tumbles 
at D not just because the news is bad, but much more importantly, 
because the marginal buyer drops from a to b < a . The drop from a 
to b is so big because all the agents in [a,1] are wiped out because 
they took such huge losses from being so leveraged, and because, at 
D equilibium LTV is so much smaller than at U or than it was at 0, so 
it requires far more agents to hold the assets, and thus a − b >1 − a. 

3.1.2 Finding the equilibrium: The marginal buyers

To see how to find this equilibrium, let b be the marginal buyer in 
state D and let a be the marginal buyer in state 0. Then we must have 
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pDY = (a − b)(1 + p0Y) + 0.2 (6)

pDY = γ
b
DU

1 + γ
b
DD
(0.2) (7)

p0Y = (1 − a)(1 + p0Y) + pD
(8)

γa
U1 + γ

a
D pD 

γa
DU

γb
DU

p0Y
 = γ

a
U

1 + γ
a
D
1
γa

DU

γb
DU

(9)

Equation (6) says that all the money spent from the wealth 
(1 + p0Y) carried over from 0 by each agent h ∈ [b, a) plus all the 
money 0.2 they can borrow using Y as collateral will be spent to buy 
the single outstanding unit of Y. Equation (7) says that the price at 
D is equal to the valuation of the marginal buyer b at D. Because he 
is also indifferent to borrowing, he will then also be indifferent to 
buying on the margin, as we saw in the collateral section.

Equation (8) is similar to equation (6). It explains the price of Y 
at 0 must be equal to the expenditure of money used to buy it. Notice 
that at 0 it is possible to borrow pD using each unit of Y as collateral. 
So the top (1 − a) agents have (1 − a)(1 + p0Y) + pD to spend on the 
one unit of Y outstanding.

Equation (9) is the most subtle one. It says that the marginal 
utility at 0 to a of holding one dollar’s worth of the durable 
consumption good, on the right, must be equal to the marginal utility 
of one dollar of the asset on the left.

To see where the right hand side of equation (9) comes from, 
observe first that agent a can do better by inventorying the dollar (i.e., 
warehousing the consumption good by taking w0 > 0) at time 0 rather 
than consuming it. With probablity γa

U , U will be reached and this 
dollar will be worth one utile. With probability γa

D, D will be reached 
and a will want to leverage the dollar into as big a purchase of Y as 
possible. As we saw in our two period example, this will result in a 
gain at D of γa

DU/γ
b
DU. The right hand side is derived similarly.

3.1.3 Crash because of bad news, de-leveraging, and 
bankrupt optimists

Consider now the case from Geanakoplos (2010) in which 
γ

U
h
 = γ

h
UD 
= h for all h ∈ [0,1] Plugging that into the equations and 

solving gives a = 0.87, p0Y = 0.95, b = 0.61, and pDY = 0.69. The price 
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of Y at time 0 of 0.95 occurs because the marginal buyer is h = 0.87. 
Assuming the price of Y is 0.69 at D and 1 at U, the most that can 
be promised at 0 using Y as collateral is 0.69. With an interest rate 
r0 = 0, that means 0.69 can be borrowed at 0 using Y as collateral. 
Hence the top 13% of buyers at time 0 can collectively borrow 0.69 
(since they will own all the assets), and by adding their own 0.13 of 
money they can spend 0.82 on buying the 0.87 units that are sold 
by the bottom 87%. The price is 0.95 ≈ 0.82/0.87.

Why is there a crash from 0 to D? Well first there is bad news. 
But the bad news is not nearly as bad as the fall in prices. The 
marginal buyer of the asset at time 0, h = 0.87 , thinks there is only a 
(0.13)2 = 1.69% chance of ultimate default, and when he gets to D after 
the first piece of bad news he thinks there is a 13% chance for ultimate 
default. The news for him is bad, accounting for a drop in price of about 
[0.9831(1) + 0.0169 (0.2)] − [0.87(1) − 0.13(0.2)] ≈ 0.986 − 0.896 ≈ 9 
points, but it does not explain a fall in price from 0.95 to 0.69 of 26 
points. In fact, no agent h thinks the loss in value is nearly as much 
as 26 points. The biggest optimist h = 1 thinks the value is 1 at 0 
and still 1 at D. The biggest pessimist h = 0 thinks the value is 0.2 
at 0 and still 0.2 at D. The biggest loss attributable to the bad news 
of arriving at D is felt by h = 0.5, who thought the value was 0.8 at 0 
and thinks it is 0.6 at D. But that drop of 20 points is still less than 
the drop of 26 points in equilibrium.

The second factor is that the leveraged buyers at time 0 all go 
bankrupt at D. They spent all their cash plus all they could borrow 
at time 0, and at time D their collateral is confiscated and used to 
pay off their debts: they owe 0.69 and their collateral is worth 0.69. 
Without the most optimistic buyers, the price is naturally lower.

Finally, and most importantly, the margins jump from 
(0.95 − 0.69)/0.95 = 27% at 0 to (0.69 − 0.2)/0.69 = 71% at D. In 
other words, leverage plummets from 3.6 = 0.95/(0.95 − 0.69) to 
1.4 = 0.69/(0.69 − 0.2) .

All three of these factors working together explain the fall in price.

3.1.4 Quantifying the contributions of bad news, 
deleveraging, and bankruptcy of the optimists

In the crisis of 2007−09 there was bad news, but according to 
most financial analysts, the price of assets fell much farther than 
would have been warranted by the news. And indeed as the theory 
(of 2003!) predicted, there were numerous bankruptcies of the most 
optimistic mortgage companies, and even of great investment banks. 
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In the crisis of 2007−09 there was bad news, but according to 
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(of 2003!) predicted, there were numerous bankruptcies of the most 
optimistic mortgage companies, and even of great investment banks. 
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And the drop in leverage was enormous. The marginal buyer of 2009 
was different from the marginal buyer of 2007.
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and the bad news was worse.
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to make, because we can introduce each of the three effects on its 
own into the model and then see how much the price 0.95 declines.

The bad news has the effect of increasing the probability each 
agent h assigns to the low payoff of 0.2 at DD from (1 − h)

2 to 
(1 − h). So we can recalculate equilibrium in the same tree, but with 
γ

s
h
D 
≡ √(1−h) > (1 − h) for all s = 0, U, d. The result is that at node 0 

the price is now 0.79. Thus roughly 60% of the drop in value from 
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fundamentals (or technicals as they are sometimes called). We can 
decompose this 40% into the part that comes from the bankruptcy 
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2. 
In that new model the equilibrium promise at node 0 will be just 
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2. 
This gives an initial price for the asset of 0.89. Thus deleveraging 
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The roughly linear decomposition of the three factors is due 
to the linearity of the beliefs γ

s
h
U 
= h, γs

h
D 
= 1 − h in h. In my 2003 

paper I analyzed exactly this same model but with more optimistic 
beliefs because I wanted to avoid this linearity, and also to illustrate 
a smaller crash consistent with the minor leverage cycle crash 
of 1998. I assumed γ

U
h
 = 1 − (1 − h)

2
 = γ

h
DU , giving probability 

(1 − h)
4 of reaching DD from 0. In that specification there are 
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many investors with γ
s
h
U

 near to 1, but once h moves far from 1, 
the decline in optimism happens faster and faster. Solving the four 
equilibrium equations with this specification of probabilities gives 
(p0Y, pDY, a, b) = (0.99, 0.87, 0.94, 0.60). The price falls only 12 points 
from p0Y = 0.99 at 0 to p0Y = 0.87 at D. Only the top 6% of investors 
buy at 0, since they can leverage so much, and thus go bankrupt 
at D. Without them from the beginning, the price would still be 0.99, 
hence the loss of the top tier itself contributes very little. Bad news 
alone in that model reduces to the example we just computed at great 
length, which has a starting price of p0Y = 0.95. Deleveraging alone 
in the 2003 example results in a starting price of p0Y = 0.98. Hence 
the three factors independently add up to much less than the total 
drop. Thus in the 2003 example it was the feedback between the 
three causes that explained much of the drop. In the 2010 example, 
the total drop is very close to the sum of the parts.

3.1.5 Conservative optimists

It is very important, and very characteristic of the leverage cycle, 
that after the crash, returns are much higher than usual. Survivors 
of the crash always have great opportunities. One might well wonder 
why investors in the example do not foresee that there might be a 
crash, and keep their powder dry in cash (or in assets but without 
leverage) at 0, waiting to make a killing if the economy goes to D. 
The answer is that many of them do exactly that.

The marginal buyer at 0 in our first example is h = 0.87. He 
assigns probability 1.69% = (0.13)2 to reach DD. So he values the 
asset at 0 at more than 0.986, as we saw, yet he is not rushing to buy 
at the price of 0.95. The reason is that he is precisely looking toward 
the future. These calculations are embodied in the fourth leverage 
equilibrium equation. The marginal utility to a of reaching the down 
state with a dollar of dry powder is not (1 − a), but (1 − a) (a/b) 
precisely because a anticipates that he will have a spectacular gross 
expected return of a/b at D.

In fact all the investors between 0.87 and 0.74 are refraining from 
buying what they regard as an underpriced asset at 0, in order to 
keep their powder dry for the killing at D. If there were only more of 
them, of course, there would be no crash at D. But as their numbers 
rise, so does the price at D, and so their temptation to wait ebbs. It 
is after all a rare bird who thinks the returns at D are so great, yet 
thinks D is sufficiently likely to be worth waiting for. This is owing to 
my assumption that investors who think the first piece of bad news is 
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relatively unlikely (high h), also think the second piece of bad news 
is relatively unlikely (high h again), even after they see the first 
piece of bad news. This assumption corresponds to my experience 
that hedge fund managers generally are the ones saying things are 
not that bad, even after they start going bad.

3.1.6 Endogenous maturity mismatch

Many authors have lamented the dangers of short term borrowing 
on long term assets, as we have in this example. It is important to 
observe that the short term loans I described in the three period 
model arise endogenously. If long, two period, non-contingent loans 
were also available, then by the previous arguments, since there are 
only two outcomes even in the final period, the only potentially traded 
long term loan would promise 0.2 in every state. But the borrowers 
would much prefer to borrow 0.69 on the short term loan. So the long 
term loans would not be traded.

This preference for short term loans is an important feature of 
real markets. Lenders know that much less can go wrong in a day 
than in a year, and so they are willing to lend much more for a day 
on the same collateral than they would for a year. Eager borrowers 
choose the larger quantity of short term loans, and presto, we have 
an endogenous maturity mismatch. Endogenous collateral can resolve 
the puzzle of what causes maturity mismatch.

4. foreClosure losses

In this section we introduce the hypothesis that if a good is held 
as collateral in state s by some agent h, then only he can use the 
good for production. If a borrower finds himself so far underwater 
that even after repairs the collateral will not be worth as much as 
the loan, then he will default without making the repairs, and there 
will be a social loss because it will then be too late for the lender 
who confiscates the collateral to make the repairs. This situation 
becomes much more interesting if some borrowers are efficient 
enough to make repairs and climb back into the money, and some 
are not. To include that possibility we must allow for heterogeneous 
production. Encumbered collateral and heterogeneous production 
complicate the notation.

The example we present in the next section imagines that if a 
house is put up as collateral, the owner may be able to improve it by 
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building gardens on its land. Some owners may be better at building 
gardens than others. Suppose that agent h can build α(h) gardens at 
a small utility of effort cost. If the debt is j and the house plus α(h) 
gardens are worth more than j, the owner h will build his gardens 
and fully repay. But if the house plus α(h) gardens are worth less 
than j, the owner h will not build any gardens and will default not by 
[ j − (house price + value of α(h) gardens)] but instead by the much 
bigger amount [ j − house price]. Whether or not default occurs, we 
suppose that unencumbering the house takes so much time that the 
new owner cannot build the gardens. As a result, default will result 
in a deadweight loss to the economy of missed production. 

Lenders of course rationally anticipate that some of their 
borrowers will become so far underwater that it will be optimal for 
them to choose not to make repairs that cost less than the increase 
in value they would bring to the house if they were done. Each lender 
fully understands that if he lowers j, his borrowers will owe less and 
so more of them will build gardens and he will get a higher repayment 
rate. He maintains a high j because he is getting a good return and 
making fewer loans at a higher rate is less profitable. But he does 
not take into account that if he and all his brother lenders reduced 
the size of their loans, the future price of housing would go up, and 
they would all receive more money back because fewer homeowners 
would be underwater and more gardens would get built.

4.1 Collateral Encumbrances with Heterogeneous 
Production

Combining delay with heterogeneity forces us to change the 
notation from the last section. We assume that every individual has 
access to his own idiosyncratic technology 

Zs
h

for each s ∈ S which is a closed, convex, cone in RLs that contains 0. 
We denote the technology of agent h or the set of all his feasible 
production plans by 

Zh
 = ×s∈SZs

h

Let Ls
C
 ⊂ Ls denote goods that have been sequestered as collateral. 

If an agent hasn’t put up one of these goods himself as collateral for 
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some contract j he himself wrote, then he cannot use it in production. 
We require that Zs

h
ℓ ≥ 0 for all ℓ ∈ Ls

C.  This means that if a good ℓ ∈ Ls
C 

is purchased, freeing it from its encumbrance takes so much time 
that it is too late to use in production in state s.

We do however allow agents to use their own collateral goods in 
production. Production from goods that nobody else can use allows 
for the possibility of profitable production in equilibrium even with 
constant returns to scale. The damaged house has a low value even 
if it can be fixed for free, because only its owner can do the fixing. 
But once he fixes it, he can sell it for a high price. Once we allow for 
profitable production, we must take care to see which contract gets 
the profits. At one extreme we could combine all the promises into one 
total promise, and all the collateral into one big collateral portfolio. 
But we wish to allow for the possibility that an agent raises money 
from different lenders, posting separate collateral for each. These 
collaterals cannot be combined, unless an auxiliary rule is prescribed 
that spells out which contract has claim on the output. To keep the 
notation manageable, we suppose the collateral backing contract j 
cannot be used for any production unless all the output using this 
collateral is encumbered by contract j.

Suppose an agent holds Et cjφj goods as collateral for contract j 
written in state s. These he can use in production, provided that he 
does not destroy any value, and that any additional value he creates 
goes to paying off loan j before he keeps any of it. We formalize this 
as follows.

We denote the set of possible production plans an agent h has 
with his goods used as collateral for promise j by

Zhj
 = ×t∈S(s( j))Zt

h

But we limit these plans further by supposing that in each state 
t ∈ S(s), zt = 0 or zt must lie in φjDt

hj where 

Dt
hj
 = {z ∈ Zt

h
 : ptEt c

j
 + pt · zt ≥ pt · Dtj    and   ztℓ + [Et c

j]ℓ ≥ 0 ∀ℓ ∈ Lt
C}

The first inequality says that if zt ≠ 0, then it must add so much 
value to the collateral that the loan can be fully repaid. The second 
inequality says that zt does not use any encumbered goods as inputs 
except those encumbered by the borrower himself for loan j.
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4.1.1 Pooling

Since different agents have different production possibilities, one 
agent might be able, by virtue of superior productivity, to use his 
collateral to pay off loan j while leaving a profit for himself, while 
another agent might choose to produce nothing and so default on 
loan j. If the lender treats all borrowers as anonymous, he effectively 
lends to anybody who chooses to borrow via contract j. We represent 
this formally by considering the whole pool of borrowers.

We let D
−

t
h
j denote the dollars lenders expect to be delivered by 

agents of type h in state t per unit of contract j sold in state s = s( j). 
Lenders assume that each dollar they lend will be split among the 
borrowers in proportion to how much each borrows, that is, if a lender 
lends 1% of the money lent on contract j (that is if he purchases 1% 
of contract j sold) then he expects 1% of the deliveries of contract j. 
We let D

−

tj denote the average delivery in state t per unit of contract 
j sold in state s. An agent who buys contract j in state s is therefore 
getting D

−

tj in each state t ∈ S(s) per unit of contract j purchased in 
state s. We shall denote by δt

h
j the money deliveries actually made by 

borrowers of type h on contract j in state t. In equilibrium we shall 
suppose that lenders are rational and so D

−

t
h
j = δt

h
j .

4.2 Foreclosure and Heterogeneous Production 
Budget Set

We now describe the budget set. 

Bh(p, π, D
−
) = {(x, z, (z j)j∈J, θ, φ, δ) ∈ X × Zh × ×j∈J

 Zhj × Φ × Θ × Δ : ∀s ∈ S

ps · (xs − e
h
s − Esxs*) + πs · (θs − φs) ≤ ps · (zs +

j∈J
Σ
(s*)

z j
s) + D

−

s · θs* − δs · φs*

Σ
j∈Js

cjφsj ≤ xs

zsℓ ≥ 0 if ℓ ∈ Ls
C,  and for all j ∈ J(s*)

if Ds
hj
 = Ø,   then z j

s  = 0  and δsj = ps · Escj

if Ds
hj
 ≠ Ø,   then z j

s  ∈ φsDs
hj  and δsj = ps · Ds j}

where for all j ∈ J(s*)

Dt
hj
 = {z ∈ Zt

h
 : ptEt c

j
 + pt · zt ≥ pt · Dtj    and   ztℓ + [Et c

j]ℓ ≥ 0 ∀ℓ ∈ Lt
C}
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4.3 Foreclosure and Heterogeneous Production 
Equilibrium

(p, π, D
−
, (x

h, z
h, (z

hj)j∈J, θ
h, φ

h, D
−h)h∈H) 

∈ P × Π × Δ × (X × Z
h
 ×× j∈JZhj

 × Θ × Φ × Δ)
H

such that 

Σ
h

xh
s = Σ

h

[(eh
s + Esxh

s*) + (z
h
s +

j∈J
Σ
(s*)

zs
hj)]  for all s ∈ S

Σ
h

θh
s = Σ

h

φh
s   for all s ∈ S

D
−

sj = 
ΣhD

−h
sjϕ

h
s*j

Σhϕ
h
s*j

   if  Σ
h

ϕh
s*j > 0 and D

−

sj ≥ ps · Escj

(xh, zh, (zhj)j∈J, θ
h, φh, D

−h) ∈ arg
(x, z, (z j)j∈J

m
,θ, φ,

a
 δ 
x
) ∈ Bh(p,π,D

−
)
Uh(x)

  
for all h ∈ H.

4.4 Example

We extend our example from the leverage cycle to include 
collateral encumbrances and heterogeneous production. So suppose 
in that model that in the middle period, every agent h can create 
α(h) units of W with only a very small disutility of effort, where the 
α(h) are independent, and uniformly distributed on the interval [0, Δ] 
where for concreteness we take the parameter Δ = 0.1.

For ease of calculation, we suppose there are just two contracts 
available, rather than the whole range j > 0. In particular, we suppose 
that the natural contract promise j*

 = pDY is still available, as it was 
in the Leverage Cycle section. Furthermore, we suppose that the 
contract promise 

j′ = pDY + 0.4Δ

is also available. The most optimistic agents will not be able to resist 
borrowing more by selling the j′ contract than they would be able to 
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borrow selling the j* contract. The rational lenders anticipate that 
40% of these borrowers will obtain α(h) < 0.4Δ that are so low that 
they will default and build no gardens at all rather than pay j′. The 
price the lenders are willing to pay for the promise j′ must reflect 
this, namely that in the up state U, j′ will be fully repaid, while in 
state D payments will only be 

0.6(pDY + 0.4Δ) + 0.4pDY = pDY + Δ(1 − 0.4)(0.4)

The price of the j* contract will reflect the fact that it is paid back 
in full in both states; nevertheless the most optimistic agents will 
prefer to write the j′ contract rather than the j* contract.

We take Δ = 0.1 and solve for equilibrium using the model of 
the previous section with γ

U
h
 = h for all h ∈ H = [0,1]. In equilibrium 

there will be four marginal agents h1, h2, h3, h4. We find that agents 
h ∈ h1 = [0.959,1] buy the risky asset at time 0 for a price p0Y = 0.993 
by leveraging and borrowing 0.734 using the promise j′. Agents 
h ∈ (h2 = 0.858, h1 = 0.959) buy the risky asset at time 0 for a price 
p0Y = 0.993 by leveraging and borrowing 0.701 using the promise 
j*. Agents h ∈ [h3 = 0.743, h1 = 0.858) buy the risky bonds issued by 
the most optimistic agents h ∈ [h1, 1] and the agents below h3 hold 
all the W plus all the safe promises made by the agents h ∈ (h2, h1).

In state U the risky as well as the safe bonds pay off in full. 
Every Y owner builds a garden, and so 0.05 = 0.5Δ gardens are built.  

Figure 13. Garden Productivity and Foreclosure Losses 
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Source: Author’s elaboration.
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prefer to write the j′ contract rather than the j* contract.

We take Δ = 0.1 and solve for equilibrium using the model of 
the previous section with γ

U
h
 = h for all h ∈ H = [0,1]. In equilibrium 

there will be four marginal agents h1, h2, h3, h4. We find that agents 
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In state D, the safe bond pays off in full, but there is default on the 
risky bond. Indeed, the least productive 40% of the agents in the 
interval [h1 = 0.959, 1] default on the risky bonds they issued. The 
other 60% sell off their Y and pay off their risky bonds in full, and with 
their small surplus of (0.5) (0.62) Δ = 0.018 per unit of Y they borrow 
more money on the safe bond at D and buy back as much as they can 
of the risky bonds. Similarly the agents h ∈ (h2 = 0.858, h1 = 0.959) 
pay off all their safe bond debts, and with their somewhat larger 
surplus of 0.05 per bond they go on to leverage as much as they can 
in order to buy back as much Y as they can. Nevertheless, these two 
groups together will not be able to afford to buy back all the Y.

A more conservative group h ∈ [h4 = 0.626, h1 = 0.743) buys up 
the remaining Y at D, leveraging as much as they can by selling the 
riskless promise at D for a price of 0.2. The price pDY = 0.701. 

Introducing the variable Q0j′ to denote the aggregate quantity 
of risky contracts j′ written t time 0, the equilibrium equations are 
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(1 − h1)(1 + p0Y) + Q0j′ πj′ = Q0j′ p0Y 

(h1 − h2)(1 + p0Y) + (1 − Q0j′)πj* = (1 − Q0j′)p0Y 

(h2 − h3)(1 + p0Y) = Q0j′πj′ 

Q0j′(0.5)(0.62)Δ + (1 − Q0j′)(0.5)Δ + Q0j′(j′ − (0.42)Δ) + (h3 − h4)(1 + p0Y) + 0.2 = pDY 

The first equation says that h1 is indifferent between buying 
the risky asset by leveraging with j′ or with j*. Note that he fully 
takes into account that by borrowing on j′ he will deprive himself 
of producing all the gardens he can at D. The second equation says 
that h2 is indifferent to buying Y by leveraging with the riskless bond 
and buying the risky contract. Notice that he fully takes into account 
that he will not get fully repaid at D on his j′. The third equation 
says that h3 is indifferent between spending on the risky contract 
j′ and the safe contract j*. The fourth equation says that at D, h4 is 
indifferent between Y and W.

The fifth equation says that the top 1 − h1 agents buy Q0j′ units 
of the risky asset by issuing Q0j′ units of the risky contract j′. The 
sixth equation says that the next h1 − h2 agents buy 1 − Q0j′ units of 
the risky asset Y by selling 1 − Q0j′ units of the safe contract j*. The 
seventh equation says that the next h2 − h3 agents buy Q0j′ units of 
the risky contract j′ by selling all their W and Y at 0. The LHS of the 
last equation adds all the spending at D on the risky asset Y and 
asserts it must equal revenue from the sales of Y at D on the RHS. 
The top 1 − h1 agents spend all their surplus after paying their debts 
from the Q0j′ risky assets they bought and the next h1 − h2 agents 
spend all their surplus after paying their debts from the 1 − Q0j′ 
risky assets they bought and the next h2 − h3 agents spend all their 
returns from their Q0j′ units of the risky contract j′ and also the next 
h3 − h4 agents spend all the income they carried over from period 0 
and in addition they collectively borrow and spend 0.2 by using the 
risky asset as collateral.

By restraining leverage in period 0, for example by prohibiting 
trade in j′, the leverage cycle can be smoothed out, raising the price 
at D. Less debt means more income for the upper classes at D, which 
means a higher price pDY. Also there will be more gardens produced 
and retained by the upper two classes of buyers, which will increase 
demand for Y at D, and therefore again lead to a higher price pDY. All 
agents are better off except the conservative optimists at the top of 
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the [h4 = 0.626, h3 = 0.743) range who now do not have as wonderful 
an opportunity to take advantage of the depressed price of Y at D.

In Geanakoplos and Kubler (2005, 2014) the agents are assumed 
to be risk averse, and a second source of inefficiency is identified. 
The risky asset Y becomes riskier the more leverage there is, and its 
natural buyers still must hold it. Since they are risk averse this puts 
them in a riskier position. In that model, curtailing leverage at time 0 
smoothes the leverage cycle and makes everybody better off.
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