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The recent literature examines the conduct of monetary policy 
in terms of interest rate rules from the viewpoint of imperfect 
knowledge and learning by economic agents. The stability of the 
rational expectations equilibrium is taken as a key desideratum for 
good monetary policy design.� Most of this literature postulates that 
agents use least squares or related learning algorithms to carry out 
real-time estimations of the parameters of their forecast functions 
as new data become available. Moreover, it is usually assumed that 
the learning algorithms have a decreasing gain; in the most common 
case, the gain is the inverse of the sample size so that all data points 
have equal weights. Use of such a decreasing-gain algorithm makes it 
possible for learning to converge exactly to the rational expectations 
equilibrium in environments without structural change. Convergence 
requires that the equilibrium satisfies a stability condition, known 
as E-stability.

Decreasing-gain algorithms do not perform well, however, when 
occasional unobservable structural changes take place. So-called 
constant-gain algorithms are a natural alternative for estimating 
parameters in a way that is alert to possible structural changes. If 
agents use a constant-gain algorithm, then parameter estimates of the 
forecast functions do not fully converge to the rational expectations

�. For surveys, see Evans and Honkapohja (2003a), Bullard (2006), and Evans and 
Honkapohja (in this volume).
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equilibrium values. Instead, they remain random, even asymptotically. 
For small values of the gain parameter, the estimates mostly remain 
in a small neighborhood of the rational expectations equilibrium, 
provided that the equilibrium is E-stable.� Constant-gain algorithms 
have recently been employed in empirical work, such as Milani (2005, 
2007a), Orphanides and Williams (2005a, 2005b), and Branch and 
Evans (2006).

The connection between convergence of constant-gain learning 
and E-stability noted above is a limiting result for sufficiently 
small gain parameters. For finite values of the gain parameter, the 
stability condition for constant-gain learning is more stringent than 
E-stability. In this paper we examine the stability implications of 
various interest rate rules when agents use constant-gain learning 
rules with plausible positive values of the gain. We say that an 
interest rate rule yields robust learning stability of the economy if 
stability under constant-gain learning obtains for all values of the 
gain parameter in the range suggested by the empirical literature.� 
We focus on interest rate rules that are operational in the sense 
discussed by McCallum (1999), who holds that monetary policy cannot 
be conditioned on current values of endogenous aggregate variables. 
The rules we consider therefore assume that policy responds to 
expectations of contemporaneous (or future) values of inflation and 
output, but not on their actual values in the current period.

We consider robust learning stability for a variety of operational 
interest rate rules that have been suggested in the recent literature. 
These include Taylor rules and optimal reaction functions under 
discretion and commitment when central bank policy aims for interest 
rate stabilization in addition to the usual motives for flexible inflation 
targeting. The reaction function may be expectations-based in the 
spirit of Evans and Honkapohja (2003b, 2006) or of the Taylor-type 
form suggested by Duffy and Xiao (2007). We also analyze two interest 

�. See Evans and Honkapohja (2001, chaps. 3 and 7) for the basic theoretical results 
on constant-gain learning. See also Evans, Honkapohja, and Williams (forthcoming) 
for references on recent papers on constant-gain learning. The possibility of divergence 
resulting from constant gain learning was noted in Slobodyan, Bogomolov, and 
Kolyuzhnov (2006).

�. Numerous concepts of robustness are relevant to policymaking, reflecting, for 
example, uncertainty about the structure of the economy and a desire by both private 
agents and policymakers to guard against the risk of large losses. We do not mean 
to downplay the importance of such factors, but we abstract from them here to focus 
on the importance of setting policy in such a way as to ensure stability in the face of 
constant-gain learning.
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rate rules that approximate optimal policy under commitment, as 
suggested by Svensson and Woodford (2005) and McCallum and 
Nelson (2004). Our results show that expectations-based rules deliver 
robust learning stability, whereas the proposed alternatives often 
become unstable under learning even at quite small values of the 
constant-gain parameter.

1. ConsTanT-gain sTeady-sTaTe learning 

In this paper we employ multivariate linear models. In this 
simplest case, in which the shocks are white noise and there are no 
lagged endogenous variables, the rational expectations equilibrium 
takes the form of a stochastic steady state. We now briefly review the 
basics of steady-state learning in linear models and then apply the 
results to Taylor rules.4 

1.1 Theoretical Results 

The steady state can be computed by postulating that agents’ 
beliefs, called the perceived law of motion (PLM), take the form 

yt = a + et

for a vector yt, where et ~ i.i.d.(0, σ2). Using the model, one then 
computes the actual law of motion (ALM), which describes the 
temporary equilibrium in the current period, given the PLM. We write 
the ALM using a linear operator T as

yt = α + Ta + et,

where the matrix T depends on the structural parameters of the model. 
Examples of the T map are provided below. A rational expectations 
equilibrium is a fixed point, a, of the T map, that is,

a a= + α T .

We assume that I – T is nonsingular, so that there is a unique solution 
a I T= −( )

−1 α. For convenience, and without loss of generality, we 

4. See Evans and Honkapohja (2001, chaps. 8 and 10) for a detailed discussion of 
adaptive learning in linear models.
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now assume that the model has been written in deviation-from-the-
mean form, so that α = 0. Thus the rational expectations equilibrium 
corresponds to a 0=  in our analysis. Under learning, agents attempt 
to learn the value of a, and hence in deviation-from-the-mean form 
we are examining whether agents’ estimates of the mean converge 
to a = 0.

Steady-state learning under decreasing gain is given by the 
recursive algorithm,

at = at–1 + γt(yt – at–1),  (1)

where the gain γt is a sequence of small decreasing numbers, such 
as γt = 1/t. Assuming that yt = Tat–1 + et, that is, that expectations 
are formed using the estimate at–1 based on data through time t – 1, 
the convergence condition of algorithm (1) is given by the conditions 
for local asymptotic stability of a under an associated differential 
equation: 

d
d
a Ta a
τ
= − ,

which is known as the E-stability differential equation. Here τ denotes 
notional or virtual time. The E-stability condition holds if and only if 
all eigenvalues of the matrix T have real parts less than one.5

Under constant-gain learning, the estimate at of a is updated 
according to

at = at–1 + γ(yt − at–1),   (2)

where 0 < γ ≤ 1 is the constant-gain parameter. The only difference 
between equation (2) and equation (1) is the constancy of the gain 
sequence. We now have 

at = at–1 + γ(Tat–1 + et – at–1), 

or

at = [γT + (1 – γ)I]at–1 + γet.

5. Throughout, we rule out boundary cases in which the real part of some eigenvalue 
of the T map is one.
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This converges to a stationary stochastic process around the rational 
expectations equilibrium value (in deviation-from-the-mean form) 
provided all roots of the matrix γT + (1 – γ)I lie inside the unit 
circle. 

Stability under constant-gain learning depends on the value of γ, 
and we have the following result.

Proposition 1. For a given 0 < γ ≤ 1, the stability condition is 
that the eigenvalues of T lie inside a circle of radius 1/γ and origin at 
(1 – 1/γ, 0). This condition is therefore stricter for larger values of γ.

Proof. The stability condition is that the roots of γ[T + γ–1(1 – γ)I] 
lie inside the unit circle centered at the origin. Equivalently, the roots 
of [T + γ–1(1 – γ)I] must lie inside a circle of radius 1/γ centered at the 
origin. Since the roots of T + γ–1(1 – γ)I are the same as the roots of T 
plus γ–1(1 – γ), this is equivalent to the condition given.

The right edge of the circle is at (1, 0) in the complex plane, and as 
γ → 0 we obtain the standard (decreasing-gain) E-stability condition 
that the real parts of all roots of T are less than one. Looking at the 
other extreme, γ = 1, gives the following corollary of proposition 1:

Proposition 2. We have stability for all 0 < γ ≤ 1 if and only if all 
eigenvalues of T lie inside the unit circle. 

Stability for all constant gains, 0 < γ ≤ 1, is equivalent to a 
condition known as iterative E-stability, sometimes called IE-stability. 
Iterative E-stability is said to hold when Tj → 0 as j → ∞.6

When the stability condition holds, the parameter at converges to a 
stationary stochastic process that we can fully describe. This, in turn, 
induces a stationary stochastic process for yt = Tat–1 + et.

1.2 Application to Taylor Rules

Consider the standard forward-looking New-Keynesian model,

x i x gt t t
e

t
e

t=− − + ++ +ϕ π( ) ;1 1  (3)

π λ βπt t t
e

tx u= + ++1 .  (4)

For convenience we assume that (gt, ut)′ are independent and 
identically distributed (i.i.d.), so that the preceding technical results 

6. In many models, iterative E-stability is known to be a necessary condition for 
the stability of eductive learning; see, for example, Evans and Guesnerie (1993). 



150 George W. Evans and Seppo Honkapohja

can be applied. Later we consider cases with first-order autoregressive, 
or AR(1), shocks. We use xt

e
+1 and πt

e
+1 to denote expectations of πt+1 and 

xt+1. Below we specify the information sets available to agents when 
they are forming expectations, and throughout the paper we explore 
the implications of alternative assumptions. 

Bullard and Mitra (2002) consider Taylor rules of various forms, 
including the contemporaneous data rule, 

it = χπ πt + χx xt,, (5)

and the “contemporaneous expectations” rule,

i xt t
e

x t
e= +χ π χπ  .  (6)

In this section, our analysis of the contemporaneous expectations rule 
follows Bullard and Mitra (2002) in assuming that all expectations 
are based on information at time t – 1, that is, π πt

e
t tE= −

ˆ
1 , x E xt

e
t t= −

ˆ
1 , 

π πt
e

t tE+ − +=1 1 1
ˆ , and x E xt

e
t t+ − +=1 1 1

ˆ . Since we have i.i.d. shocks, forecasts 
are based purely on the estimated intercept.

Bullard and Mitra (2002) show that the determinacy and E-
stability conditions are the same and are identical for both interest 
rate rules. They are given by

λ(χπ – 1) + (1 – β)χx > 0.  (7)

Bullard and Mitra consider this finding important because of 
McCallum’s (1999) argument that interest rate rules cannot plausibly 
be conditioned on contemporaneous observations of endogenous 
aggregate variables like inflation and output, whereas they could 
plausibly be conditioned on central bank forecasts or “nowcasts” 
Êt t−1π , Ê xt t−1 .

We reconsider this issue from the vantage point of constant-gain 
learning. For the interest rate rule (6), the model takes the form

y M y M y Pvt t
e

t
e

t= + ++0 1 1 ,  (8)

where yt′ = (xt, πt) and vt′ = (gt, ut) and where

M0 =
− −
− −











χ ϕ χ ϕ
χ ϕλ χ ϕλ

π

π

x

x

 and M1

1
=

+











ϕ
λ β ϕλ

,  (9)
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and 

P =










1 0
1λ

.

Since our shocks are i.i.d., the PLM is simply yt = a + et, and the 
corresponding ALM is yt = (M0 + M1)a + et, where et = Pvt. The 
usual E-stability condition is that the eigenvalues of M0 + M1 have 
real parts less than one, which leads to condition (7). According 
to proposition 2, for convergence of constant-gain learning for all 
gains 0 < γ ≤ 1, both eigenvalues of M0 + M1 must lie inside the 
unit circle.

We investigate the stability of constant-gain learning numerically, 
using the Woodford calibration of ϕ−1 = 0.157, λ = 0.024, β = 0.99. 
Setting χπ = 1.5, eigenvalues with real parts less than –1 arise 
for χx > 0.31 and eigenvalues with real parts less than –9 arise 
for χx > 1.57. This implies that when χπ = 1.5 and χx > 1.57, the 
equilibrium is unstable under learning for constant gains γ ≥ 0.10. 
This is perhaps not a significant practical concern since Taylor’s 
recommended parameters are χπ = 1.5 and (based on the quarterly 
calibration of Woodford) χx = (0.5)/4 = 0.125. However, it does show 
a previously unrecognized danger that arises under constant-gain 
learning if the Taylor rule has too strong a response to Ê xt t−1 , and 
this finding foreshadows instability problems that arise in more 
sophisticated rules discussed below.

Finally, the potential for instability under constant-gain 
learning arises specifically because of the need to use forecasts 
Êt t−1y . For the current-data Taylor rule (5), it can be shown that 
condition (7) guarantees stability under learning for all constant 
gains 0 < γ ≤ 1.7

2. opTiMal disCreTionary MoneTary poliCy

We now consider optimal policy under constant-gain learning, 
starting with optimal discretionary policy. We focus on homogeneous 
learning by private agents and the policymaker. We initially restrict 
attention to the case of i.i.d. exogenous shocks, so that steady-state 

7. The model now takes the form y y vt t t tE= ++M P1
ˆ

1 , and the required condition 
is the same as the determinacy condition.
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learning is appropriate. We also analyze the more general case, in 
which the observable shocks follow AR(1) processes.

Consider the loss function

E x x i it x t i t
t

0
2 2 2

0

[( ) ( ) ( ) ],* * *π π α α− + − + −
=

∞

∑  (10)

where π*, x*, and i* represent target values. For simplicity, we set 
π* = x* = 0. The weights αx, αi > 0 represent relative weights given 
by policymakers to squared deviations of xt and it from their targets, 
compared with squared deviations of πt from its target.

The first-order condition for discretionary optimal policy is

λπt + αxxt − αiϕ
−1(it − i*) = 0. (11)

We first consider a Taylor-Type Rule proposed by Duffy and Xiao 
(2007) and then discuss the expectations-based rule recommended 
by Evans and Honkapohja (2003b).

2.1 Taylor-Type Optimal Rules

Duffy and Xiao (2007) propose using the equation (11) directly 
to obtain a Taylor-Type Rule that implements optimal discretionary 
policy. Solving the first-order condition for it yields the rule

i xt
i

t
x

i
t= +

ϕλ
α
π

ϕα
α

,

where at this point we drop the term i* since for brevity we are 
suppressing all intercepts. As Duffy and Xiao (2007) discuss, this is 
formally a contemporaneous-data Taylor rule. They show that for 
calibrated values of structural parameters and policy weights, this 
leads to a determinate and E-stable equilibrium.

The central bank’s observing contemporaneous output and 
inflation is problematic. We therefore examine the rule

i E E xt
i

t t
x

i
t t= +− −

ϕλ
α

π
ϕα
α

ˆ ˆ ,1 1  (12)
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where the information set for the nowcasts π πt
e

t tE= −
ˆ

1 , x E xt
e

t t= −
ˆ

1  is 
past endogenous variables and exogenous variables.8 This again leads 
to a model of the form (8) with coefficients (9), where χπ = ϕλ/αi and 
χx = ϕαx/αi. We assume that private agents and central banks estimate 
the same PLM. Since we are here assuming steady-state learning, we 
also have ˆ ˆE Et t t t− + −=1 1 1π π  and ˆ ˆE x E xt t t t− + −=1 1 1 . 

For a sufficiently large αi, the model under this Taylor-Type Rule 
will suffer from indeterminacy. This follows from the Bullard-Mitra 
result that the determinacy condition is equation (7), from which the 
critical value of αi can be deduced. The condition for determinacy is 

α α ϕλ β λ ϕαi i x< ≡ + − −( ) .1 1  (13)

If the central bank’s desire to stabilize the interest rate is too 
strong—that is, if condition (13) is not met—then the central bank fails 
to adjust the interest rate sufficiently to ensure that the generalized 
Taylor principle (7) is satisfied. To assess this point numerically, we 
use the calibrated parameter values of Woodford (2003, table 6.1), 
with αx = 0.048, ϕ = 1/0.157, λ = 0.024, and β = 0.99, which yields 
approximately αi = 0.28. Woodford’s calibrated values of αi are 0.077 
or 0.233 (the latter value is from Woodford, 1999). Thus the condition 
for determinacy does hold for these calibrations. 

We next consider stability under learning. For the PLM yt = a + et, 
we again get the ALM yt = (M0 + M1)a + et and 

T M M≡ + =
− −
− + −






− −

− −0 1

1 2 1 2

1 2 1 2 2

1 α α ϕ ϕ α λϕ
λ α λα ϕ β λϕ α λ ϕ

i x i

i x i





.

It can be shown that

det( ) ( ).T = − −β α α ϕ1 1 2
i x

Stability under all values 0 < γ ≤ 1 requires that

β α α ϕ( ) ,1 11 2− <−
i x

8. An alternative would be to assume that agents and the policymaker see the 
contemporaneous value of the exogenous shocks but not the contemporaneous values 
of xt and πt. This would not alter our results.
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and it is clear that for given β, αx, ϕ this condition will not be satisfied 
for a sufficiently small αi > 0. This leads to our next proposition: 

Proposition 3. Let ˆ ( )α β β α ϕi x= + −1 1 2. For 0< <α αi iˆ , there exists 
0 1< <ˆ( , , , )γ β ϕ α αi x  such that the optimal discretionary Taylor-Type 
Rule (12) renders the rational expectations equilibrium unstable under 
learning for γ̂ γ< ≤1.

Thus, in addition to the indeterminacy problem for large values of 
αi, the Taylor-type optimal rule suffers from a more serious problem 
of instability under constant-gain learning for small values of αi. The 
source of this difficulty is the interaction of strong policy responses 
seen in equation (12) and a large gain parameter. This combination 
leads to cyclical overshooting of inflation and the output gap. This is 
particularly evident as αi tends to zero, since in this case, a positive 
change in inflation expectations Êt t−1π  leads to a large increase in it, 
which in turn leads to large negative changes in xt and πt via equations 
(3) and (4). The severity of this problem depends on the value of γ̂ in 
proposition 3. Ideally, stability would hold for all 0 < γ ≤ 1, but the 
problem might not be a major concern if γ̂ is high.

We investigate the magnitude of γ̂ numerically by computing 
the eigenvalues of γT + (1 – γ)I. As an example, for the Woodford 
calibration β = 0.99, ϕ = 1/0.157, and λ = 0.024, we find that with 
αx = 0.048 and αi = 0.077, the critical value ˆ .γ ≈ 0 04. Since estimates 
in the macroeconomic literature suggest gains in the range 0.02 to 
0.06, this indicates that optimal Taylor-Type Rules may not be stable 
under learning.9 The source of the problem is that with low αi the 
implied weights on Êt t−1π  and especially Ê xt t−1  are very high. Under 
constant-gain learning, this can lead to instability unless the gain 
parameter is very low. As we demonstrate later, this problem can be 
avoided by using a suitable expectations-based optimal rule.

We next consider the case in which the exogenous shocks are 
AR(1) processes. The literature uses various information assumptions 
in this setting. Perhaps the most common assumption is that agents 
see current and lagged exogenous variables and lagged, but not 
current, endogenous variables. Expectations under this assumption 
are denoted ˆ ,Et tπ  ˆ ,E xt t  ˆ ,Et tπ +1  Ê xt t+1. An alternative would be to 
replace these with ˆ ,Et t−1π  ˆ ,E xt t−1

 ˆ ,Et t− +1 1π  Ê xt t− +1 1, indicating that 

9. Milani (2007b) considers a setting in which agents switch between decreasing-gain 
and constant-gain estimators, depending on recent average mean-square errors. The 
estimated gains are even higher in the constant-gain regime, at around 0.07 to 0.08.
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agents only see lagged information.10 Whether agents see current 
or only lagged exogenous shocks is not particularly crucial and does 
not affect our main results. We therefore follow the most common 
assumption that expectations are specified as ˆ ,Et tπ  ˆ ,E xt t  ˆ ,Et tπ +1  and 
Ê xt t+1.11 In contrast, whether agents and policymakers are able to 
see current endogenous variables is an important issue for stability 
under learning, as we have already seen. This is why we use the 
term operationality to indicate an interest rate rule that does not 
depend on current endogenous variables.

We now assume that the exogenous shocks gt and ut follow AR(1) 
processes, that is, 

g g gt t t= +−µ 1 

and

u u ut t t= +−ρ 1  ,

where 0 < |µ|, |ρ|< 1, and gt g∼ i.i.d.( , )0 2σ , ut u∼ i.i.d.( , )0 2σ  are 
independent white noise processes. We write this in vector form as

v Fv vt t t= +  .

Under the current assumptions, the PLM of the agents is

yt = a + cvt, 

and the forecasts are now Êt t ty a cv= +  and Êt t ty a cFv+ = +1 . Using 
the general model (8), the ALM is

yt = (M0 + M1)a + (M0c + M1cF + P)vt, 

10. A third alternative, which is occasionally used in the literature, allows agents 
to see the contemporaneous values of endogenous variables. However, this assumption 
runs against the requirement of operationality that we want to emphasize here.

11. The standard assumption under rational expectations is that agents have 
contemporaneous information. Our information assumption takes account of the 
operationality critique, but nonetheless allows for the possibility of convergence under 
learning to the rational expectations equilibrium.
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and the E-stability conditions are that all eigenvalues of the matrices 
M0 + M1 and I ⊗ M0 + F′ ⊗ M1 have real parts less than one. Here, ⊗ 
denotes the Kronecker product of two matrices.12

To examine stability under constant-gain learning, we simulate 
the model under constant-gain recursive least squares (RLS) 
estimation of the PLM parameters a and c.13 Under constant-gain 
RLS, agents discount old data geometrically at the rate 1 – γ. Let 
at, ct denote the estimates based on data through t – 1. Given these 
estimates, expectations are formed as y y a c vt

e
t t t t tE= = +ˆ  and 

12. In the case of lagged information, the PLM is specified as yt = a + cvt–1 + ηt, 
and the ALM is then y M M a M c M cF PF v vt t t= + + + + +−( ) ( )0 01 1 1  . 

13. See the appendix for the recursive formulation of constant-gain least squares.

Figure 1. Stability of Optimal Taylor-Type Rule with γ = 0.02.

A. Deviation of x from Rational Expectation

B. Deviation of π from Rational Expectation

Source: Authors’ calculations.
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y y a c Fvt
e

t t t t tE+ += = +1 1
ˆ , and the temporary equilibrium is then 

given by equation (8) with these expectations. 
We use the previous values for the structural parameters and also 

set µ = ρ = 0.8. Simulations of the system indicate instability under 
constant-gain RLS learning for gain parameters at or in excess of 
0.024. Thus, with regressors that include exogenous AR(1) observables, 
instability arises at even lower gain values than in the case of steady-
state learning. Figures 1 and 2 illustrate the evolution of parameters 
over time under constant-gain RLS learning with the Taylor-Type 
Rule (12) in stable and unstable cases.14 

14. In the stable case, the small deviation of π from rational expectations, seen in 
figure 1, gradually vanishes as the simulation length increases.

Figure 2. Instability of Optimal Taylor-Type Rule with γ = 0.04.

A. Deviation of x from Rational Expectation

B. Deviation of π from Rational Expectation

Source: Authors’ calculations.
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2.2 Expectations-Based Optimal Rules

Assume now that at time t the exogenous shocks gt, ut and 
private-sector expectations ˆ ,Et tπ +1  Ê xt t+1 are observed by the 
central bank. The expectations-based rule is constructed so that it 
exactly implements equation (11), the first-order condition under 
discretion, even outside a rational expectations equilibrium for given 
expectations, as suggested by Evans and Honkapohja (2003b). To 
obtain the rule, we combine equations (3), (4), and (11) and solve 
for it in terms of the exogenous shocks and the expectations. The 
resulting  expectations-based rule is

i E x Et
x

i x
t t

x

i x

=
+

+ +
+

+ +
+ ++

( )
( )

ˆ ( )
( )

ˆα λ ϕ
α α λ ϕ

βλϕ α λ ϕ
α α λ ϕ

2

2 2 1

2 2

2 2 tt t

x

i x
t

i x
tg u

π

α λ ϕ
α α λ ϕ

λϕ
α α λ ϕ

+

+
+

+ +
+

+ +

1

2

2 2 2 2

( )
( ) ( )

.

This leads to a reduced form,

y M y Pvt t t tE= ++
ˆ .1  (14)

Determinacy of the rational expectations equilibrium corresponding 
to optimal discretionary monetary policy requires that M has both 
eigenvalues inside the unit circle.15 We again have the condition 
α αi i< , where αi is given by equation (13).

For stability under learning, first consider the case in which the 
exogenous shocks vt are i.i.d. and agents use steady-state learning 
under constant gain. For this reduced form, the PLM yt = a + et gives 
the ALM yt = Ma + et (where et = Pvt), as discussed in section 1.1. 
Thus T = M, and there is a very close connection between determinacy 
and stability under learning. This leads to proposition 4:

Proposition 4. Assume that α αi i<  and that the shocks are i.i.d. 
Then the expectations-based rule, which implements the first-order 
condition, yields a reduced form that is stable under steady-state 
learning for all constant-gain rules 0 < γ ≤ 1. 

Provided α αi i< , so that determinate optimal policy is possible, 
the  expectations-based optimal rule will successfully implement the 

15. Equivalently, we need |tr(M) | < 1 + det(M) and |det(M)| < 1.
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optimal rational expectations equilibrium: under decreasing-gain 
learning there will be convergence to the equilibrium, and under 
small constant-gain learning, it will converge to a stochastic process 
near the optimal equilibrium. Furthermore, for all constant gains 
0 < γ ≤ 1, there will be convergence to a stationary process centered 
at the optimal equilibrium.

Second, we examine numerically the case of AR(1) shocks with 
(constant-gain) RLS learning. For the Woodford calibration β = 0.99, 
ϕ = 1/0.157, λ = 0.024, αx = 0.048, and αi = 0.077 (and ρ = µ = 0.8), we 
find that learning converges for gain values at or below γ = 0.925. 
In other words, the expectations-based optimal discretionary rule is 
quite robustly stable under learning. When the agents have to run 
genuine regressions, as in the current case, then the IE-stability 
condition does not imply convergence of constant-gain learning for 
all 0 < γ ≤ 1. However, we see that stability does hold even for γ 
quite close to one.

3. Optimal Policy with Commitment

For brevity, in the remainder of the paper we assume that 
αi = 0, that is, that the central bank does not have an interest rate 
stabilization objective.16 Given the model described in equations (3) 
and (4) and the loss function (10) with αi = 0, optimal monetary policy 
under commitment (from a timeless perspective) is characterized by 
the condition17

λπt = –αx(xt − xt−1), 	 (15)

which is often called the optimal targeting rule. The optimal rational 
expectations equilibrium of interest has the form

xt = bxxt−1 + cxut 

and

πt = bπxt−1 + cπut, 

16. See Duffy and Xiao (2007) for an extension to the case in which the central 
bank also has an interest rate stabilization motive.

17. See, for example, Clarida, Galí, and Gertler (1999) and Woodford (1999). For 
the exposition, we follow Evans and Honkapohja (2006).
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where we choose the unique 0 < bx < 1 that solves the equation 
βbx

2 – (1 + β + λ2/αx) bx + 1 = 0 and bπ = αx /λ(1  – bx), cx = – [λ + βbπ 
+ (1 – βρ)(αx /λ)]

–1, and cπ = – (αx /λ) cx.
The literature proposes a number of optimal reaction functions 

that implement the optimal targeting rule (15). Under rational 
expectations, one obtains the fundamentals-based reaction function 

it = ψxxt−1 + ψggt + ψuut,  (16)

where

ψx = bx[ϕ
−1(bx – 1) + bπ], 

ψg = ϕ−1,

and

ψu = [bπ + ϕ−1 (bx + ρ – 1)] cx + cπρ. 

Evans and Honkapohja (2006) show that the reaction function (16) 
often leads to indeterminacy and always leads to expectational 
instability. They propose instead the expectations-based reaction 
function 

i x E E x g ut L t t t x t t g t u t= + + + +− + +δ δ π δ δ δπ1 1 1
ˆ ˆ ,  (17)

where the coefficients are18

δ
α

ϕ α λL
x

x

=
−
+( )

,
2  δ

λβ
ϕ α λπ = +

+
1

2( )
,

x

 δ δ ϕx g= = −1 ,  and 

δ
λ

ϕ α λu
x

=
+( )

.
2

Under the interest rate reaction rule (17), the reduced-form model is 
of the form

y M y Ny Pvt t t t tE= + ++ −1 1 1
ˆ ,

18. In the discretionary case with αi = 0, the same coefficients would obtain, except 
that δL = 0. 
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with yt′ = (xt, πt) and vt′ = (gt, ut). The corresponding rational 
expectations equilibrium takes the form y by cvt t t= +−1 . Evans and 
Honkapohja (2006) show that the optimal expectations-based reaction 
function (17) delivers a determinate and E-stable optimal equilibrium 
for all values of the parameters. It is therefore clearly preferred to the 
fundamentals-based rule (16). 

In connection with constant-gain learning we have the following 
partial result:19 

Proposition 5. The expectations-based rule under commitment 
(17) yields a reduced form for which the eigenvalues of the derivative 
of the T map, at the rational expectations equilibrium, are inside the 
unit circle for all values of the structural parameters.

This result is partial in the sense that the eigenvalues condition 
is no longer sufficient for stability of constant-gain learning for 
all 0 < γ ≤ 1. This is because in the model the regressors include 
exogenous and lagged endogenous variables.

We now examine numerically the performance of constant-gain RLS 
learning under the expectations-based optimal rule with commitment. 
Using Woodford’s parameter values (but with αi = 0), we find that 
constant-gain RLS learning converges for values of the gain parameter 
below ˆ .γ ≈ 0 25. The inclusion of a lagged variable among the regressors 
appears to have a significant effect on learning stability for large 
gains. However, the rule is still robust for all plausible values of the 
gain parameter.

As noted above, the Duffy and Xiao (2007) formulation under 
commitment breaks down when αi = 0 (as it does in the discretionary 
case). One might investigate numerically the performance of the 
Duffy-Xiao rule under constant-gain RLS for calibrated values 
of αi. Based on the results in the discretionary case, we are not 
optimistic about robust learning stability of the Duffy-Xiao rule 
with commitment.

4. alTernaTive rUles for opTiMal poliCy Under 
CoMMiTMenT

This section explores two alternative rules for optimal policy under 
commitment: the Svensson-Woodford rule and the McCallum-Nelson 
rule. 

19. See the appendix for a proof.
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4.1 Svensson-Woodford Rule

Given that the fundamentals-based optimal rules (without interest 
rate stabilization) lead to problems of indeterminacy and learning 
instability, Svensson and Woodford (2005) suggest a modification in 
which the fundamentals-based rule (16) is complemented with a term 
based on the commitment optimality condition. We again assume that 
contemporaneous data are not available to the policymaker, so that 
current values of inflation πt and the output gap xt are replaced by 
their nowcasts Êt tπ  and Ê xt t . This results in the interest rate rule 

i x g u E E x xt x t g t u t t t
x

t t t= + + + + −− −ψ ψ ψ θ π
α
λ1 [ ˆ ( ˆ )],1  (18)

where θ > 0.
The full model is now given by equations (3), (4), and (18). By 

substituting equation (18) into equation (3), we can reduce this model 
to a bivariate model of the form 

y M y M y Ny Pvt t t t t t tE E= + + ++ −0 1 1 1
ˆ ˆ ,  (19)

where the information set in the forecasts and nowcasts includes 
current values of the exogenous shocks but not of the endogenous 
variables. We also assume for convenience that v Fv vt t t= +−1   is a 
known, stationary process. The coefficient matrices are

M0

1

=
− −
− −











−ϕα θλ ϕθ
ϕα θ ϕθλ

x

x

,

M1

1
=

+











ϕ
λ β λϕ

,

N =
− +
− +











−ϕψ ϕα θλ
λϕψ ϕα θ

x x

x x

1 0
0

,

and

P =
−
−











0
0 1

ϕψ
λϕψ

u

u

.
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The PLM has the form

yt = a + byt–1 + cvt,

and the T mapping is

T a b c
M M I b a M b M b N

M c M bc cF P

2

, ,
, ,

( )=
+ +( )



 + +

+ +( )+



 0 1 1 0

0 1








.

The usual E-stability conditions are stated in terms of the eigenvalues 
of the derivative matrices,

DT M M I ba = + +0 1( ),

DT b M I M b I Mb = ′⊗ + ⊗ + ⊗1 01 ,

and

DT F M I M b I Mc = ′⊗ + ⊗ + ⊗1 01 ,

where ⊗ is the Kronecker product and b is the rational expectations 
value of b.

We compute numerically the E-stability eigenvalues for the 
Woodford calibration with αx = 0.048 and θ = 1.0. For this case the 
eigenvalues of DTa are –9.570 and 0.990, while the eigenvalues of 
DTb are –10.605, –9.672, 0.878, and –0.0118. However, θ = 1.0 is very 
close to the lower bound on θ needed for E-stability (since one root of 
DTa is almost one), and the eigenvalues are sensitive to the value of 
θ. For example, for θ = 1.5, the eigenvalues of DTa are –15.975 and 
0.949, while the eigenvalues of DTb are –17.059, –16.082, 0.842 and 
–0.011. Thus, large negative eigenvalues appear.20 

The calculation of the E-stability eigenvalues suggests that the 
interest rate rule (18) can be subject to instability if learning is based 
on constant gain. We now examine numerically the performance of rule 
(18) under different values of the constant gain using the Woodford 
calibrated values of the model parameters and θ = 1.5. Numerical 

20. The eigenvalues of the same model, but with contemporaneous data available, 
would not deliver large negative eigenvalues in the E-stability calculation for this 
parameterization.



164 George W. Evans and Seppo Honkapohja

simulations show that under the interest rate rule (18), constant-gain 
RLS learning becomes unstable for values of γ at 0.019 or higher.

We also examine numerically the sensitivity of the stability upper 
bound on γ for different values of αx, that is, the degree of flexibility of 
inflation targeting. Table 1 gives the approximate highest value, γ̂, of 
the gain for which stability under constant-gain learning obtains. The 
table shows that robust learning stability of the Svensson-Woodford 
hybrid rule is very sensitive to the degree of flexibility in inflation 
targeting. Robust stability obtains only when the central bank is an 
inflation hawk.

Table 1. Critical Values of γ for Stability:  
Svensson-Woodford Rule 

αx 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10

γ̂ 0.185 0.060 0.035 0.020 0.018 0.014 0.009 0.007

Source: Authors’ calculations.

4.2 McCallum-Nelson Rule

McCallum and Nelson (2004) propose a different rule that 
approximates optimal interest rate policy from a timeless perspective. 
They suggest that the interest rate be raised above inflation whenever 
the timeless-perspective optimality condition is above zero. Their 
rule performs well if yt is observable, but as McCallum and Nelson 
(2004) themselves point out, such a rule would be subject to the 
operationality problem that we have encountered several times: it 
presupposes that contemporaneous data on inflation and the output 
gap are available. One way to overcome this problem is to replace 
unknown contemporaneous data by nowcasts of the variables. In this 
case, the interest rate rule becomes

i E E E x xt t t t t
x

t t t= + + − −
ˆ [ ˆ ( ˆ )].π θ π

α
λ 1  (20)

Under rational expectations, this rule approximates optimal policy 
under (timeless-perspective) commitment, provided θ > 0 is large. 

The model is then given by equations (3), (4), and (20). The model 
can be reduced to a bivariate model of the form (19), where the 
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coefficient matrices are

M0

1 1
1

=
− − +
− − +











−θϕα λ ϕ θ
θϕα ϕλ θ

x

x

( )
( )

,

M1

1
=

+











ϕ
λ β λϕ

,

N =
−









−θϕα λ
θϕα

x

x

1 0
0

,

and

P =










1 0
1λ

.

Using the same parameter values as in the case of the Svensson-
Woodford hybrid rule, with αx = 0.048, we obtain that for θ = 1.0, 
the eigenvalues of DTa are –9.719 and 0.869, while the eigenvalues 
of DTb are –10.780, –9.833, 0.750, and –0.213. For θ = 1.5 the 
eigenvalues of DTa are –16.130 and 0.873, while the eigenvalues 
of DTb are –17.228, –16.245, 0.762 and –0.172. The results are 
very sensitive to αx. For αx = 0.100, we obtain that for θ = 1.0 the 
eigenvalues of DTa are –22.954 and 0.912, while the eigenvalues 
of DTb are –24.042, –23.033, 0.835 and –0.143. The large negative 
eigenvalues indicate the potential for instability under constant-gain 
learning. Using the Woodford calibration (including αx = 0.048) and 
choosing θ = 1.5, we find that constant-gain RLS learning becomes 
unstable for values of the gain at or above 0.017.

We again examine numerically the sensitivity of the stability 
upper bound on γ for different values of αx, that is, the degree of 
flexibility of inflation targeting. Table 2 gives the approximate 
highest value γ̂  of the gain for which stability under constant-
gain learning obtains. Comparing the two tables reveals that the 
stability performance of the McCallum-Nelson rule (20) is about 
the same as that of the hybrid rule (18) for the same parameter 
values. Neither rule is robust for many plausible values of the 
gain parameter.
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Table 2. Critical Values of γ for Stability: 
McCallum-Nelson Rule

αx 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10

γ̂ 0.174 0.057 0.031 0.020 0.017 0.014 0.009 0.007

Source: Authors’ calculations.

McCallum and Nelson (2004) suggest that a preferable alternative 
to equation (20) is to use forward expectations instead of nowcasts, 
since this delivers superior results under rational expectations. In 
this case, the model has no lagged endogenous variables, that is, 
N = 0 in equation (19). We analyze this case numerically in Evans and 
Honkapohja (2003a, 2006). Large negative eigenvalues no longer arise 
in this formulation. However, determinacy and E-stability require a 
small value of the parameter θ, which can result in significant welfare 
losses for optimal policy.

5. ConClUsions

A lot of recent applied research on learning and monetary policy 
emphasizes discounted (constant-gain) least-squares learning by 
private agents. We have examined the stability performance of 
various operational interest rate rules under constant-gain learning 
for different values of the gain parameter. Since estimates of the 
gain parameter tend to be in the range of 0.02 to 0.06 for quarterly 
macroeconomic data, ideally there should be convergence of learning 
for gain parameters up to 0.1. Based on this criterion, we have found 
that many proposed interest rate rules are not robustly stable under 
learning in this sense. An exception to this finding is the class of 
expectations-based optimal rules in which the interest rate depends 
on private expectations in an appropriate way. 
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aPPendix

Constant-Gain RLS Algorithm

Suppose the economy is described in terms of a multivariate linear 
model, which includes possible dependence on lagged endogenous 
variables. Under least-squares learning, agents have the PLM

yt = a + byt–1 + cvt + et,  (21)

where a, b, and c denote parameters to be estimated. Here yt is a 
p × 1 vector of endogenous variables. vt is k × 1 vector of observable 
exogenous variables, and et is a vector of white noise shocks. If the 
model does not have lagged endogenous variables, then the term 
byt−1 is omitted.

At time t agents compute their forecasts using equation (21) 
with the estimated values (at, bt, ct) based on data up to period t – 1. 
Constant-gain RLS takes the form

ξ ξ ξt t t t t t t= + − ′ ′−
−

− − − −1
1

1 1 1 1γR Z y Z( ) ,

R R Z Z Rt t t t t= + ′ −− − − −1 1 1 1γ( ),

where ′ =ξt t t t( , , )a b c , ′ = ′ ′−Z y vt t t( , , )1 1 , and 1 > γ > 0. The algorithm 
starts at t = 1 with a complement of initial conditions. The only 
difference from standard RLS is that the latter assumes a decreasing 
gain γt = 1/t.21

Proof of proposition 5

We now sketch a proof of proposition 5. We examine the formulas 
given in equations (A7) through (A9) of Evans and Honkapohja (2006, 
p. 36). Two of the eigenvalues of DTb are 0, while the remaining 
eigenvalues are those of the matrix

21. The formal analysis of recursive least squares (RLS) learning in linear 
multivariate models is developed, for example, in Evans and Honkapohja (1998; 2001, 
chap. 10).
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.

The eigenvalues of Kb are 0 and –1 < αxβ(2bx − 1)/(αx + λ2) < 1. Likewise, 
two of the eigenvalues of DTc are 0, while the other two eigenvalues 
are those of the matrix

Kc =

−
+

−
+

+ +


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.

The eigenvalues of Kc are 0 and αxβ(bx − 1 + ρ)/(αx + λ2), which is inside 
the unit circle unless ρ is negative and large in magnitude. Finally,

DTa =

−
+

−
+

+ +


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,

and its eigenvalues are 0 and 0 < αxβbx/(αx + λ2) < 1.
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